首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
For the November 5, 1980 flare it is investigated how the plasma in a large flaring loop responds to the injection of energetic electrons. Observations are compared with the results of a one-dimensional numerical simulation. For the simulation it is assumed that at the time the injection is started, the plasma is in an equilibrium state with a constant pressure along the loop and conductive heating compensated by radiative losses. Especially important for the evolution of the impulsively heated plasma is the penetration depth of the fast electrons compared to the depth of the transition layer. Both parameters are known from the observations. The injected energy is 2.6 × 1011 ergs cm ?2 in 30 s (as derived from the hard X-ray observations) and computations show that the high temperature plasma of the loop responds to it with upward motions of about 50 km s?1, i.e. with velocities much smaller than the ion sound speed (≈ 500km s?1). The heating of the plasma due to the absorption of beam energy can be understood using a constant density approximation. After the heating phase the plasma returns in about 5 min to its initial state by conductive cooling. The downward conducted energy is radiated away in the transition zone. The numerical simulation shows that impulsive heating by non-thermal electrons only does not explain the observed large increase in the density of the loop during the flare. It is therefore required that continuous energy and/or mass input occur after the impulsive phase.  相似文献   

2.
This paper deals with a detailed analysis of spectral and imaging observations of the November 5, 1998 (Hα 1B, GOES M1.5) flare obtained over a large spectral range, i.e., from hard X-rays to radiometric wavelengths. These observations allowed us to probe electron acceleration and transport over a large range of altitudes that is to say within small-scale (a few 103 km) and large-scale (a few 105 km) magnetic structures. The observations combined with potential and linear force-free magnetic field extrapolations allow us to show that: (i) Flare energy release and electron acceleration are basically driven by loop–loop interactions at two independent, low lying, null points of the active region magnetic field; (ii) <300 keV hard X-ray-producing electrons are accelerated by a different process (probably DC field acceleration) than relativistic electrons that radiate the microwave emission; and (iii) although there is evidence that hard X-ray and decimetric/metric radio-emitting electrons are produced by the same accelerator, the present observations and analysis did not allow us to find a clear and direct magnetic connection between the hard X-ray emitting region and the radio-emitting sources in the middle corona.  相似文献   

3.
In this paper we discuss the initial phase of chromospheric evaporation during a solar flare observed with instruments on the Solar Maximum Mission on May 21, 1980 at 20:53 UT. Images of the flaring region taken with the Hard X-Ray Imaging Spectrometer in the energy bands from 3.5 to 8 keV and from 16 to 30 keV show that early in the event both the soft and hard X-ray emissions are localized near the footpoints, while they are weaker from the rest of the flaring loop system. This implies that there is no evidence for heating taking place at the top of the loops, but energy is deposited mainly at their base. The spectral analysis of the soft X-ray emission detected with the Bent Crystal Spectrometer evidences an initial phase of the flare, before the impulsive increase in hard X-ray emission, during which most of the thermal plasma at 107 K was moving toward the observer with a mean velocity of about 80 km s-1. At this time the plasma was highly turbulent. In a second phase, in coincidence with the impulsive rise in hard X-ray emission during the major burst, high-velocity (370 km s-1) upward motions were observed. At this time, soft X-rays were still predominantly emitted near the loop footpoints. The energy deposition in the chromosphere by electrons accelerated in the flare region to energies above 25 keV, at the onset of the high-velocity upflows, was of the order of 4 × 1010 erg s-1 cm-2. These observations provide further support for interpreting the plasma upflows as the mechanism responsible for the formation of the soft X-ray flare, identified with chromospheric evaporation. Early in the flare soft X-rays are mainly from evaporating material close to the footpoints, while the magnetically confined coronal region is at lower density. The site where upflows originate is identified with the base of the loop system. Moreover, we can conclude that evaporation occurred in two regimes: an initial slow evaporation, observed as a motion of most of the thermal plasma, followed by a high-speed evaporation lasting as long as the soft X-ray emission of the flare was increasing, that is as long as plasma accumulation was observed in corona.  相似文献   

