首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Shackleton Limestone formed a carbonate platform that bordered part of the Greater Antarctic craton in middle and late Early Cambrian time. In the Holyoake Range of the central Transantarctic Mountains, this unit records deposition on a stable shelf on which flourished ecological reefs composed of microorganisms and archaeocyathans. Burrow-mottled lime mudstone, wackestone and packstone with patch reefs represent accumulation in shelf areas of relatively low to moderate energy. Thick ooidal grainstone units reflect deposition in higher energy shoals and as sand sheets that were associated with extensive reef complexes. The framework of these reefs was principally the product of micro-organisms, by inference mostly cyanobacteria. Archaeocyathans constitute as much as 30% of some reefs, but commonly they form less than 10% and are absent from some. On the basis of microbial composition, three reef types are recognized. The first type is a Renalcis boundstone that lacks archaeocyathans. Within these, abundant upward-directed thalii of Renalcis formed a framework that trapped fine-grained sediment. The second type, which forms the core of some larger reefs, is composed of stromatactis-bearing, microbial boundstone. The third, yet most common, reef type is variable in composition. It is characterized by the presence of abundant Epiphyton, but may include archaeocyathans, and the microbial microfossils Girvanella and Renalcis as well as cryptomicrobial clotted micrite. In this type of reef, frame-building organisms typically constructed highly porous structures that had small interparticle and fenestral pores and large growth-framework cavities, as well as rare metre-sized caverns. Within these spaces, Epiphyton and, less commonly Renalcis, encrusted framework elements, fine-grained sediments accumulated, and pervasive sea-floor cements were precipitated. Boundstone fabrics in the Shackleton Limestone are highly complex, with fabrics analogous to younger, more metazoan-rich reefs, as well as deep-water stromatactis-bearing mud-mounds. The Epiphyton-Girvanella-archaeocyathan frameworks and stromatactis-bearing boundstones, both of which seemingly first appeared in the middle Early Cambrian, are regarded as the precursors, in structure, composition, and preferred hydrologic setting, of the more extensive reefs and complex framework styles of later Phanerozoic time.  相似文献   

2.
Late Frasnian mounds of the Yunghsien Formation, Guilin, South China, developed as part of the Guilin platform, mostly in reef‐flat and platform margin settings. Microbial mounds in platform margin settings at Hantang, about 10 km west of Guilin, contain Frasnian biota, such as Stachyodes and Kuangxiastraea and, thus, occur below the Frasnian‐Famennian mass extinction boundary. Platform margin facies were dominated by microbes, algae and receptaculitids. Massive corals and stromatoporoids are not common and rarely show reef‐building functions as they did in Givetian time. The margin mounds are composed of brachiopod‐receptaculitid cementstone, and a variety of boundstones that contain Rothpletzella, Renalcis, thrombolite and stromatolite. Other microbial communities include Girvanella, Izhella, Ortonella and Wetheredella. Solenoporoid algae are abundant locally. Zebra structures and neptunian dykes are well‐developed at some intervals. Pervasive early cementation played an important role in lithification of the microbial boundstones and rudstones. Frasnian reefs of many regions of the world were constructed by stromatoporoids and corals, although a shift to calcimicrobe‐dominated frameworks occurred before the Famennian. However, the exact ages of many Frasnian margin outcrops are poorly constrained owing to difficulties dating shallow carbonate facies. The Hantang mounds represent a microbe‐dominated reef‐building community with rare skeletal reef builders, consistent with major Late Devonian changes in reef composition, diversity and guild structure occurring before the end of the Frasnian. A similar transition occurred in the Canning Basin of Western Australia, but coeval successions in North America, Western Europe and the northern Urals are either less well‐known or represent different bathymetric settings. The transition in reef‐building style below the Frasnian‐Famennian boundary is documented here in the two best exposed successions on two continents, which may have been global. Set in the larger context of Late Devonian and Mississippian microbial reef‐building, the Hantang mounds help to demonstrate that controls on microbial reef communities differed from those on larger skeletal reef biota. Calcimicrobes replaced stromatoporoids as major reef builders before the Frasnian‐Famennian extinction event, and increasing stromatoporoid diversity towards the end of the Famennian did not result in a resurgence of skeletal reef frameworks. Calcimicrobes dominated margin facies through the Famennian, but declined near the Devonian‐Carboniferous boundary. Stromatolite and thrombolite facies, which occurred behind the mound margin at Hantang, rose to dominate Mississippian shallow‐water reef frameworks with only a minor resurgence of the important Frasnian calcimicrobe Renalcis in the Visean when well‐skeletonized organisms (corals) also became volumetrically significant frame builders again.  相似文献   

