首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface dissolution features on diamonds and Fourier Transform Infra Red spectroscopy (FTIR) of phenocrystal and xenocrystal olivines from kimberlites contain a record of magmatic fluid in kimberlite magmas. We investigated composition and behavior of kimberlitic fluid and the effect of volatiles on the eruption style and geology of kimberlites using microdiamonds and olivine concentrates from six kimberlite pipes with different lithologies and the character of diamond resorption (Ekati Diamond Mine, Northwest Territories, Canada). The study showed a clear correlation between the resorption style of diamond population of the kimberlites and the type of infrared (IR) spectra of their olivines. Four kimberlites have high quality diamonds with smooth regular surface features and high H2O content of the olivines indicating the presence of H2O-rich fluid during the emplacement. Fast ascent rates of fluid-rich magma can explain explosive eruption and filling the pipes with volcaniclastic kimberlite facies. Conversely, Grizzly and Leslie kimberlites have diamonds with complex sharp features diminishing diamond quality and indicating loss of the fluid. The slower ascent rates and less explosive eruption of the fluid-free magmas produced kimberlite pipes filled with magmatic facies kimberlite. Distinctive peaks in olivine IR spectra at 3356 and 3327 cm? 1 were found to correlate with the presence of hydrous magmatic fluid. Character of diamond morphology suggests that during the whole ascent of all six kimberlites, the magmatic fluid when present had a high H2O:CO2 ratio.  相似文献   

2.
High-resolution seismic data (onshore and offshore), geophysical borehole data as well as detailed lithofacies from airlift boreholes were acquired in northern Netherlands on and around the island of Ameland. Marine and land seismic data combined with information from land boreholes have been explored with the objective of providing a sedimentary model. Qualitative seismic facies analysis of the valley fill commonly shows a thin unit with high amplitude reflectors at the base. Thick units of variable seismic facies (transparent to high amplitude) occur higher up in the sequence. Onlap is common at mid–upper levels within the sandy valley fill (with clay in mm layering), and a transparent seismic facies, corresponding to firm clays, is common at the top. Almost all lithological unit boundaries recognised within core parameters correspond with seismic unconformities within error margins. Subunits contain multiple cyclical trends in gamma ray and grain size. Cyclical trends show lower order fluctuations in gamma radiation on a scale of less than 1 m. Gamma-ray pattern variability between units, e.g. in general coarsening-up or fining-up units, suggests migration of subaqueous outwash fans or ice margin fluctuations. Seismic results could support a headward excavation and backfilling process suggested by Praeg [Morphology, stratigraphy and genesis of buried Elsterian tunnel valleys in the southern North Sea basin [PhD thesis]: University of Edinburgh, 207 pp.; Journal of Applied Geophysics, (this volume)] as being responsible for the formation of buried valleys. On a lithological scale, a more complicated, detailed and cyclical pattern arises. Catastrophic processes are considered unlikely as being responsible for the infill sequence because of the observed small-scale facies variability and because of the presence of diamicton layers. Diamicton layers at the base of basal unconformities as well as higher in sequence could suggest subglacial deformation by grounded ice before and during the valley-fill process.  相似文献   

3.
Seismic facies analysis makes use of different seismic parameters in order to get other than structural information. A review is given of possibilities and usefulness of seismic facies analysis in oil exploration. A seismic facies unit can be defined as a sedimentary unit which is different from adjacent units in its seismic characteristics. Parameters that should be taken into consideration in the seismic facies analysis are as follows: reflection amplitude, dominant reflection frequency, reflection polarity, interval velocity, reflection continuity, reflection configuration, abundance of reflections, geometry of seismic facies unit, and relationship with other units. Interpretation of seismic facies data may be either direct or indirect. The purpose of the direct interpretation is to find out geological causes responsible for the seismic signature of a seismic facies unit. So, the direct interpretation may be aimed at predicting lithology, fluid content, porosity, relative age, overpressured shales, type of stratification, geometry of the geological body corresponding to the seismic facies unit and its geological setting. The indirect interpretation is intended to reach some conclusions on depositional processes and environments, sediment transport direction, and some aspects of geological evolution (transgression, regression, subsidence, uplift, erosion). The results of the seismic facies analysis may be shown on seismic facies cross-sections and seismic facies maps. Depending on the available seismic data and geological conditions in the area under consideration, the seismic facies maps may be of different types such as general seismic facies maps showing distribution of different seismic facies units, sand-shale ratio maps, direction of cross-bedding and paleo-transport maps etc. Several kinds of seismic facies units and their geological interpretation are discussed as examples of seismic facies analysis.  相似文献   

