首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 767 毫秒
1.
Meso-gamma scale forecasts using the nonhydrostatic model LM   总被引:10,自引:0,他引:10  
Summary ?The nonhydrostatic model LM was developed for small scale operational predictions. Advances in computer development will give the possibility of operational models of a rather fine scale, which will cover the meso-gamma scale. The LM is currently applied at a scale of 7 km and an increase of the operational resolution to 2.5 km is planned for the next few years. Predictions of such high resolution require to abandon the hydrostatic assumption, which is used with most current operational weather prediction models. The LM was designed to cover all resolutions from 50 m to 50 km with an efficiency making it suitable for operational use. It is a fully elastic model, using second order centred finite differences. The time integration is done using the Klemp–Wilhelmson method, treating the slow modes by a larger time step than the fast modes. The vertical propagation of the fast waves is done implicitly. After describing the design of the LM, this paper gives examples of model predictions at the meso-γ scale. Some results of the current operational application at the resolution 7 km are presented. Deficiencies in the localisation of model generated precipitation are investigated using an idealised bell shaped mountain and applying different resolutions. In this way the convergence to the correct solution can be investigated. From these results it is concluded, that orographic filtering is necessary and the effect of such filtering on precipitation forecasts is investigated. Finally, the prediction of a squall line over northern Germany is shown in order to demonstrate the potential of the model in forecasting the meso-γ scale. Received May 15, 2001; revised September 21, 2001  相似文献   

2.
Summary  Monthly rainfall totals at 7 stations across Turkey and sea level pressure (SLP) in 16 grid points in the region delimited by the 20° E and 50° E longitudes and by the 30° N and 45° N latitudes were analysed. Data were available for a period longer than sixty years. The standard deviations of SLP at each grid point for each month, were calculated and mapped. For each station, months were defined as dry or wet according to their z scores: ≤ −1.0 or ≥ 1.0 respectively. Maps showing the SLP z scores of the corresponding dry or wet months for each station were prepared. The maps, enable to distinguish between SLP patterns associated with dry or wet conditions. Furthermore, correlations between monthly rainfall in each of the stations and SLP at each grid point were performed. The correlation coefficients were mapped. (a) The variability of the SLP decreases from the Balkans towards the Arabian Peninsula and is much larger in winter as compared with summer. (b) Relationship between rainfall in Turkey and the regional SLP is large in winter and non existing in summer. (c) Pressure patterns associated with dry conditions, show usually positive SLP departures, whereas, pressure patterns associated with wet conditions show usually negative SLP departures. (d) There is a great resemblance between pressure patterns associated with wet conditions and correlation maps of the same months. Received September 4, 2000 Revised January 15, 2001  相似文献   

3.
Summary In Southern Australia summertime deep cold fronts are frequently preceded by a shallow cold frontal line connected to a prefrontal lower tropospheric trough. The advance of this line defines a “cool change” which in many cases causes severe weather events. The goal of this paper is to analyze the multi-scale structure of these cool changes using aircraft observations and synoptic-scale analyses. The aircraft measurements on cross-frontal tracks of horizontal lengths of up to 300 km are performed with an average resolution of 3 to 4 m along the track. Thus a multi-scale analysis from micro-scale events up to the synoptic-scale phenomena can be presented. All flights and thus all meso- and micro-scale analyses are performed over water only. The obviously very different characteristics of the cool change structure elements over land are not investigated. The synoptic analyses for one very typical case show a prefrontal trough as characterized by its position in relation to the main deep cold front, its source region in Western Australia and its extent to the southeast. Fields of strong wind shear, temperature gradients, vertical wind and Q-vectors are displayed. The meso-β-scale x, z-cross-sections derived from two aircraft missions (data of the second one in brackets) show: a shallow cold front with a 160 (60) km wide transition zone in which the near surface potential temperature drops rather steadily by 9 °C (20 °C); a shallow feeder flow topped by a strong inversion with a vertical gradient of potential temperature up to 5 °C/100 m between the top of the feeder flow at 400 (200) m and 1500 (700) m; a cross-frontal circulation expressed by the ageostrophic wind components u ϕ,subscale and w with a center at 1200 m over the frontal edge of the feeder flow (for one mission only); a strong shear of the along-frontal wind component v ϕ with a large increase of the negative v ϕ-values with height, which very well fits to the synoptic-scale view of the wave structure of the geostrophic wind (well-known from the upper level synoptic charts) at different heights; a jet core of this along-frontal wind in the center of the cross-frontal circulation, again for one mission only. A very striking example of a micro-scale event is an approximately 1 km wide head of a frontal squall line. It shows dramatic changes of all meteorological parameters. The event is displayed in a horizontal domain of 4 km with full resolution (∼ 4 m). Derivatives of the measured parameters in the cross-frontal direction add information to the space series of the parameters themselves. Deformation frontogenesis of potential temperature and specific humidity show very large values on the scale resolved here. Fortunately the squall line could be sampled again at the same height, but in a somewhat degenerated state 1? h later. Received September 3, 1999 Revised December 14, 1999  相似文献   