3.
The Oligocene represents a key interval during which coralline algae became dominant on carbonate ramps and luxuriant coral reefs emerged on a global scale. So far, few studies have considered the impact that these early reefs had on ramp development. Consequently, this study aimed at presenting a high‐resolution analysis of the Attard Member of the Lower Coralline Limestone Formation (Late Oligocene, Malta) in order to decipher the internal and external factors controlling the architecture of a typical Late Oligocene platform. Excellent exposures of the Lower Coralline Limestone Formation occurring along continuous outcrops adjacent to the Victoria Lines Fault reveal in detail the three‐dimensional distribution of the reef‐associated facies. A total of four sedimentary facies have been recognized and are grouped into two depositional environments that correspond to the inner and middle carbonate ramp. The inner ramp was characterized by a very high‐energy, shallow‐water setting, influenced by tide and wave processes. This setting passed downslope into an inner‐ramp depositional environment which was colonized by seagrass and interfingered with adjacent areas containing scattered corals. The middle ramp lithofacies were deposited in the oligophotic zone, the sediments being generated from combined in situ production and sediments swept from the shallower inner ramp by currents. Compositional characteristics and facies distributions of the Attard ramp are more similar to the Miocene ramps than to those of the Eocene. An important factor controlling this similarity may be the expansion of the seagrass colonization within the euphotic zone. This expansion may have commenced in the Late Oligocene and was associated with a concomitant reduction in the aerial extent of the larger benthonic foraminifera facies. Stacking‐pattern analysis shows that the depositional units (parasequences) at the study section are arranged into transgressive–regressive facies cycles. This cyclicity is superimposed on the overall regressive phase recorded by the Attard succession. Furthermore, a minor highstand (correlated with the Ru4/Ch1 sequence) and subsequent minor lowstand (Ch2 sequence) have been recognized. The biota assemblages of the Attard Member suggest that carbonate sedimentation took place in subtropical waters and oligotrophic to slightly mesotrophic conditions. The apparent low capacity of corals to form wave‐resistant reef structures is considered to have been a significant factor affecting substrate stability at this time. The resulting lack of resistant mid‐ramp reef frameworks left this zone exposed to wave and storm activity, thereby encouraging the widespread development of coralline algal associations dominated by rhodoliths.  相似文献   

4.
For a petroleum geologist knowledge of the density of the distribution of subsurface Cretaceous reefs is a matter of practical interest. Hence, the discovery in the Judean Desert of Israel, near the western margin of the Dead Sea, of an exhumed sea bottom below an erosional unconformity is of particular interest, because it reveals the original distribution of such reefs, and thus may provide a clue to their subsurface distribution. In this desert, newly described Turonian (Upper Cretaceous) reefs are the dominant geomorphic features, as in their original habitat on the Cretaceous sea bottom. These reefs can be traced on aerial photographs: they are generally 5-15 m in diameter and 1-2.5 m in vertical dimension. Generally, reefs occur within 100-200 m of one another; in many places they are less than 50 m apart. The shapes of the patch or pinnacle reefs are almost circular, as are those occurring in the Edwards Limestone (Comanchean, Lower Cretaceous) in central Texas (Roberson, 1972). The hard, resistant, ring-like outer rims of these exposed reefs weather out as raised rims. A central depression within such structures consists, in places, of Senonian soft chalky or friable material that has been interpreted as a diagenetic product of the vadose zone. The massive reef core consists of porous dolomite. The flanking strata which dip away from the reef core at angles of approximately 15-25° are composed of a probable original grainstone which has been diagenetically changed to a micritic fabric.  相似文献   

