首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pressure variations over the North Indian Ocean during the summer monsoon season have been exam-ined using the monthly data from June to September for the period 1961 to 1968. It is found that these varia-tions can be described by two significant eigenvectors (EV1 and EV2) which together account for 53% of the total variance.The first eigenvector (EV1) represents in phase variation over both, the Arabian Sea and the Bay of Bengal with higher variations over the northern side of the area. The second eigenvector (EV2) depicts the out-of-phase variation between the pressure anomalies over the north and the south of 15°N latitude with two areas of pronounced variation, viz., the head Bay of Bengal and the equatorial region near 65°E longitude.The coefficients of EV1 show significant association with rainfall of West Coast and Central India for the concurrent months. These coefficients also show significant association with the pressure and temperature indices of the Southern Oscillation. The coefficients of EV2 show significant association with the monsoon rainfall of south peninsular India.  相似文献   

2.
Summary The interannual and decadal scale variability in the North Atlantic Oscillation (NAO) and its relationship with Indian Summer monsoon rainfall has been investigated using 108 years (1881–1988) of data. The analysis is carried out for two homogeneous regions in India, (Peninsular India and Northwest India) and the whole of India. The analysis reveals that the NAO of the preceding year in January has a statistically significant inverse relationship with the summer monsoon rainfall for the whole of India and Peninsular India, but not with the rainfall of Northwest India. The decadal scale analysis reveals that the NAO during winter (December–January–February) and spring (March–April–May) has a statistically significant inverse relationship with the summer monsoon rainfall of Northwest India, Peninsular India and the whole of India. The highest correlation is observed with the winter NAO. The NAO and Northwest India rainfall relationship is stronger than that for the Peninsular and whole of India rainfall on climatological and sub-climatological scales.Trend analysis of summer monsoon rainfall over the three regions has also been carried out. From the early 1930s the Peninsular India and whole of India rainfall show a significant decreasing trend (1% level) whereas the Northwest India rainfall shows an increasing trend from 1896 onwards.Interestingly, the NAO on both climatological and subclimatological scales during winter, reveals periods of trends very similar to that of Northwest Indian summer monsoon rainfall but with opposite phases.The decadal scale variability in ridge position at 500 hPa over India in April at 75° E (an important parameter used for the long-range forecast of monsoon) and NAO is also investigated.With 4 Figures  相似文献   

3.
中国与印度夏季风降水的比较研究   总被引:37,自引:0,他引:37  
本文用1951—1980年中国和印度的降水资料研究了两个地区在西南季风时期(6—9月)总雨量变化的关系。发现印度的雨量变化与中国各地雨量的相关关系有正、有负,最明显的是印度中西部与我国华北地区有较高的正相关。进一步对两个地区降水存在遥相关的原因进行了分析,发现南亚次大陆低压是联系两个季风区雨量变化的重要环节。中国季风雨量与印度季风雨量的相关趋势,主要决定于中国各地雨量与东亚夏季风强度的关系。   相似文献   

4.
Summary Rainfall over India during the southwest monsoon season exhibits large intraseasonal fluctuations. The surface pressure fields illustrate the important circulation changes and the general conditions of active and break monsoon situations. We have studied the relationship between these two successive fields at daily to monthly time scales using montly data, from July through September for an 11 year period (1966–1976). Lag relationships were also investigated to ascertain the nature of evolutionary patterns through which pressure affects rainfall and so assess the potential for predicting rainfall with the use of pressure fields. Finally, the relationship between pressure and rainfall (linear or non-linear) was examined with the use of quartile plots.With 7 Figures  相似文献   