4.
Summary This paper investigates the influence of the planetary boundary-layer (PBL) parameterization and the vertical distribution of model layers on simulations of an Alpine foehn case that was observed during the Mesoscale Alpine Programme (MAP) in autumn 1999. The study is based on the PSU/NCAR MM5 modelling system and combines five different PBL schemes with three model layer settings, which mainly differ in the height above ground of the lowest model level (z 1). Specifically, z 1 takes values of about 7 m, 22 m and 36 m, and the experiments with z 1 = 7 m are set up such that the second model level is located at z = 36 m. To assess if the different model setups have a systematic impact on the model performance, the simulation results are compared against wind lidar, radiosonde and surface measurements gathered along the Austrian Wipp Valley. Moreover, the dependence of the simulated wind and temperature fields at a given height (36 m above ground) on z 1 is examined for several different regions. Our validation results show that at least over the Wipp Valley, the dependence of the model skill on z 1 tends to be larger and more systematic than the impact of the PBL scheme. The agreement of the simulated wind field with observations tends to benefit from moving the lowest model layer closer to the ground, which appears to be related to the dependence of lee-side flow separation on z 1. However, the simulated 2 m-temperatures are closest to observations for the intermediate z 1 of 22 m. This is mainly related to the fact that the simulated low-level temperatures decrease systematically with decreasing z 1 for all PBL schemes, turning a positive bias at z 1 = 36 m into a negative bias at z 1 = 7 m. The systematic z 1-dependence is also observed for the temperatures at a fixed height of 36 m, indicating a deficiency in the self-consistency of the model results that is not related to a specific PBL formulation. Possible reasons for this deficiency are discussed in the paper. On the other hand, a systematic z 1-dependence of the 36-m wind speed is encountered only for one out of the five PBL schemes. This turns out to be related to an unrealistic profile of the vertical mixing coefficient. Correspondence: Günther Z?ngl, Meteorologisches Institut der Universitat München, 80333 München, Germany  相似文献   

5.
Summary An upper level atmospheric teleconnection between grid points: 0°, 55° N; 10° E, 55° N (North Sea) and 50° E, 45° N; 60° E, 45° N (northern Caspian) was identified. This teleconnection, referred as the North Sea-Caspian Pattern (NCP) is evident at the 500 hPa level. The NCP is more pronounced during winter and the transitional seasons. An index (NCPI) measures the geopotential heights differences between the two poles of the NCP. Time series of the NCPI are presented and analysed. Except for September, no significant temporal trends were found. Negative and positive phases of the NCP (NCP(−) and NCP(+), respectively) were defined using standardized scores. A classification of all months into NCP(−), NCP(+) or normal conditions during the analysis period (1958–1998) was prepared and analysed. No significant correlation was found between the NCPI and the NAO index. The anomalous circulation during either NCP(−) or NCP(+) conditions is defined and its possible impact on the regional climate is discussed. Preliminary results show below normal temperatures and above normal precipitation in the Balkans and the Middle East during NCP(+), and the opposite for NCP(−). Received March 8, 2001 Revised July 3, 2001  相似文献   