5.
It is a widely held concept that tropical coral reefs in shallower water with branched acroporid corals should accrete faster than those in deeper water dominated by massive corals. Results from a study of Holocene development of the largest Atlantic reef system, including paleo-waterdepth data, challenge these concepts. In Belize barrier and atoll reefs, reef accretion-rates range from 0.46 to 7.50 m/kyr, and average 3.03 m/kyr, as measured along 33 dated reef sections. Interestingly, accretion-rates increase with increasing paleo-waterdepth, and sections dominated by massive corals accumulated even slightly faster than those with branched acroporids. Published data from some other reef locations reveal no significant trends when plotting reef accretion-rate versus paleo-waterdepth, also indicating that the above-mentioned concepts should be questioned. Massive corals apparently are more resistant and accrete in lower disturbance conditions in slightly deeper water (5–10 m) and higher accomodation (space available for sediment deposition) as compared to shallow water (0–5 m) branched acroporids, which repeatedly get broken and leveled out during tropical cyclones.  相似文献   

6.
Two coralgal patch reefs of the Hauterivian Llàcova Formation (Maestrat Basin, eastern Spain), exposed at two consecutive stratigraphic levels within a single section, have been studied to document taxonomic implications of a changing environment. These two reefal palaeocommunities differ substantially in coral taxonomic composition, microbialite formation pattern and in abundance and composition of encrusters and bioeroders. Of a total of 14 coral species, just one (Stylina parvistella) occurs in both reefs, yet is abundant in the (lower) reef A and rare, occurring near the reef base, in the reef B assemblage. Reef A is dominated by a phototrophic fauna and coral species with small corallites and imperforate septa (a stylinid-thamnasteriid-heterocoeniid-actinastreid association), along with an encruster association dominated by Bacinella and Lithocodium. Reef B is characterised by a balanced phototrophic-heterotrophic fauna that gradually passes into a heterotrophic-dominated assemblage. During this latest growth stage, microsolenid corals dominated the assemblage. The encruster fauna is characterised by sponges, polychaetes and bryozoans. Moderate deepening during a transgressive systems tract (TST) depositional sequence and elevated nutrient supply are interpreted to represent the driving environmental parameters that caused faunal compositions to differ between these two reefal palaeocommunities. Nine coral taxa, previously known only from younger (Barremian–Cenomanian) strata, have been identified, namely Dimorphocoenia? rudis, Eocomoseris raueni, Eocomoseris sp., Holocoenia jaccardi, Latusastrea irregularis, Mesomorpha sp., Microsolena kugleri, Polyphylloseris mammillata and Polyphylloseris sp. This observation emphasises the importance of the Hauterivian Stage as a period of evolutionary transition in Late Jurassic–Cretaceous coral faunas.  相似文献   