4.
The analysis of the high temperature plasma in Fe xxiii–xxiv in the 15 June 1973 flare is presented. The observations were obtained with the NRLXUV spectroheliograph on Skylab. The results are: (1) There was preheating of the active region in which the flare occurred. In particular, a large loop in the vicinity of the flaring region showed enhanced brightness for many hours before the flare. The loop disappeared when the flare occurred, and returned in the postflare phase, as if the energy flux which had been heating the large loop was blocked during the flare and restored after the flare was gone. The large magnetic fields did not change significantly. (2) The flare occurred in low-lying loop or loops. The spatial distribution of flare emission shows that there was a temperature gradient along the loop. (3) The high temperature plasma emitting Fe xxiii and xxiv had an initial upward motion with a velocity of about 80 km s–1. (4) There was large turbulent mass motion in the high temperature plasma with a random velocity of 100 to 160 km s–1. (5) The peak temperature of the hot plasma, determined from the Fe xxiii and xxiv intensity ratio, was 14 × 106 K. It decreased slightly and then, for a period of 4 min, remained at 12.6 × 106 K before dropping sharply to below 10 × 106 K. The density of the central core of the hot plasma, determined from absolute intensity of Fe xxiv 255 Å line, was of the order of 1011 cm–3.The persistence of the high level of turbulence and of the high temperature plateau in the decaying phase of the flare indicates the presence of secondary energy release. From the energy balance equation the required energy source is calculated to be about 3 to 7 ergs cm–3 s–1.Ball Brothers Research Corporation.  相似文献   

5.
We describe and analyse observations of an M1.4 flare which began at 17: 00 UT on 12 November, 1980. Ground based H and magnetogram data have been combined with EUV, soft and hard X-ray observations made with instruments on-board the Solar Maximum Mission (SMM) satellite. The preflare phase was marked by a gradual brightening of the flare site in Ov and the disappearance of an H filament. Filament ejecta were seen in Ov moving southward at a speed of about 60 km s–1, before the impulsive phase. The flare loop footpoints brightened in H and the Caxix resonance line broadened dramatically 2 min before the impulsive phase. Non-thermal hard X-ray emission was detected from the loop footpoints during the impulsive phase while during the same period blue-shifts corresponding to upflows of 200–250 km s–1 were seen in Ca xix. Evidence was found for energy deposition in both the chromosphere and corona at a number of stages during the flare. We consider two widely studied mechanisms for the production of the high temperature soft X-ray flare plasma in the corona, i.e. chromospheric evaporation, and a model in which the heating and transfer of material occurs between flux tubes during reconnection.  相似文献   

6.
The M7.7 solar flare of July 19, 2012, at 05:58 UT was observed with high spatial, temporal, and spectral resolutions in the hard X-ray and optical ranges. The flare occurred at the solar limb, which allowed us to see the relative positions of the coronal and chromospheric X-ray sources and to determine their spectra. To explain the observations of the coronal source and the chromospheric one unocculted by the solar limb, we apply an accurate analytical model for the kinetic behavior of accelerated electrons in a flare. We interpret the chromospheric hard X-ray source in the thick-target approximation with a reverse current and the coronal one in the thin-target approximation. Our estimates of the slopes of the hard X-ray spectra for both sources are consistent with the observations. However, the calculated intensity of the coronal source is lower than the observed one by several times. Allowance for the acceleration of fast electrons in a collapsing magnetic trap has enabled us to remove this contradiction. As a result of our modeling, we have estimated the flux density of the energy transferred by electrons with energies above 15 keV to be ~5 × 1010 erg cm?2 s?1, which exceeds the values typical of the thick-target model without a reverse current by a factor of ~5. To independently test the model, we have calculated the microwave spectrum in the range 1–50 GHz that corresponds to the available radio observations.  相似文献   