4.
The Koala kimberlite, Northwest Territories, Canada, is a small pipe-like body that was emplaced into the Archean Koala granodiorite batholith and the overlying Cretaceous to Tertiary sediments at ~53 Ma. Koala is predominantly in-filled by a series of six distinct clastic deposits, the lowermost of which has been intruded by a late stage coherent kimberlite body. The clastic facies are easily distinguished from each other by variations in texture, and in the abundance and distribution of the dominant components. From facies analysis, we infer that the pipe was initially partially filled by a massive, poorly sorted, matrix-supported, olivine-rich lapilli tuff formed from a collapsing eruption column during the waning stage of the pipe-forming eruption. This unit is overlain by a granodiorite cobble-boulder breccia and a massive, poorly sorted, mud-rich pebbly-sandstone. These deposits represent post-eruptive gravitational collapse of the unstable pipe walls and mass wasting of tephra forming the crater rim. The crater then filled with water within which ~20 m of non-kimberlitic, wood-rich, silty sand accumulated, representing up to 47,000 years of quiescence. The upper two units in the Koala pipe are both olivine rich and show distinct grain-size grading. These units are interpreted to have been deposited sub-aqueously, from pyroclastic flows sourced from one or more other kimberlite volcanoes. The uppermost units in the Koala pipe highlight the likelihood that some kimberlite pipes may be only partially filled by their own eruptive products at the cessation of volcanic activity, enabling them to act as depocentres for pyroclastic and sedimentary deposits from the surrounding volcanic landscape. Recognition of these exotic kimberlite deposits has implications for kimberlite eruption and emplacement processes.  相似文献   

5.
Abstract Characteristic features of in situ diamonds can be used to retrace diamond formation during ultrahigh pressure (UHP) metamorphism of the Kokchetav Massif, Kazakhstan. These features include the nitrogen aggregation state in diamond, dissolution features observed on diamond surfaces, and the carbon and nitrogen isotopic composition of the diamonds. The minerals in which the diamonds are included provide additional information and support the view that at least some of the Kokchetav microdiamonds are the products of prograde or peak UHP metamorphism. The coexistence of diamond and graphite is evaluated within this framework.  相似文献   