7.
C. Scheibner  R.P. Speijer   《Earth》2008,90(3-4):71-102
The early Paleogene experienced the most pronounced long-term warming trend of the Cenozoic, superimposed by transient warming events such as the Paleocene–Eocene Thermal Maximum (PETM). The consequences of climatic perturbations and associated changes on the evolution of carbonate platforms are relatively unexplored. Today, modern carbonate platforms, especially coral reefs are highly sensitive to environmental and climatic change, which raises the question how (sub)tropical reef systems of the early Paleogene reacted to gradual and sudden global warming, eutrophication of shelf areas, enhanced CO2 levels in an ocean with low Mg/Ca ratios. The answer to this question may help to investigate the fate of modern coral reef systems in times of global warming and rising CO2 levels.Here we present a synthesis of Tethyan carbonate platform evolution in the early Paleogene (~ 59–55 Ma) concentrating on coral reefs and larger foraminifera, two important organism groups during this time interval. We discuss and evaluate the importance of the intrinsic and extrinsic factors leading to the dissimilar evolution of both groups during the early Paleogene. Detailed analyses of two carbonate platform areas at low (Egypt) and middle (Spain) paleolatitudes and comparison with faunal patterns of coeval platforms retrieved from the literature led to the distinction of three evolutionary stages in the late Paleocene to early Eocene Tethys: Stage I, late Paleocene coralgal-dominated platforms at low to middle paleolatitudes; stage II, a transitional latest Paleocene platform stage with coralgal reefs dominating at middle paleolatitudes and larger foraminifera-dominated (Miscellanea, Ranikothalia, Assilina) platforms at low paleolatitudes; and stage III, early Eocene larger foraminifera-dominated (Alveolina, Orbitolites, Nummulites) platforms at low to middle paleolatitudes. The onset of the latter prominent larger foraminifera-dominated platform correlates with the Paleocene/Eocene Thermal Maximum.The causes for the change from coral-dominated platforms to larger foraminifera-dominated platforms are multilayered. The decline of coralgal reefs in low latitudes during platform stage II is related to overall warming, leading to sea-surface temperatures in the tropics beyond the maximum temperature range of corals. The overall low occurrence of coral reefs in the Paleogene might be related to the presence of a calcite sea. At the same time larger foraminifera started to flourish after their near extinction at the Cretaceous/Paleogene boundary. The demise of coralgal reefs at all studied paleolatitudes in platform stage III can be founded on the effects of the PETM, resulting in short-term warming, eutrophic conditions on the shelves and acidification of the oceans, hampering the growth of aragonitic corals, while calcitic larger foraminifera flourished. In the absence of other successful carbonate-producing organisms, larger foraminifera were able to take over the role as the dominant carbonate platform inhabitant, leading to a stepwise Tethyan platform stage evolution around the Paleocene/Eocene boundary. This szenario might be also effective for threatened coral reef sites.  相似文献   

8.
塔中地区中上奥陶统台地镶边体系分析   总被引:68,自引:6,他引:62       下载免费PDF全文
塔里木盆地塔中地区中上奥陶统碳酸盐岩台地边缘以发育良好的多种粒屑滩和生物礁组成的镶边沉积体系为特征。通过精细的单井相分析,识别出砂屑滩、砾屑滩、生屑滩以及鲕粒滩等,并且区分出3种不同类型的生物礁:①隐藻灰泥丘;②主要由枝状苔藓虫、海绵或(和)珊瑚建造的障积礁;③由石质海绵、托盘类、层孔虫、珊瑚、管孔藻等建造的骨架礁。在面向深水盆地的台缘外带,以发育中~高能粒屑滩和骨架礁组合为特征。在背靠开阔海台地的台缘内带,主要表现为中低能粒屑滩、隐藻灰泥丘以及障积礁的组合。这个台缘镶边沉积体系总体上沿塔中1号断层西侧呈北西-南东向长带状展布,长度100多公里,是本区重要的油气聚集带之一。储层质量台缘外带总体上优于台缘内带,其中骨架礁礁核和粒屑滩灰岩最好,礁间海和滩间海沉积物较差。  相似文献   