7.
We studied the evolution of a small eruptive flare (GOES class C1) from its onset phase using multi-wavelength observations that sample the flare atmosphere from the chromosphere to the corona. The main instruments involved were the Coronal Diagnostic Spectrometer (CDS) aboard SOHO and facilities at the Dunn Solar Tower of the National Solar Observatory/Sacramento Peak. Transition Region and Coronal Explorer (TRACE) together with Ramaty High-Energy Spectroscopic Imager (RHESSI) also provided images and spectra for this flare. Hα and TRACE images display two loop systems that outline the pre-reconnection and post-reconnection magnetic field lines and their topological changes revealing that we are dealing with an eruptive confined flare. RHESSI data do not record any detectable emission at energies ≥25 keV, and the observed count spectrum can be well fitted with a thermal plus a non-thermal model of the photon spectrum. A non-thermal electron flux F ≈ 5 × 1010 erg cm−2 s−1 is determined. The reconstructed images show a very compact source whose peak emission moves along the photospheric magnetic inversion line during the flare. This is probably related to the motion of the reconnection site, hinting at an arcade of small loops that brightens successively. The analysis of the chromospheric spectra (Ca II K, He I D3 and Hγ, acquired with a four-second temporal cadence) shows the presence of a downward velocity (between 10 and 20 km s−1) in a small region intersected by the spectrograph slit. The region is included in an area that, at the time of the maximum X-ray emission, shows upward motions at transition region (TR) and coronal levels. For the He I 58.4 and O v 62.97 lines, we determine a velocity of ≈−40 km s−1 while for the Fe XIX 59.22 line a velocity of ≈−80 km s−1 is determined with a two-component fitting. The observations are discussed in the framework of available hydrodynamic simulations and they are consistent with the scenario outlined by Fisher (1989). No explosive evaporation is expected for a non-thermal electron beam of the observed characteristics, and no gentle evaporation is allowed without upward chromospheric motion. It is suggested that the energy of non-thermal electrons can be dissipated to heat the high-density plasma, where possibly the reconnection occurs. The consequent conductive flux drives the evaporation process in a regime that we can call sub-explosive.  相似文献   

8.
We present an analysis of spacecraft observations of non-thermal X-rays and escaping electrons for 5 selected small solar flares in 1967. OSO-3 multi-channel energetic X-ray measurements during the non-thermal component of the solar flare X-ray bursts are used to derive the parent electron spectrum and emission measure. IMP-4 and Explorer-35 observations of > 22 keV and > 45 keV electrons in the interplanetary medium after the flares provide a measure of the total number and spectrum of the escaping particles. The ratio of electron energy loss due to collisions with the ambient solar flare gas to the energy loss due to bremsstrahlung is derived. The total energy loss due to collisions is then computed from the integrated bremsstrahlung energy loss during the non-thermal X-ray burst. For > 22 keV flare electrons the total energy loss due to collisions is found to be 104 times greater than the bremsstrahlung energy loss and 102 times greater than the energy loss due to escaping electrons. Therefore the escape of electrons into the interplanetary medium is a negligible energetic electron loss mechanism and cannot be a substantial factor in the observed decay of the non-thermal X-ray burst for these solar flares.We present a picture of electron acceleration, energy loss and escape consistent with previous observations of an inverse relationship between rise and decay times of the non-thermal X-ray burst and X-ray energy. In this picture the acceleration of electrons occurs throughout the 10–100 sec duration of the non-thermal X-ray burst and determines the time profile of the burst. The average energy of the accelerated electrons first rises and then falls through the burst. Collisions with the ambient gas provide the dominant energetic electron loss mechanism with a loss time of 1 sec. This picture is consistent with the ratio of the total number of energetic electrons accelerated in the flare to the maximum instantaneous number of electrons in the flare region. Typical values for the parameters derived from the X-ray and electron observations are: total energy in > 22 keV electrons total energy lost by collisions = 1028–29 erg, total number of electrons accelerated above 22 keV = 1036, total energy lost by non-thermal bremsstrahlung = 1024erg, total energy lost in escaping > 22 keV electrons = 1026erg, total number of > 22 keV electrons escaping = 1033–34.The total energy in electrons accelerated above 22 keV is comparable to the energy in the optical or quasi-thermal flare, implying a flare mechanism with particle acceleration as one of the dominant modes of energy dissipation.The overall efficiency for electron escape into the interplanetary medium is 0.1–1% for these flares, and the spectrum of escaping electrons is found to be substantially harder than the X-ray producing electrons.Currently at Tokyo Astronomical Observatory, Mitaka, Tokyo, Japan.  相似文献   