6.
Summary ?The paper considers a meso-scale, adiabatic, inviscid and Boussisnesq flow of a stably stratified fluid over a three-dimensional (3-D) meso-scale orographic barrier with elliptic contour, with special reference to a part of the Western ghats mountain along west coast of India and on the Khasi-Jayantia hill in the northeast India. The airstream characteristics are simplified by assuming that the upstream wind velocity (U) and buoyancy frequency (N) are constant with height. Solutions for perturbation vertical velocity (w′) and streamline displacement (η′) are expressed in terms of double integrals. These integrals cannot be evaluated exactly, hence they have been approximated by asymptotic expansion method. Side by side solutions using numerical method have also been obtained. The results of the study indicate that the updraft regions in the asymptotic solution are crescent shaped, symmetrical about the axis y = 0, tilting upwind and spreading laterally with height. The study also shows that in both asymptotic solution and numerical solution w′ and η′ fall off down wind of the barrier in the central plane (y = 0), further more in the asymptotic solution w′ and η′ fall off as x −1. The study also indicates that the discrete updraft regions obtained in the numerical solution, when joined, take a crescent shape. Received November 26, 2001; accepted February 27, 2002  相似文献   

7.
The carbon kinetic isotope effects (KIEs) in the reactions of several unsaturated hydrocarbons with chlorine atoms were measured at room temperature and ambient pressure using gas chromatography combustion isotope ratio mass spectrometry (GCC-IRMS). All measured KIEs, defined as the ratio of the rate constants for the unlabeled and labeled hydrocarbon reaction k 12/k 13, are greater than unity or normal KIEs. The KIEs, reported in per mil according to Cl ɛ = (k 12/k 13−1) × 1000‰ with the number of experimental determinations in parenthesis, are as follows: ethene, 5.65 ± 0.34 (1); propene, 5.56 ± 0.18 (2); 1-butene, 5.93 ± 1.16 (1); 1-pentene, 4.86 ± 0.63 (1); cyclopentene, 3.75 ± 0.14 (1); toluene, 2.89 ± 0.31 (2); ethylbenzene, 2.17 ± 0.17 (2); o-xylene, 1.85 ± 0.54 (2). To our knowledge, these are the first reported KIE measurements for reactions of unsaturated NMHC with Cl atoms. Relative rate constants were determined concurrently to the KIE measurements. For the reactions of cyclopentene and ethylbenzene with Cl atoms, no rate constant has been reported in refereed literature. Our measured rate constants are: cyclopentene (7.32 ± 0.88) relative to propene (2.68 ± 0.32); ethylbenzene (1.15 ± 0.04) relative to o-xylene (1.35 ± 0.21), all × 10−10 cm3 molecule−1 s−1. The KIEs in reactions of aromatic hydrocarbons with Cl atoms are similar to previously reported KIEs in Cl-reactions of alkanes with the same numbers of carbon atoms. Unlike the KIEs for previously studied gas-phase hydrocarbon reactions, the KIEs for alkene–Cl reactions do not exhibit a simple inverse dependence on carbon number. This can be explained by competing contributions of normal and inverse isotope effects of individual steps in the reaction mechanism. Implications for the symmetries of the transition state structures in these reactions and the potential relevance of Cl-atom reactions on stable carbon isotope ratios of atmospheric NMHC are discussed.  相似文献   