9.
The Neuquén back-arc basin is located on the west margin of the South American platform between latitudes 36° and 40° S. The basin is famous for its continuous sedimentary record from the Late Triassic to Cenozoic comprising continental and marine clastic, carbonate, and evaporitic deposits up to 2.600 m in thickness.The stratigraphical and paleontological studies of the outcrops of the La Manga Formation, Argentina, located near the Bardas Blancas region, Mendoza province (35° S and 69° O) allow the reconstruction of the sedimentary environments of an Oxfordian carbonate ramp, where outer ramp, middle ramp, inner ramp (oolitic shoal), inner ramp margin (patch reef) lagoon and paleokarst were differentiated. The reefs consist of back reef facies and in situ framework of coral boundstones that was formed at the top of shallowing-upward succession.Coral reefs were analyzed by defining coral colonies shapes, paleontological content, coral diversity and taphonomy studies. In some studied sections abundant fragments of gryphaeids, encrusting bryozoans, and isolated sponges provided a suitable substrate for coral colonization; however, other sections show an increase in the proportions of ooids, peloidal and coral intraclasts.The core reef facies is composed of white-grey unstratified and low diversity scleractinian coral limestone dominated by robust and thinly branching corals with cerioid–phocoid growths and massive coral colonies with meandroid–thamnasteroid growth forms.The assemblage is characterized by Actinastraea sp., Australoseris sp., Thamnasteria sp. and Garateastrea sp. Internal facies organization and different types of coral colonies allow to recognize the development of varying framework as well as intercolony areas. A superstratal growth fabric characterizes the coral assemblage. On the basis of coral growth fabric (branche and domal types), the reef of La Manga Formation is considered a typical mixstones. The intercolony areas consist of biomicrites and biomicrorudites containing abundant coral fragments, parautochthonous gryphaeids and another bivalves (Ctenostreon sp.), gastropods (Harpagodes sp., Natica sp.), echinoderms test and spines (Plegiocidaris sp.), miliolids, Cayeuxia sp., Acicularia sp., Salpingoporella sp., intraclasts, ooids, peloids and coated grains.The domal growth forms are probably more protected against biological and physical destruction, meanwhile delicate branching growth forms with very open and fragile framework were more affected and fragmented due to wave action and bioerosion.The reef fabric shows different intervals of truncation as consequence of erosion resulting from coral destruction by storm waves or currents. The maximum flooding surface separates oolitic shoal facies below from the aggradational and progradational coralline limestones facies above. Subsequent sea-level fall and karstification (148 Ma) affected reef and oolitic facies.  相似文献   

10.
Holocene fringing reef development around Bora Bora is controlled by variations in accommodation space (as a function of sea‐level and antecedent topography) and exposure to waves and currents. Subsidence ranged from 0 to 0·11 m kyr?1, and did not create significant accommodation space. A windward fringing reef started to grow 8·7 kyr bp , retrograded towards the coast over a Pleistocene fringing reef until ca 6·0 kyr bp , and then prograded towards the lagoon after sea‐level had reached its present level. The retrograding portion of the reef is dominated by corals, calcareous algae and microbialite frameworks; the prograding portion is largely detrital. The reef is up to 13·5 m thick and accreted vertically with an average rate of 3·12 m kyr?1. Lateral growth amounts to 13·3 m kyr?1. Reef corals are dominated by an inner Pocillopora assemblage and an outer Acropora assemblage. Both assemblages comprise thick crusts of coralline algae. Palaeobathymetry suggests deposition in 0 to 10 m depth. An underlying Pleistocene fringing reef formed during the sea‐level highstand of Marine Isotope Stage 5e, and is also characterized by the occurrence of corals, coralline algal crusts and microbialites. A previously investigated, leeward fringing reef started to form contemporaneously (8·78 kyr bp ), but is thicker (up to 20 m) and solely prograded throughout the Holocene. A shallow Pocillopora assemblage and a deeper water Montipora assemblage were identified, but detrital facies dominate. At the Holocene reef base, only basalt was recovered. The Holocene windward–leeward differences are a consequence of less accommodation space on the eastern island side that eventually led to a more complex reef architecture. As a result of higher rates of exposure and flushing, the reef framework on the windward island side is more abundant and experienced stronger cementation. In the Pleistocene, the environmental conditions on the leeward island side were presumably unfavourable for fringing reef growth.  相似文献   