9.
We analyze particle acceleration processes in large solar flares, using observations of the August, 1972, series of large events. The energetic particle populations are estimated from the hard X-ray and γ-ray emission, and from direct interplanetary particle observations. The collisional energy losses of these particles are computed as a function of height, assuming that the particles are accelerated high in the solar atmosphere and then precipitate down into denser layers. We compare the computed energy input with the flare energy output in radiation, heating, and mass ejection, and find for large proton event flares that:
  1. The ~10–102 keV electrons accelerated during the flash phase constitute the bulk of the total flare energy.
  2. The flare can be divided into two regions depending on whether the electron energy input goes into radiation or explosive heating. The computed energy input to the radiative quasi-equilibrium region agrees with the observed flare energy output in optical, UV, and EUV radiation.
  3. The electron energy input to the explosive heating region can produce evaporation of the upper chromosphere needed to form the soft X-ray flare plasma.
  4. Very intense energetic electron fluxes can provide the energy and mass for interplanetary shock wave by heating the atmospheric gas to energies sufficient to escape the solar gravitational and magnetic fields. The threshold for shock formation appears to be ~1031 ergs total energy in >20 keV electrons, and all of the shock energy can be supplied by electrons if their spectrum extends down to 5–10 keV.
  5. High energy protons are accelerated later than the 10–102 keV electrons and most of them escape to the interplanetary medium. The energetic protons are not a significant contributor to the energization of flare phenomena. The observations are consistent with shock-wave acceleration of the protons and other nuclei, and also of electrons to relativistic energies.
  6. The flare white-light continuum emission is consistent with a model of free-bound transitions in a plasma with strong non-thermal ionization produced in the lower solar chromosphere by energetic electrons. The white-light continuum is inconsistent with models of photospheric heating by the energetic particles. A threshold energy of ~5×1030 ergs in >20 keV electrons is required for detectable white-light emission.
The highly efficient electron energization required in these flares suggests that the flare mechanism consists of rapid dissipation of chromospheric and coronal field-aligned or sheet currents, due to the onset of current-driven Buneman anomalous resistivity. Large proton flares then result when the energy input from accelerated electrons is sufficient to form a shock wave.  相似文献   

10.
Cinematic, photometric observations of the 3B flare of August 7, 1972 are described in detail. The time resolution was 2 s; the spatial resolution was 1–2″. Flare continuum emissivity at 4950 Å and at 5900 Å correlated closely in time with the 60–100 keV non-thermal X-ray burst intensity. The observed peak emissivity was 1.5 × 1010 erg cm?2 s?1 and the total flare energy in the 3900–6900 Å range was ~1030 erg. From the close temporal correspondence and from the small distance (3″) separating the layers where the visible emission and the X-rays arose, it is argued that the hard X-ray source must have had the same silhouette as the white light flare and that the emission patches had cross-sections of 3–5″. There was also a correlation between the location of the most intense visible emissions near sunspots and the intensity and polarization of the 9.4 GHz radio emission. The flare appeared to show at least three distinct particle acceleration phases: one, occurring at a stationary source and associated with proton acceleration gave a very bluish continuum and reached peak intensity at ~ 1522 UT. At 1523 UT, a faint wave spread out at 40 km s?1 from flare center. The spectrum of the wave was nearly flat in the range 4950–5900 Å. Association of the wave with a slow drift of the microwave emission peak to lower frequencies and with a softening of the X-ray spectrum is interpreted to mean that the particle acceleration process weakened while the region of acceleration expanded. The observations are interpreted with the aid of the flare models of Brown to mean that the same beam of non-thermal electrons that was responsible for the hard X-ray bremsstrahlung also caused the heating of the lower chromosphere that produced the white light flare.  相似文献   