8.
Summary A new two-time-level split-explicit time integration scheme for the use in non-hydrostatic compressible modelling is presented. It is demonstrated that the scheme is numerically stable and has a smaller splitting error than other comparable split-explicit schemes. This error is due to the combination of advection and fast-wave terms in the numerical scheme.To outline where the splitting error occurs and how it acts within the splitting mechanism, a short review of existing split-explicit time integration methods is given. An in-depth analysis of the eigenvalues of several two-time-level schemes is performed showing that instabilities are associated with the splitting error term. The term has different signs for forward moving and backward moving waves, causing exponential growing or decaying. This unwanted characteristic is not prevented by a diffusive term in general, but might be counteracted by schemes using an estimate of the fast waves at the midpoint of the time increment.The importance of this fast-waves midpoint estimate leads to the formulation of a class of split-explicit two-time-level schemes. Within this framework any forward-in-time and stable advection scheme might be combined with the fast-waves terms in the splitting algorithm.The new method is implemented in the non-hydrostatic model LM of DWD. Some test cases are presented, indicating that the new scheme has the potential to be used in an operational environment.  相似文献   

9.
Numerical simulation of a heavy rainfall event in China during July 1998   总被引:16,自引:0,他引:16  
Summary A detailed analysis associated with this case has been carried out (Zhao et al., 2001). In order to conduct further research on the meso-β scale system, which is the directly influencing system, the heavy rainfall that occurred in Wuhan (Station no.: 57494) and Huangshi (Station no.: 58407), Hubei Province during July 1998 are simulated using higher resolution and more complete initial data, after the large scale fields and rainfall areas have been simulated successfully. The simulation results indicate that there are meso-β scale weather systems which developed and dissipated near Wuhan and Huangshi during 1800 UTC 20 July to 0600 UTC 21 July and 1800 UTC 21 July to 0600 UTC 22 July in 1998, respectively. The life cycle of the meso-scale system is about 12 hours and its horizontal scale is from 100 to 200 km. These are characteristic of a typical meso-β scale system. By analyzing the vertical section of wind field and other physical variables during the mentioned-above two periods, it is found that horizontal convergence, ascending motion and positive vorticity of the middle and lower troposphere are strengthened during the heavy rainfall periods near the above mentioned two places. In addition, the wind disturbance in middle and lower troposphere may be a possible triggering mechanism for the occurrence of the meso-β weather system. A budget analysis of the meso-scale system indicates that the sources of moisture and positive vorticity are different during the different stages of the meso-scale systems. Finally, a three dimensional conceptual model of the meso-β scale systems causing the sudden heavy rainfall in Wuhan and Huangshi is suggested. Received November 4, 2001 Revised December 28, 2001  相似文献   

10.
In this study, an improved and complete secondary organic aerosols (SOA) chemistry scheme was implemented in the CHIMERE model. The implementation of isoprene chemistry for SOA significantly improves agreement between long series of simulated and observed particulate matter concentrations. While simulated organic carbon concentrations are clearly improved at elevated sites by adding the SOA scheme, time correlation are impaired at low level sites in Portugal, Italy and Slovakia. At several sites a clear underestimation by the CHIMERE model is noticed in wintertime possibly due to missing wood burning emissions as shown in previous modeling studies. In Europe, the CHIMERE model gives yearly average SOA concentrations ranging from 0.5 μg m  − 3 in the Northern Europe to 4 μg m  − 3 over forested regions in Spain, France, Germany and Italy. In addition, our work suggests that during the highest fire emission periods, fires can be the dominant source of primary organic carbon over the Mediterranean Basin, but the SOA contribution from fire emissions is low. Isoprene chemistry has a strong impact on SOA formation when using current available kinetic schemes.  相似文献   

11.
Numerical simulations of geophysical flows have to be done on very sparse grids. Nevertheless, flows over moderately sloped hills can be predicted quite accurately as long as the near ground vertical resolution is reasonably dense. Recirculation flows behind steeper hills are associated with slow convergence towards grid independent integrations, but even then moderately stratified flows of this type can be predicted usefully accurately. For better horizontal grids than about half the hill-height Δx 1/H ≈ 0.5 or so, separation and recirculating domains are predicted with an error factor comparable to 0.3. The characteristic wavelength of lee waves is predicted more accurately while the lee wave amplitude and the maximum turbulence intensity in recirculating domains are underestimated by factors comparable to 0.3. Strongly stratified flows may be associated with hydraulic transitions and even this is predicted on quite coarse grids, up to say Δx 1/H ≈ 0.5. However, the details of such flows turn out to be predicted with considerable errors also on high-resolution grids. Inaccurate modelling of stratified turbulence is a main contributor to this error.  相似文献   