11.
Lycian Nappes (in SW Turkey) lie between the Menderes Massif and Bey Dağları carbonates and comprise thrust sheets (nappes piles) of Paleozoic-Cenozoic rocks, ophiolitic and tectonic mélanges and serpentinized peridodites. This study focuses on identification of rudists and their palaeoenvironmental features observed within the Cretaceous low grade metamorphic successions (dominated by recrystallized limestones) from the Tavas and Bodrum nappes. The study is based on fifteen stratigraphic sections measured from Tavas, Fethiye, Köyceğiz, Bodrum, Ören and Bozburun areas. The Lower Cretaceous successions with rudists are very sparse in the Lycian Nappes and a unique locality including a Berriasian epidiceratid-requieniid assemblage is reported so far. A new requieniid-radiolitid assemblage was found within the pre-Turonian (?Albian-?Cenomanian) limestones. Four different Late Cretaceous rudist assemblages were firstly identified as well: 1) Caprinid-Ichthyosarcolitid assemblage (middle-late Cenomanian); 2) Distefanellid assemblage (late Turonian); 3) Hippuritid-Radiolitid assemblage (late Coniacian-Santonian-Campanian); 4) Radiolitid-Hippuritid assemblage (‘middle’-late Maastrichtian). Microfacies data and field observations indicate that the rudists lived in the inner and outer shelves of the Cretaceous carbonate platform(s) in this critical part of the Neotethys Ocean. Rudists formed isolated patchy aggregations in very shallow palaeoenvironments and deposited as shell fragments particularly on the outer shelf environment, which is characterized by higher energy and platform slope characteristics.  相似文献   

12.
Stromatolitic crusts on stick-like and platy Porites corals forming Messinian reefs in Almería played an important role in supporting and binding the brittle corals. The crusts were previously regarded as probable marine cements. However, their clotted, peloidal, and micritic fabrics are directly comparable with those of stromatolites. They accreted allochthonous grains even on vertical faces, and include bushy fabrics closely comparable with those produced by cyanobacterial calcification. They contain numerous fenestrae, exhibit rapid fabric variation, and locally form micro-columns and laminated domes. Their similarities to peloid micrite crusts in Recent reefs suggest that at least some of these Recent crusts are microbial in origin, even though they have widely been interpreted as marine cements. The sedimentary effects of crust development substantially affected both the morphology and relief of the reefs and the generation of reefal clasts. Binding of the reef-frame in the Pinnacle and Thicket zones in the lower and middle parts of the reef created a rigid margin which shed large (commonly up to 5 m) cuboidal blocks of coral-stromatolite frame. The blocks broke along planes of weakness provided by the vertical Porites sticks and were deposited on the Fore-Reef Slope. In the uppermost parts of the reefs crusts dominate the structure, constituting 80% or more of the rock. Veneers up to 15 cm thick encrust thin irregular Porites plates to create a solid Reef Crest Zone which has not been recognized before. The coral-stromatolite framework is associated with echinoids, crustose corallines and halimedacean algae which, together with the scleractinians, indicate normal marine salinity throughout reef growth.  相似文献   

13.
黔南布寨泥盆纪生物礁的初步研究   总被引:2,自引:1,他引:1       下载免费PDF全文
黔南布寨生物礁受同沉积断层控制,发育在开阔台地边缘,其西南部和东北部分别是台盆相和滨海相沉积区。礁主要由以层孔虫和床板珊瑚为主的群落建成。礁相可明显划分出礁前、礁核、礁翼和礁后等亚相,其中礁后亚相与邻区的生物礁有很大区别,显示它发育在比邻区礁相对较深的环境中。生物礁的发育受到海平面升降的控制,分为两个大的旋回,分别形成鸡泡段和鸡窝寨段的生物礁  相似文献   

14.
《Comptes Rendus Geoscience》2014,346(1-2):45-51
In southern Corsica, three successive Upper Burdigalian coral reef episodes (R1, R2 subdivided into R2A and R2B subunits, and R3) developed within the Cala di Labra Formation. Tabular corals dominated under high water energy and siliciclastic input conditions. The R1 reefs show the highest coral diversity with 16 species described for the first time. A coral impoverishment was recorded in the R2 and R3 reefal episodes. The reefs did not reach a climax growth stage, except the R1 ones. Analogous to North Sardinian reefs, they reflect local vanishing conditions in the Corsican–Sardinian block through Upper Burdigalian because of constant siliciclastic inputs and deepening of the Bonifacio straight.  相似文献   

15.