5.
The summer monsoon rainfall over India exhibits strong intraseasonal variability. Earlier studies have identified Madden Julian Oscillation (MJO) as one of the most influencing factors of the intraseasonal variability of the monsoon rainfall. In this study, using India Meteorological Department (IMD) high resolution daily gridded rainfall data and Wheeler?CHendon MJO indices, the intra-seasonal variation of daily rainfall distribution over India associated with various Phases of eastward propagating MJO life cycle was examined to understand the mechanism linking the MJO to the intraseasonal variability. During MJO Phases of 1 and 2, formation of MJO associated positive convective anomaly over the equatorial Indian Ocean activated the oceanic tropical convergence zone (OTCZ) and the resultant changes in the monsoon circulation caused break monsoon type rainfall distribution. Associated with this, negative convective anomalies over monsoon trough zone region extended eastwards to date line indicating weaker than normal northern hemisphere inter tropical convergence zone (ITCZ). The positive convective anomalies over OTCZ and negative convective anomalies over ITCZ formed a dipole like pattern. Subsequently, as the MJO propagated eastwards to west equatorial Pacific through the maritime continent, a gradual northward shift of the OTCZ was observed and negative convective anomalies started appearing over equatorial Indian Ocean. During Phase 4, while the eastwards propagating MJO linked positive convective anomalies activated the eastern part of the ITCZ, the northward propagating OTCZ merged with monsoon trough (western part of the ITCZ) and induced positive convective anomalies over the region. During Phases 5 and 6, the dipole pattern in convective anomalies was reversed compared to that during Phases 1 and 2. This resulted active monsoon type rainfall distribution over India. During the subsequent Phases (7 and 8), the convective and lower tropospheric anomaly patterns were very similar to that during Phase 1 and 2 except for above normal convective anomalies over equatorial Indian Ocean. A general decrease in the rainfall was also observed over most parts of the country. The associated dry conditions extended up to northwest Pacific. Thus the impact of the MJO on the monsoon was not limited to the Indian region. The impact was rather felt over larger spatial scale extending up to Pacific. This study also revealed that the onset of break and active events over India and the duration of these events are strongly related to the Phase and strength of the MJO. The break events were relatively better associated with the strong MJO Phases than the active events. About 83% of the break events were found to be set in during the Phases 7, 8, 1 and 2 of MJO with maximum during Phase 1 (40%). On the other hand, about 70% of the active events were set in during the MJO Phases of 3 to 6 with maximum during Phase 4 (21%). The results of this study indicate an opportunity for using the real time information and skillful prediction of MJO Phases for the prediction of break and active conditions which are very crucial for agriculture decisions.  相似文献   

6.
For central India and its west coast, rainfall in the early (15 May–20 June) and late (15 September–20 October) monsoon season correlates with Pacific Ocean sea-surface temperature (SST) anomalies in the preceding month (April and August, respectively) sufficiently well, that those SST anomalies can be used to predict such rainfall. The patterns of SST anomalies that correlate best include the equatorial region near the dateline, and for the early monsoon season (especially since ~1980), a band of opposite correlation stretching from near the equator at 120°E to ~25°N at the dateline. Such correlations for both early and late monsoon rainfall and for both regions approach, if not exceed, 0.5. Although correlations between All India Summer Monsoon Rainfall and typical indices for the El Ni?o-Southern Oscillation (ENSO) commonly are stronger for the period before than since 1980, these correlations with early and late monsoon seasons suggest that ENSO continues to affect the monsoon in these seasons. We exploit these patterns to assess predictability, and we find that SSTs averages in specified regions of the Pacific Ocean in April (August) offer predictors that can forecast rainfall amounts in the early (late) monsoon season period with a ~25% improvement in skill relative to climatology. The same predictors offer somewhat less skill (~20% better than climatology) for predicting the number of days in these periods with rainfall greater than 2.5?mm. These results demonstrate that although the correlation of ENSO indices with All India Rainfall has decreased during the past few decades, the connections with ENSO in the early and late parts have not declined; that for the early monsoon season, in fact, has grown stronger in recent decades.  相似文献   

7.
Misra  Vasubandhu  Bhardwaj  Amit  Mishra  Akhilesh 《Climate Dynamics》2018,51(5-6):1609-1622

This paper introduces an objective definition of local onset and demise of the Indian summer monsoon (ISM) at the native grid of the Indian Meteorological Department’s rainfall analysis based on more than 100 years of rain gauge observations. The variability of the local onset/demise of the ISM is shown to be closely associated with the All India averaged rainfall onset/demise. This association is consistent with the corresponding evolution of the slow large-scale reversals of upper air and ocean variables that raise the hope of predictability of local onset and demise of the ISM. The local onset/demise of the ISM also show robust internannual variations associated with El Nino and the Southern Oscillation and Indian Ocean dipole mode. It is also shown that the early monsoon rains over northeast India has a predictive potential for the following seasonal anomalies of rainfall and seasonal length of the monsoon over rest of India.