12.
Summary Sublayer-Stanton numbers, Bi, of heat and matter for the interfacial sublayer over aerodynamically smooth surfaces determined for forced convective conditions by elementary and numerical integration are reviewed and evaluated. The results are based on Roth’s modified Heisenberg model for the spectral energy transfer in the equilibrium range under locally isotropic conditions and the approaches of Reichardt, Elser, Deissler, van Driest, Rannie, Sheppard, and Spalding for the normalized eddy diffusivity Km/v. The results substantiate that with the exception of Sheppard’s Km/v-approach all formulations are appropriate to provide sublayer-Stanton numbers with a sufficient degree of accuracy. From a theoretical point of view the Km/v-relationships of Roth, Reichardt, van Driest, and Spalding are to be preferred, when a turbulent Prandtl number Prt = 1 is presumed. Since within the framework of mesoscale meteorological modelling numerical integration techniques would consume too much CPU-time because of the large number of near-wall grid points, a parameterization formula for the sublayer-Stanton number is proposed and evaluated. Compared to the Bi −1-results obtained by numerical integration, this kind of parameterization leads to a relative error of less than 5 percent for roughness Reynolds numbers, ηr, ranging from 30 to 600. Received January 2001 Revised November 5, 2001  相似文献   

13.
To investigate the suitability of computational fluid dynamics (CFD) with regard to windbreak aerodynamics, simulations are performed with a state-of-the-art numerical scheme (Fluent) and compared against experimental data for two- and three-dimensional disturbances, namely the case of a long straight porous shelter fence and the case of a shelter fence erected in a square about an enclosed plot. A thorough sensitivity study quantifies the impact of numerical choices on the simulation (e.g. grid-point density, domain size, turbulence closure), and leads to guidelines that should ensure objective simulation of windbreak flows. On a fine grid Fluent’s “realizable k–ε closure” gives results that are in qualitative accord with the observed mean winds.  相似文献   

14.
Summary ?At the Deutscher Wetterdienst (DWD) an internal project named LITFASS was running to determine the representative turbulent fluxes of heat and momentum over heterogeneous land surfaces by observation and simulation. The project took advantage of the infrastructure of the Research Division at the DWD, where model research capacity is combined with the measurements made at and around the Meteorological Observatory Lindenberg. The paper describes the simulation component of the LITFASS-project. It consists of a high-resolving model, derived from the new operational non-hydrostatic, compressible Lokal-Modell (LM), which is denoted LLM (LITFASS-Lokal-Modell). The integration area covers the lower atmosphere in the vertical up to 3000 m with 39 model layers. The horizontal size of the integration area with 145 × 145 grid points (horizontal mesh width Δs = 96.5 m) corresponds to a typical grid box of a meso-scale model. The LLM has to operate under real meteorological conditions. Therefore, the LLM is driven by time-dependent measured vertical profiles of wind, temperature and humidity and surface-based measurements (of radiation, precipitation, soil properties) supported by satellite information. The profiles are available for a great variety of weather situations occurring during the simulation period (1–20 June 1998). First model results from extended 24 hour-integrations against different kinds of measurements are discussed. They reveal the LLM to become a promising validation instrument, from which a systematic, sustainable validation system can be established beyond LITFASS for improving parameterization schemes in the NWP models of the DWD. Received July 18, 2001; revised March 15, 2002; accepted May 30, 2002  相似文献   