Mineralogical, petrological and geochemical analyses of corals and associated skeletal limestones taken from three transects across the Late Quaternary raised coral reefs of the Huon Peninsula, Papua New Guinea, show that tectonic uplift can be related to the degree of subaerial diagenesis of the reefs. Where the uplift rate is high, Pleistocene corals frequently retain their aragonite mineralogy, even though the annual rainfall is relatively high. In contrast, similar age corals from low‐uplift areas are consistently altered neomorphically to calcite. The transformation of reef skeletal limestones shows a similar, but less pronounced, trend to the corals. Chemical analysis shows that the neomorphic calcite crystals of coral skeletons from the low‐uplift areas have relatively higher Sr and Mg concentrations, compared with those in high‐uplift areas. This may indicate that neomorphism of corals in the low‐uplift terraces takes place at a relatively higher rate and an earlier stage than that in the high‐uplift areas. The pattern of diagenesis of the Huon reefs can be explained by the effects of tectonic uplift on the regional hydrological regime. First, lower uplift rates allow a raised reef or any part of it to remain in the meteoric phreatic zone for a relatively long time. Second, river gorge slopes from low‐uplift regions have lower gradients and reef terraces in these areas have more extensive raised lagoon depressions than in high‐uplift areas. Thus, there is less runoff and consequently more extensive vadose percolation in the former areas. Third, the resulting low‐relief topography in low‐uplift areas prompts formation of soils on the terraces, and further increases the ability of interaction between coral reefs and formation water.  相似文献   

16.
Based on rock and fossil data from the Upper Cretaceous of the El Hassana Dome (Abu Roash, Egypt), factors controlling facies architecture and the nature of biotopes are highlighted. The succession formed on a non-rimmed shelf, the architecture of which varied from an inner to an outer shelf setting upsection. Macrobenthic biotopes are reconstructed and their palaeoecological significance assessed using a novel ternary plot. Based on diversity and community structure (770 specimens assigned to 28 bivalve and gastropod taxa), four paucispecific associations are identified. These are: 1. the ‘Cucullaea’ Assemblage, a low-energy, soft-substrate, oligotrophic outer shelf environment with reduced terrigenous input dominated by infaunal bivalves and hexactinellid sponges; 2. the ‘Plicatula’ Assemblage, a low-energy, restricted inner shelf lagoonal setting with soupy substrates and dysoxia below the sediment-water interface dominated by plicatulid and ostreid bivalves, 3. the ‘Durania’ Assemblage, a high-energy, high-temperature, shoal environment dominated by elevator rudists with minor numbers of echinoids, corals and bryozoans, which together form several biostromes. and 4. The ‘Trochactaeon’ Assemblage, which share the same characteristics of the ‘Durania’ Assemblage. The paucispecific nature of these biotopes is indicative of different stress factors. Consequently, the predominant taxa exhibit different degrees of adaptive strategies. In addition to global sea level, local tectonics have significantly affected facies distribution and biotope structure. The shallower facies during the early Turonian and the dysoxia spanning the Coniacian–Santonian were linked to synsedimentary tectonics, which formed many barriers and led to circulation restrictions.  相似文献   