  相似文献   

8.
Extremely heavy rainfall occurred over both Northwest India and North China in September 2021. The precipitation anomalies were 4.1 and 6.2 times interannual standard deviation over the two regions, respectively, and broke the record since the observational data were available, i.e., 1901 for India and 1951 for China. In this month, the Asian uppertropospheric westerly jet was greatly displaced poleward over West Asia, and correspondingly, an anomalous cyclone appeared over India. The anomalous ...  相似文献   

9.
Summary  The fluctuations of intensity of the Tropical Easterly Jet (TEJ) and its association with the Indian summer monsoon rainfall have been examined using the diagnostics from NCEP/NCAR (National Centre for Environmental Prediction/National Centre for Atmospheric Research) reanalyses project for the period 1986 to 1994. The intensity of TEJ is found to be well correlated with India summer monsoon rainfall. The TEJ is weaker/stronger during the El Ni?o/La Ni?a year of 1987/1988 and is associated with deficient (excess) summer monsoon rainfall over India. A numerical study was carried out for the same period using the Centre for Ocean-Land-Atmosphere studies General Circulation Model (COLA GCM, T30L18) with observed Sea-Surface Temperature (SST). The GCM simulates the TEJ with reasonable accuracy. The strong interannual variability of TEJ during the El Ni?o/La Ni?a years of 1987/1988 are well simulated in the GCM. Like observations, the intensity of the TEJ is positively correlated with the summer monsoon rainfall over India in the model simulation. The intensity of Tibetan anticyclone and diabatic heating over the Tibetan Plateau diminished during the El Ni?o-year of 1987. The divergence centre in the upper troposphere associated with Asian monsoon becomes weaker and shifts eastward during the weak monsoon season of 1987. However, the opposite happens for the strong monsoon season of 1988. Also the middle and upper tropospheric meridional temperature gradient between the Tibetan High and Indian Ocean region decreased (increased) during the weak(strong) monsoon season of 1987 (1988). Received May 27, 1999/Revised March 20, 2000  相似文献   

10.
Indian Summer Monsoon Rainfall(ISMR)exhibits a prominent inter-annual variability known as troposphere biennial oscillation.A season of deficient June to September monsoon rainfall in India is followed by warm sea surface temperature(SST)anomalies over the tropical Indian Ocean and cold SST anomalies over the western Pacific Ocean.These anomalies persist until the following monsoon,which yields normal or excessive rainfall.Monsoon rainfall in India has shown decadal variability in the form of 30 year epochs of alternately occurring frequent and infrequent drought monsoons since1841,when rainfall measurements began in India.Decadal oscillations of monsoon rainfall and the well known decadal oscillations in SSTs of the Atlantic and Pacific oceans have the same period of approximately 60 years and nearly the same temporal phase.In both of these variabilities,anomalies in monsoon heat source,such as deep convection,and middle latitude westerlies of the upper troposphere over south Asia have prominent roles.  相似文献   

11.
Inter-annual and regional variations in aerosol and cloud characteristics, water vapor and rainfall over six homogeneous rainfall zones in India during the core monsoon month of July from 2000 to 2010, and their correlations are analyzed. Aerosol optical depth (AOD) and aerosol absorbing index (AAI) in July 2002, a drought year are higher over India when compared to normal monsoon years. The drier conditions that existed due to deficient rainfall in July 2002 could be responsible for raising more dust and smoke resulting in higher AODs over India. In addition, over India precipitation is not uniform and large-scale interruptions occur during the monsoon season. During these interruptions aerosols can build up over a region and contribute to an increase in AODs. This finding is supported by the occurrence of higher anomalies in AOD, AAI and rainfall over India in July 2002. Aerosol characteristics and rainfall exhibit large regional variations. Cloud effective radius (CER), cloud optical thickness and columnar water vapor over India are the lowest in July 2002. CER decreases as AOD and AAI increase, providing an observational evidence for the indirect effect of aerosols. Eighty percent of CER in northwest India, and 30% of CER over All India in July 2002 are <14 μm, the precipitation threshold critical cloud effective radius. Northeast India shows contrasting features of correlation among aerosols, clouds and rainfall when compared to other regions. These results will be important while examining the inter-annual variation in aerosols, cloud characteristics, rainfall and their trends.  相似文献   