11.
Observations using the Bent Crystal Spectrometer instrument on the Solar Maximum Mission show that turbulence and blue-shifted motions are characteristic of the soft X-ray plasma during the impulsive phase of flares, and are coincident with the hard X-ray bursts observed by the Hard X-ray Burst Spectrometer. A method for analysing the Ca xix and Fe xxv spectra characteristic of the impulsive phase is presented. Non-thermal widths and blue-shifted components in the spectral lines of Ca xix and Fe xxv indicate the presence of turbulent velocities exceeding 100 km s-1 and upward motions of 300–400 km s-1.The April 10, May 9, and June 29, 1980 flares are studied. Detailed study of the geometry of the region, inferred from the Flat Crystal Spectrometer measurements and the image of the flare detected by the Hard X-ray Imaging Spectrometer, shows that the April 10 flare has two separated footpoints bright in hard X-rays. Plasma heated to temperatures greater than 107 K rises from the footpoints. During the three minutes in which the evaporation process occurs an energy of 3.7 × 1030 ergs is deposited in the loop. At the end of the evaporation process, the total energy observed in the loop reaches its maximum value of 3 × 1030 ergs. This is consistent with the above figures, allowing for loss by radiation and conduction. Thus the energy input due to the blue-shifted plasma flowing into the flaring loop through the footpoints can account for the thermal and turbulent energy accumulated in this region during the impulsive phase.On leave from Torino University, Italy.  相似文献   

12.
Aschwanden  Markus J. 《Solar physics》1999,190(1-2):233-247
Recent observations with EUV imaging instruments such as SOHO/EIT and TRACE have shown evidence for flare-like processes at the bottom end of the energy scale, in the range of E th≈1024–1027 erg. Here we compare these EUV nanoflares with soft X-ray microflares and hard X-ray flares across the entire energy range. From the observations we establish empirical scaling laws for the flare loop length, L(T)∼T, the electron density, n e(T)∼T 2, from which we derive scaling laws for the loop pressure, p(T)∼T 3, and the thermal energy, E thT 6. Extrapolating these scaling laws into the picoflare regime we find that the pressure conditions in the chromosphere constrain a height level for flare loop footpoints, which scales with h eq(T)∼T −0.5. Based on this chromospheric pressure limit we predict a lower cutoff of flare loop sizes at L ∖min≲5 Mm and flare energies E ∖min≲1024 erg. We show evidence for such a rollover in the flare energy size distribution from recent TRACE EUV data. Based on this energy cutoff imposed by the chromospheric boundary condition we find that the energy content of the heated plasma observed in EUV, SXR, and HXR flares is insufficient (by 2–3 orders of magnitude) to account for coronal heating.  相似文献   

13.
The impulsive phases of three flares that occurred on April 10, May 21, and November 5, 1980 are discussed. Observations were obtained with the Hard X-ray Imaging Spectrometer (HXIS) and other instruments aboard SMM, and have been supplemented with Hα data and magnetograms. The flares show hard X-ray brightenings (16–30 keV) at widely separated locations that spatially coincide with bright Hα patches. The bulk of the soft X-ray emission (3.5–5.5 keV) originates from in between the hard X-ray brightenings. The latter are located at different sides of the neutral line and start to brighten simultaneously to within the time resolution of HXIS. Concluded is that:
  1. The bright hard X-ray patches coincide with the footpoints of loops.
  2. The hard X-ray emission from the footpoints is most likely thick target emission from fast electrons moving downward into the dense chromosphere.
  3. The density of the loops along which the beam electrons propagate to the footpoints is restricted to a narrow range (109 < n < 2 × 1010 cm-3), determined by the instability threshold of the return current and the condition that the mean free path of the fast electrons should be larger than the length of the loop.
  4. For the November 5 flare it seems likely that the acceleration source is located at the merging point of two loops near one of the footpoints.
It is found that the total flare energy is always larger than the total energy residing in the beam electrons. However, it is also estimated that at the time of the peak of the impulsive hard X-ray emission a large fraction (at least 20%) of the dissipated flare power has to go into electron acceleration. The explanation of such a high acceleration efficiency remains a major theoretical problem.  相似文献   