17.
The Coniacian 3rd-order sequence in the Iberian Basin is represented by a carbonate ramp-like open platform. The biofacies is mainly dominated by nekto-benthic (such as ammonites) and benthic organisms (such as bivalves, mainly rudists) with scarce solitary corals (hermatypics are absent), showing major differences among the Transgressive System Tract (TST) and Highstand Normal Regression (HNR). During the TST, platform environments were dominated by Pycnodonte, other oysters and molluscs (with only subordinate rudists) and ammonites, which were represented by ornamented platycones (Tissotioides and Prionocycloceras), and by smooth oxycones (Tissotia and Hemitissotia). During the HNR, shallow water depositional areas were occupied by rudist-dominated associations. Storm- and wind-induced currents and waves acting on these associations produced large amounts of loose bioclastic debris that covered outer platform areas. This facies belt graded landwards into protected, lower-energy settings (inner platform, lagoon and littoral environments). Rudist biostromes were preserved in seaward areas of these protected shallow environments of overall moderate to low hydrodynamic gradient, which was punctuated by storms. In this environment and landwards, large areas of marly substrate favoured the presence of gastropods, other bivalves, echinoderms, benthic foraminifera and solitary corals. Because of the input of siliciclastics and, probably, the lack of nutrients in suspension, the establishment of rudist communities was difficult in more landward areas of the lagoon and in tidal environments. This heterozoan carbonate factory was thus controlled by warm-water conditions and high energy levels, which were responsible for high-nutrient contents in suspension.  相似文献   

18.
阿联酋下白垩统舒艾巴组生物礁沉积模式   总被引:1,自引:0,他引:1       下载免费PDF全文
本文在露头分析和钻井资料研究的基础上,结合区域地质背景,对阿联酋地区下白垩统舒艾巴组生物礁沉积特征进行了分析,确定了该区生物礁的沉积模式及有利储层发育相带。舒艾巴组沉积时期,具备优越的生物礁发育条件,造礁生物主要为厚壳蛤。研究区舒艾巴组碳酸盐台地具有"缓斜坡镶边台地"沉积特征,自盆地边缘向盆地内部,依次发育浅海低能碳酸盐陆架、浅海高能碳酸盐陆架、深水低能碳酸盐陆架、盆地斜坡相和深海盆地相。浅海高能碳酸盐陆架-盆地斜坡相带为生物礁发育带及油气富集区。其中浅海陆架边缘的高能相带为厚壳蛤生物礁发育的最有利区域,储层物性最好,厚壳蛤礁主要形成于早期存在的藻类粘结灰岩台地高点和台地边缘,礁核和礁前为优质储层发育带。研究该区生物礁的沉积模式与分布规律,对该区生物礁储层油气勘探具有重要的指导意义。  相似文献   

19.
鄂西二叠系生物礁的基本特征及其发育规律   总被引:11,自引:0,他引:11       下载免费PDF全文
鄂西二叠系生物礁分布于利川县境,它是由海绵、水螅等造架生物组成的典型的生物礁,其层位属晚二叠世长兴组,出露于见天坝、黄泥塘等地(图1)。此生物礁从出露之完整、化石之丰富、结构之清楚来看,是我国最发育的生物礁之一。  相似文献   

20.
Comparative sedimentology and palaeoecology of Oxfordian (Upper Jurassic) coral-dominated reefs of England, France, Italy and Switzerland has been used to: (1) identify and characterize different types of Late Jurassic coral reefs with regard to their litho- and biofacies; and (2) develop a depositional model for these reefs relating different reef types to each other within a palaeoenvironmental framework. Eight generic reef types and one associated reef facies are recognized. These are: (I) biostromal units dominated by platy microsolenids developed within clean limestone facies; (II) biostromal units dominated by platy microsolenids developed within marly facies; (III) reefal thickets dominated by tall dense phaceloid colonies developed within pure carbonate muds; (IV) microbial-coral reefs dominated by massive, branching ramose and phaceloid colonies; (V) large high diversity reefal units associated with large volumes of bioclastic material; (VI) small species-poor reefs developed within mixed carbonate/siliciclastic facies; (VII) microbial-coral reefs dominated by massive colonies; (VIII) reefal thickets dominated by branching ramose colonies with widely spaced branches developed amongst sand shoals and coral debris channels; and (IX) conglomerates rich in rounded coral fragments (the reef associated facies). The development of these different constructional and compositional reef types is interpreted as being primarily a function of light intensity, hydrodynamic energy levels and sediment balance. A conceptual depositional model based on these parameters can be used to predict the spatial and temporal distribution of different reefal carbonates and highlight sedimentological and palaeoecological trends in reef development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号