15.
A GCM land surface scheme was used, in off-line mode, to simulate the runoff, latent and sensible heat fluxes for two distinct Australian catchments using observed atmospheric forcing. The tropical Jardine River catchment is 2500 km2 and has an annual rainfall of 1700 mm y–1 while the Canning River catchment is 540 km2, has a Mediterranean climate (annual rainfall of 800 mm y–1) and is ephemeral for half the year. It was found that the standard version of a land surface scheme developed for a GCM, and initialised as for incorporation into a GCM, simulated similar latent and sensible heat fluxes compared to a basin-scale hydrological model (MODHYDROLOG) which was calibrated for each catchment. However, the standard version of the land surface scheme grossly overestimated the observed peak runoff in the wet Jardine River catchment at the expense of runoff later in the season. Increasing the soil water storage permitted the land surface scheme to simulate observed runoff quite well, but led to a different simulation of latent and sensible heat compared to MODHYDROLOG. It is concluded that this 2-layer land surface scheme was unable to simulate both catchments realistically. The land surface scheme was then extended to a three-layer model. In terms of runoff, the resulting control simulations with soil depths chosen as for the GCM were better than the best simulations obtained with the two-layer model. The three-layer model simulated similar latent and sensible heat for both catchments compared to MODHYDROLOG. Unfortunately, for the ephemeral Canning River catchment, the land surface scheme was unable to time the observed runoff peak correctly. A tentative conclusion would be that this GCM land surface scheme may be able to simulate the present day state of some larger and wetter catchments but not catchments with peaky hydrographs and zero flows for part of the year. This conclusion requires examination with a range of GCM land surface schemes against a range of catchments. Received: 9 June 1995 / Accepted: 4 April 1996  相似文献   

16.
Aerosol and rain samples were collected between 48°N and 55°S during the KH-08-2 and MR08-06 cruises conducted over the North and South Pacific Ocean in 2008 and 2009, to estimate dry and wet deposition fluxes of atmospheric inorganic nitrogen (N). Inorganic N in aerosols was composed of ~68% NH4+ and ~32% NO3 (median values for all data), with ~81% and ~45% of each species being present on fine mode aerosol, respectively. Concentrations of NH4+ and NO3 in rainwater ranged from 1.7–55 μmol L−1 and 0.16–18 μmol L−1, respectively, accounting for ~87% by NH4+ and ~13% by NO3 of total inorganic N (median values for all data). A significant correlation (r = 0.74, p < 0.05, n = 10) between NH4+ and methanesulfonic acid (MSA) was found in rainwater samples collected over the South Pacific, whereas no significant correlations were found between NH4+ and MSA in rainwater collected over the subarctic (r = 0.42, p > 0.1, n = 6) and subtropical (r = 0.33, p > 0.5, n = 6) western North Pacific, suggesting that emissions of ammonia (NH3) by marine biological activity from the ocean could become a significant source of NH4+ over the South Pacific. While NO3 was the dominant inorganic N species in dry deposition, inorganic N supplied to surface waters by wet deposition was predominantly by NH4+ (42–99% of the wet deposition fluxes for total inorganic N). We estimated mean total (dry + wet) deposition fluxes of atmospheric total inorganic N in the Pacific Ocean to be 32–64 μmol m−2 d−1, with 66–99% of this by wet deposition, indicating that wet deposition plays a more important role in the supply of atmospheric inorganic N than dry deposition.  相似文献   

17.
The uptake of water vapor on MgCl2×6H2O and NaCl salt dry solid films was studied over the temperature range 240 to 340 K and at 1 Torr pressure of helium using a flow reactor coupled to a modulated molecular beam mass spectrometer. The H2O to salt uptake data were obtained from the kinetics of H2O loss on salt coated Pyrex rods. The following Arrhenius expression was obtained for the initial uptake coefficient of H2O on MgCl2×6H2O films: γ 0 (MgCl2) = (6.5 ± 1.0) × 10−6 exp[(470 ± 40)/T] (calculated with specific BET surface area, quoted uncertainties are 1σ statistical). The rate of H2O adsorption on NaCl was found to be much lower than on MgCl2×6H2O, and only an upper limit was determined for the corresponding uptake coefficient: γ (NaCl) ≤ 5.6 × 10−6 at T = 300 K. The results show that the rate of H2O adsorption to salt surfaces is drastically dependent on the salt sample composition.  相似文献   