12.
Monsoon precipitation in the AMIP runs   总被引:5,自引:1,他引:4  
 We present an analysis of the seasonal precipitation associated with the African, Indian and the Australian-Indonesian monsoon and the interannual variation of the Indian monsoon simulated by 30 atmospheric general circulation models undertaken as a special diagnostic subproject of the Atmospheric Model Intercomparison Project (AMIP). The seasonal migration of the major rainbelt observed over the African region, is reasonably well simulated by almost all the models. The Asia West Pacific region is more complex because of the presence of warm oceans equatorward of heated continents. Whereas some models simulate the observed seasonal migration of the primary rainbelt, in several others this rainbelt remains over the equatorial oceans in all seasons. Thus, the models fall into two distinct classes on the basis of the seasonal variation of the major rainbelt over the Asia West Pacific sector, the first (class I) are models with a realistic simulation of the seasonal migration and the major rainbelt over the continent in the boreal summer; and the second (class II) are models with a smaller amplitude of seasonal migration than observed. The mean rainfall pattern over the Indian region for July-August (the peak monsoon months) is even more complex because, in addition to the primary rainbelt over the Indian monsoon zone (the monsoon rainbelt) and the secondary one over the equatorial Indian ocean, another zone with significant rainfall occurs over the foothills of Himalayas just north of the monsoon zone. Eleven models simulate the monsoon rainbelt reasonably realistically. Of these, in the simulations of five belonging to class I, the monsoon rainbelt over India in the summer is a manifestation of the seasonal migration of the planetary scale system. However in those belonging to class II it is associated with a more localised system. In several models, the oceanic rainbelt dominates the continental one. On the whole, the skill in simulation of excess/deficit summer monsoon rainfall over the Indian region is found to be much larger for models of class I than II, particularly for the ENSO associated seasons. Thus, the classification based on seasonal mean patterns is found to be useful for interpreting the simulation of interannual variation. The mean rainfall pattern of models of class I is closer to the observed and has a higher pattern correlation coefficient than that of class II. This supports Sperber and Palmer’s (1996) result of the association of better simulation of interannual variability with better simulation of the mean rainfall pattern. The hypothesis, that the skill of simulation of the interannual variation of the all-India monsoon rainfall in association with ENSO depends upon the skill of simulation of the seasonal variation over the Asia West Pacific sector, is supported by a case in which we have two versions of the model where NCEP1 is in class II and NCEP2 is in class I. The simulation of the interannual variation of the local response over the central Pacific as well as the all-India monsoon rainfall are good for NCEP2 and poor for NCEP1. Our results suggest that when the model climatology is reasonably close to observations, to achieve a realistic simulation of the interannual variation of all-India monsoon rainfall associated with ENSO, the focus should be on improvement of the simulation of the seasonal variation over the Asia West Pacific sector rather than further improvement of the simulation of the mean rainfall pattern over the Indian region. Received: 2 June 1997 / Accepted: 8 January 1998  相似文献   

13.
Summary The study provides a concise and synthesized documentation of the current level of skill of the operational NWP model of India Meteorological Department based on daily 24 hours forecast run of the model during two normal monsoon years 2001 and 2003 making detailed inter-comparison with daily rainfall analysis from the use of high dense land rain gauge observations. The study shows that the model, in general, is able to capture three regions of climatologically heavy rainfall domains along Western Ghats, Northeast India and over east central India, over the domain of monsoon trough. However, the accuracy in prediction of location and magnitude of rainfall fluctuates considerably. The inter-comparison reveals that performance of the model rainfall forecast deteriorated in 2003 when rainfall over most parts of the region was significantly under-predicted. These features are also reflected in the error statistics. The study suggests that there is a need to maximize the data ingest in the model with a better data assimilation scheme to improve the rainfall forecast skill.  相似文献   