14.
We present SOHO/CDS observations taken during the gradual phase of the X17 flare that occurred on October 28, 2003. The CDS data are supplemented with TRACE and ground-based observations. The spectral observations allow us to determine velocities from the Doppler shifts measured in the flare loops and in the two ribbon kernels, one hour and a half after the flare peak. Strong downflows (>70 km s−1) are observed along the loop legs at transition-region temperatures. The velocities are close to those expected for free fall. Observations and results from a hydrodynamic simulation are consistent with the heating taking place for a short time near the top of the arcade. Slight upflows are observed in the outer edges of the ribbons (<60 km s−1) in the EUV lines formed at log T < 6.3. These flows could correspond to the so-called “gentle evaporation.” At “flare” temperatures (Fe xix, log T = 6.9), no appreciable flows are observed. The observations are consistent with the general standard reconnection models for two-ribbons flares.  相似文献   

15.
The flare plasma temperature calculated from GOES-11 (1.5–12.4 and 3.1–24.8 keV) data is compared with the solar nonthermal fluxes in various energy ranges in the December 6, 2006 event. Particle acceleration and plasma heating episodes took place in the pre-flare and impulsive phases; a hard (ACS SPI > 150 keV) X-ray emission was observed 5 min before the onset of the GOES X-ray flare and was not accompanied by a temperature rise. A close correlation has been found between the flare plasma temperature and the hard X-ray intensity. The temperature delayed by 0.4 min turned out to be directly proportional to the logarithm of the ACS SPI count rate within the first 3 min of the impulsive phase. This shows that the accelerated electrons responsible for the X-ray emission were the main plasma heating source in the pre-flare and impulsive phases. The correlation between the temperature and the hard X-ray intensity disappears after the observation of a resonance peak at a frequency of 245 MHz. Significant electron fluxes may no longer be able to effectively heat the expanding plasma when its density in the interaction region reaches ∼109 cm−3. The observations of the July 23, 2002 and December 5, 2006 events confirm the trends found.  相似文献   

16.
We propose an accurate analytical model for the source of hard X-ray emission from a flare in the form of a “thick target” with a reverse current to explain the results of present-day observations of solar flares onboard the GOES, Hinode, RHESSI, and TRACE satellites. The model, one-dimensional in coordinate space and two-dimensional in velocity space, self-consistently takes into account the fact that the beam electrons lose the kinetic energy of their motion along the magnetic field almost without any collisions under the action of the reverse-current electric field. Some of the electrons return from the emission source to the acceleration region without losing the kinetic energy of their transverse motion. Based on the observed hard X-ray bremsstrahlung spectrum, the model allows the injection spectrum of accelerated electrons to be reconstructed with a high accuracy. As an example, we consider the white-light flare of December 6, 2006, which was observed with a high spatial resolution in the optical wavelength range at the main maximum of hard X-ray emission. Within the framework of our model, we show that to explain the hard X-ray spectrum, the flux density of the energy transferred by electrons with energies above 18 keV was ~3 × 1013 erg cm?2 s?1. This exceeds the habitual values typical of the classical model of a thick target without a reverse current by two orders of magnitude. The electron density in the beam is also very high: ~1011 cm?3. A more careful consideration of plasma processes in such dense electron beams is needed when the physical parameters of a flare are calculated.  相似文献   

17.
S. W. Kahler 《Solar physics》1984,90(1):133-138
In the second phase acceleration process the close time coincidence between the gradual hard X-ray burst and the type II shock wave is presumed due to shock acceleration of the electrons producing the gradual phase burst. We point out that recent studies of gradual hard X-ray bursts place the source heights well below the heights of 2–10 × 105 km traversed by the shock. Gradual phase energetic electrons therefore cannot be accelerated in the shock but must be produced elsewhere. We propose the loop systems of long decay X-ray events (LDEs) as the sites of the gradual phase electron production.  相似文献   