18.
Summary A series of numerical experiments on an f plane are conducted using the fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model, version 3 (MM5) to investigate how environmental vertical wind shear affects the motion, structure, and intensity of a tropical cyclone. The results show that a tropical cyclone has a motion component perpendicular to the vertical shear vector, first to the right of the shear and then to the left. An initially axisymmetric, upright tropical cyclone vortex develops a downshear tilt and wavenumber-one asymmetry when embedded in environmental vertical wind shear. In both small-moderate shears, a storm weakens slightly compared to that in a quiescent environment. The circulation centers between 300 hPa and the surface varies from 20 km to over 80 km. The secondary circulation becomes quite asymmetric about the surface cyclone center. As a result, convection on the upshear-right quadrant diminishes, limiting the upward heat transport in the eyewall and thus lowering the warm core and leading to a weakening of the storm. In strong vertical shear (above 12 m s−1), the vertical tilt exceeds 160 km in 48 h of simulation and the secondary circulation on the upshear side is completely destroyed with low-level outflow. The axisymmetric component of eyewall convection weakens remarkably and becomes much less penetrative. As a result, the warm core becomes weak and appears at lower levels and the storm weakens rapidly accordingly. This up-down weakening mechanism discussed in this study is different from those previously discussed. It emphasizes the penetrative role of eyewall convection in transporting heat from the ocean to the mid-upper troposphere, maintaining the warm core structure of the tropical cyclone. The vertical shear is found negative to eyewall penetrative convection.  相似文献   

19.
Simulating turbulent flows in a city of many thousands of buildings using general high-resolution microscopic simulations requires a grid number that is beyond present computer resources. We thus regard a city as porous media and divide the whole hybrid domain into a porous city region and a clear fluid region, which are represented by a macroscopic k–e{\varepsilon} model. Some microscopic information is neglected by the volume-averaging technique in the porous city to reduce the calculation load. A single domain approach is used to account for the interface conditions. We investigated the turbulent airflow through aligned cube arrays (with 7, 14 or 21 rows). The building height H, the street width W, and the building width B are the same (0.15 m), and the fraction of the volume occupied by fluid (i.e. the porosity) is 0.75; the approaching flow is parallel to the main streets. There are both microscopic and macroscopic simulations, with microscopic simulations being well validated by experimental data. We analysed microscopic wind conditions and the ventilation capacity in such cube arrays, and then calculated macroscopic time-averaged properties to provide a comparison for macroscopic simulations. We found that the macroscopic k–e{\varepsilon} turbulence model predicted the macroscopic flow reduction through porous cube clusters relatively well, but under-predicted the macroscopic turbulent kinetic energy (TKE) near the windward edge of the porous region. For a sufficiently long porous cube array, macroscopic flow quantities maintain constant conditions in a fully developed region.  相似文献   

20.
Summary This paper presents a study of the sensibility of the Penman-Monteith evapotranspiration model to climatic (available energy and vapour pressure deficit) and parametric (aerodynamic and canopy resistances, r a and r c respectively) factors in a semi-arid climate, for crops in contrasting water status (well irrigated and under water stress) and of different heights. Three experiments were carried out in southern Italy on reference grass (≈ 0.1 m), grain sorghum (≈ 1 m) and sweet sorghum (≈ 3 m). For this analysis the sensitivity coefficients, taken as hourly means, were evaluated during the growth season when the crops completely covered the soil. The relative errors on evapotranspiration were also evaluated for r a and r c . The results showed that, for reference grass, available energy and aerodynamic resistance play a major role. For crops under water stress the most important term to evaluate is canopy resistance. For a tall crop, as sweet sorghum, the role of the vapour pressure deficit is fundamental, both when the crop is in good water status and under water stress. Received July 14, 1997 Revised February 5, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号