14.
500 hPa ridge positions over the Indian and the West Pacific regions during April are related with the summer monsoon rainfall over India. The ridge position over the Indian region shows better relation with monsoon rainfall than that shown by the ridge over the Pacific region. The multiple correlation of these ridge positions with monsoon rainfall exceeds 0.7. These predictive relationships are better than those shown by other parameters, viz. (1) Northern Hemispheric surface temperature; (2) East-Pacific sea surface tempera-ture; (3) El-Nino events and (4) Tahiti-Darwin pressure difference, and index of southern oscillation, over the 30-year samples analysed.  相似文献   

15.
Teleconnections:Summer Monsoon over Korea and India   总被引:6,自引:1,他引:5  
This study investigates the relationship between the summer monsoon rainfall over Korea and India,by using correlation analysis and Singular Value Decomposition(SVD).Results reveal that summer monsoon rainfall over Korea is negatively(significant at the 99% level) correlated with the rainfall over the northwest and central parts of India.In addition,coupled spatial modes between the rainfall over Korea and India have been identified by the SVD analysis.The squared covariance fraction explained by the first mode is 70% and the correlation coefficient between the time coefficients of the two fields is significant at the 99% level,indicating that the coupled mode reflects a large part of the interaction between the summer monsoon rainfall over Korea and India.The first mode clearly demonstrates the existence of a significant negative correlation between the rainfall over the northwest and central parts of India and the rainfall over Korea.Possible mechanisms of this correlation are investigated by analyzing the variation of upper-level atmospheric circulation associated with the Tibetan high using NCEP/NCAR Reanalysis data.  相似文献   

16.
Forecasting summer monsoon rainfall with precision becomes crucial for the farmers to plan for harvesting in a country like India where the national economy is mostly based on regional agriculture. The forecast of monsoon rainfall based on artificial neural network is a well-researched problem. In the present study, the meta-heuristic ant colony optimization (ACO) technique is implemented to forecast the amount of summer monsoon rainfall for the next day over Kolkata (22.6°N, 88.4°E), India. The ACO technique belongs to swarm intelligence and simulates the decision-making processes of ant colony similar to other adaptive learning techniques. ACO technique takes inspiration from the foraging behaviour of some ant species. The ants deposit pheromone on the ground in order to mark a favourable path that should be followed by other members of the colony. A range of rainfall amount replicating the pheromone concentration is evaluated during the summer monsoon season. The maximum amount of rainfall during summer monsoon season (June—September) is observed to be within the range of 7.5–35 mm during the period from 1998 to 2007, which is in the range 4 category set by the India Meteorological Department (IMD). The result reveals that the accuracy in forecasting the amount of rainfall for the next day during the summer monsoon season using ACO technique is 95 % where as the forecast accuracy is 83 % with Markov chain model (MCM). The forecast through ACO and MCM are compared with other existing models and validated with IMD observations from 2008 to 2012.  相似文献   

17.
Summary The paper deals with the variability of summer-monsoon rainfall during normal, flood and drought years over India. During flood years the monsoon rainfall increases mostly all over parts of the country and large area less than 100 cm isohytel covers Orissa and adjoining Madhya Pradesh. During drought years the rainfall amount decreases over the entire country and isohytel of 100 cm shrinks to almost a point. The variability of monsoon rainfall from flood to normal to drought years depends upon the number of depression/low-pressure area which form over the North Bay and move inland. To understand the intraseasonal and interannual variability of the monsoon rainfall, daily and seasonal anomalies has been performed by using the Empirical Orthogonal Function analysis. Further Empirical Orthogonal Function (EOF) analysis is carried out on these data to find out the nature of rainfall distribution in different monsoon categories namely normal, flood and drought years. This technique thus serves to identify spatial and temporal patterns characteristics of possible physical significance. Received July 25, 2000/Revised September 26, 2000  相似文献   