18.
A. Gordon Emslie 《Solar physics》1989,121(1-2):105-115
We review the somewhat questionable concept of an isolated flare loop and the various physical mechanisms believed to be responsible, to some degree, for energy transport within the loop structure. Observational evidence suggests a predominant role for high-energy electrons as an energy transport mechanism, and we explore the consequences of such a scenario in some detail, focusing on radiation signatures in the soft X-ray, hard X-ray, and EUV wavebands, as observed by recent satellite observatories. We find that the predictions of flare loop models are in fact in excellent agreement with these observations, reinforcing both the notion of the loop as a fundamental component of solar flares and the belief that electron acceleration is an integral part of the flare energy release process.  相似文献   

19.
Theories of solar flares based on the storage of energy (usually as magnetic energy) in the solar atmosphere are shown to be incompatible with observational data.The sunspot energy deficit and the photospheric faculae both involve energy fluxes comparable with the flare requirement ( 3 × 1029 erg s–1). Both also require a subsurface system of waves or oscillations, perhaps those discussed by Danielson and Savage and by Wilson. The flare model proposed is based on a temporary diversion of this energy carried by Alfvén waves through spots and magnetic elements or micro-pores; the calculated plasma perturbation velocity in the umbra is about 6 km s–1 for a major flare.In the atmosphere the wave energy divides into two parts to produce the cool, stationary optical flare and the particle flare. The first part is dissipated around flux tubes which are mainly horizontal in the chromosphere and which tend to concentrate along the magnetic neutral line (B = 0). Each tube vibrates individually as a taut wire in a viscous fluid, to excite the fluid just outside the tube. The second part of the energy emerges along tubes mainly vertical in the chromosphere and is converted to shock waves in the corona and then to particle energy for the radio and X-ray flare and the blast wave.The model includes white-light faculae, quasi-permanent X-ray and fast-particle emissions, sympathetic flares and surges. An unambiguous test would be provided by observations of plasma motions of a few kilometres per second in spots and micro-pores.  相似文献   

20.
Aschwanden  Markus J.  Brown  John C.  Kontar  Eduard P. 《Solar physics》2002,210(1-2):383-405
We present an analysis of hard X-ray imaging observations from one of the first solar flares observed with the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) spacecraft, launched on 5 February 2002. The data were obtained from the 22 February 2002, 11:06 UT flare, which occurred close to the northwest limb. Thanks to the high energy resolution of the germanium-cooled hard X-ray detectors on RHESSI we can measure the flare source positions with a high accuracy as a function of energy. Using a forward-fitting algorithm for image reconstruction, we find a systematic decrease in the altitudes of the source centroids z(ε) as a function of increasing hard X-ray energy ε, as expected in the thick-target bremsstrahlung model of Brown. The altitude of hard X-ray emission as a function of photon energy ε can be characterized by a power-law function in the ε=15–50 keV energy range, viz., z(ε)≈2.3(ε/20 keV)−1.3 Mm. Based on a purely collisional 1-D thick-target model, this height dependence can be inverted into a chromospheric density model n(z), as derived in Paper I, which follows the power-law function n e(z)=1.25×1013(z/1 Mm)−2.5 cm−3. This density is comparable with models based on optical/UV spectrometry in the chromospheric height range of h≲1000 km, suggesting that the collisional thick-target model is a reasonable first approximation to hard X-ray footpoint sources. At h≈1000–2500 km, the hard X-ray based density model, however, is more consistent with the `spicular extended-chromosphere model' inferred from radio sub-mm observations, than with standard models based on hydrostatic equilibrium. At coronal heights, h≈2.5–12.4 Mm, the average flare loop density inferred from RHESSI is comparable with values from hydrodynamic simulations of flare chromospheric evaporation, soft X-ray, and radio-based measurements, but below the upper limits set by filling-factor insensitive iron line pairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号