18.
The performance of a dynamical seasonal forecast system is evaluated for the prediction of summer monsoon rainfall over the Indian region during June to September (JJAS). The evaluation is based on the National Centre for Environmental Prediction’s (NCEP) climate forecast system (CFS) initialized during March, April and May and integrated for a period of 9 months with a 15 ensemble members for 25 years period from 1981 to 2005. The CFS’s hindcast climatology during JJAS of March (lag-3), April (lag-2) and May (lag-1) initial conditions show mostly an identical pattern of rainfall similar to that of verification climatology with the rainfall maxima (one over the west-coast of India and the other over the head Bay of Bengal region) well simulated. The pattern correlation between verification and forecast climatology over the global tropics and Indian monsoon region (IMR) bounded by 50°E–110°E and 10°S–35°N shows significant correlation coefficient (CCs). The skill of simulation of broad scale monsoon circulation index (Webster and Yang; WY index) is quite good in the CFS with highly significant CC between the observed and predicted by the CFS from the March, April and May forecasts. High skill in forecasting El Nino event is also noted for the CFS March, April and May initial conditions, whereas, the skill of the simulation of Indian Ocean Dipole is poor and is basically due to the poor skill of prediction of sea surface temperature (SST) anomalies over the eastern equatorial Indian Ocean. Over the IMR the skill of monsoon rainfall forecast during JJAS as measured by the spatial Anomaly CC between forecast rainfall anomaly and the observed rainfall anomaly during 1991, 1994, 1997 and 1998 is high (almost of the order of 0.6), whereas, during the year 1982, 1984, 1985, 1987 and 1989 the ACC is only around 0.3. By using lower and upper tropospheric forecast winds during JJAS over the regions of significant CCs as predictors for the All India Summer Monsoon Rainfall (AISMR; only the land stations of India during JJAS), the predicted mean AISMR with March, April and May initial conditions is found to be well correlated with actual AISMR and is found to provide skillful prediction. Thus, the calibrated CFS forecast could be used as a better tool for the real time prediction of AISMR.  相似文献   

19.
基于观测资料分析,本文讨论了与东亚冬季风(EAWM)异常活动相联系的海-陆-气系统的特征,指出它往往是随后亚洲夏季风异常的一个信号。我们分析并确定了一类重要的海气耦合模态,即EAWM。它所包含的海-气双向相互作用,使该模态的SSTA分布得以发展和持续。特别是在西太平洋和南海等关键地区,SSTA异常将从冬季维持到夏季。在强冬季风年,青藏高原积雪冬季在其东部出现负距平区,春季则延伸到高原西北部。SSTA及高原积雪分布,共同构成调制亚洲季风环流的重要因子,它将有助于1)随后南海季风和季风降水的增强;2)梅雨期西太平洋副高偏北,长江流域少雨;3)夏季我国东北和日本多雨;4)阿拉伯海和印度东北多雨,而印度西南部及孟加拉湾少雨。总之,强EAWM及相联的海气相互作用,一定程度上,预示着亚洲夏季风的活动特征。  相似文献   

20.
Summary  The interannual variability of the Indian summer monsoon (June–September) rainfall is examined in relation to the stratospheric zonal wind and temperature fluctuations at three stations, widely spaced apart. The data analyzed are for Balboa, Ascension and Singapore, equatorial stations using recent period (1964–1994) data, at each of the 10, 30 and 50 hPa levels. The 10 hPa zonal wind for Balboa and Ascension during January and the 30 hPa zonal wind for Balboa during April are found to be positively correlated with the subsequent Indian summer monsoon rainfall, whereas the temperature at 10 hPa for Ascension during May is negatively correlated with Indian summer monsoon rainfall. The relationship with stratospheric temperatures appears to be the best, and is found to be stable over the period of analysis. Stratospheric temperature is also significantly correlated with the summer monsoon rainfall over a large and coherent region, in the north-west of India. Thus, the 10 hPa temperature for Ascension in May appears to be useful for forecasting summer monsoon rainfall for not only the whole of India, but also for a smaller region lying to the north-west of India. Received July 30, 1999 Revised March 17, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号