6.
7.
The Highway–Reward massive sulphide deposit is hosted by a silicic volcanic succession in the Cambro-Ordovician Seventy Mile Range Group, northeastern Australia. Three principal lithofacies associations have been identified in the host succession: the volcanogenic sedimentary facies association, the primary volcanic facies association and the resedimented syn-eruptive facies association. The volcanogenic sedimentary facies association comprises volcanic and non-volcanic siltstone and sandstone turbidites that indicate submarine settings below storm wave base. Lithofacies of the primary volcanic facies association include coherent rhyolite, rhyodacite and dacite, and associated non-stratified breccia facies (autoclastic breccia and peperite). The resedimented volcaniclastic facies association contains clasts that were initially formed and deposited by volcanic processes, but then redeposited by mass-flow processes. Resedimentation was more or less syn-eruptive so that the deposits are essentially monomictic and clast shapes are unmodified. This facies association includes monomictic rhyolitic to dacitic breccia (resedimented autoclastic facies), siltstone-matrix rhyolitic to dacitic breccia (resedimented intrusive hyaloclastite or resedimented peperite) and graded lithic-crystal-pumice breccia and sandstone (pumiceous and crystal-rich turbidites). The graded lithic-crystal-pumice breccia and sandstone facies is the submarine record of a volcanic centre(s) that is not preserved or is located outside the study area. Pumice, shards, and crystals are pyroclasts that reflect the importance of explosive magmatic and/or phreatomagmatic eruptions and suggest that the source vents were in shallow water or subaerial settings.The lithofacies associations at Highway–Reward collectively define a submarine, shallow-intrusion-dominated volcanic centre. Contact relationships and phenocryst populations indicate the presence of more than 13 distinct porphyritic units with a collective volume of 0.5 km3. Single porphyritic units vary from <10 to 350 m in thickness and some are less than 200 m in diameter. Ten of the porphyritic units studied in the immediate host sequence to the Highway–Reward deposit are entirely intrusive. Two of the units lack features diagnostic of their emplacement mechanism and could be either lavas and intrusions. Direct evidence for eruption at the seafloor is limited to a single partly extrusive cryptodome. However, distinctive units of resedimented autoclastic breccia indicate the presence nearby of additional lavas and domes.The size and shape of the lavas and intrusions reflect a restricted supply of magma during eruption/intrusion, the style of emplacement, and the subaqueous emplacement environment. Due to rapid quenching and mixing with unconsolidated clastic facies, the sills and cryptodomes did not spread far from their conduits. The shape and distribution of the lavas and intrusions were further influenced by the positions of previously or concurrently emplaced units. Magma preferentially invaded the sediment, avoiding the older units or conforming to their margins. Large intrusions and their dewatered envelope may have formed a barrier to the lateral progression and ascent of subsequent batches of magma.  相似文献   

8.
Kimberlite pipes can contain significant proportions of dark and dense kimberlite that have mostly been interpreted as intrusive coherent (hypabyssal) in origin. This study reports a well-documented occurrence of a fresh intra-crater clastogenic extrusive coherent kimberlite that is concluded to have formed as a result of lava fountaining. This paper focuses on a dark, dense, competent, generally crystal-rich, massive kimberlite unit within the Victor Northwest kimberlite pipe (Ontario, Canada). Using a comprehensive volcanological and petrographic analysis of all available drill cores, it is shown that this unit has a fresh well-crystallised coherent groundmass and is extrusive and pyroclastic in origin. The proposed clastogenic coherent extrusive origin is based on deposit morphology, gradational contacts to enveloping pyroclastic units, as well as the presence of remnant pyroclast outlines and angular broken olivines. This paper, and an increasing number of other studies, suggest that fragmental extrusive coherent kimberlite in intra-crater settings may be more common than previously thought. The emplacement history and volcanology of these pipes need to be reconsidered based on the emerging importance of this particular kimberlite facies.  相似文献   

9.
Two unusual diamonds were studied from kimberlites from China, which contain both ultramafic and eclogitic mineral inclusions in the same diamond hosts. Diamond L32 contains seven Fe-rich garnets, four omphacites and one olivine inclusion. Four olivine, one sanidine and one coesite were recovered from diamond S32. Both garnet and omphacite inclusions have similar compositions as those from other localities of the world, and show basaltic bulk composition. All the garnet and omphacite inclusions in diamond L32 have positive Eu anomalies (Eu/Eu*1.64 1.79). These observations support the proposal that mantle eclogite is the metamorphic product of subducted ancient oceanic crust. The Mg/(Mg + Fe) ratio of the olivine inclusions from the two diamonds (91-92) are evidently lower than the normal olivine inclusions in diamonds from the same kimberlite pipe (92-95). The following model is proposed for the formation of diamonds with “mixed” mineral inclusions. Ascending diamond-bearing eclogite (recycled oceanic crust) entrained in mantle plumes may experience extensive partial melting, whereas the ambient peridotite matrix remains subsolidus in the diamond stable field. This provides a mechanism for the transport of diamond from its original eclogitic host to an ultramafic one. Subsequent re-growth of diamond in the new environment makes it possible to capture mineral inclusions of different lithological suites. Partial melts of basaltic sources may interact with the surrounding peridotite, resulting in the relatively lower Mg/(Mg + Fe) ratios of the coexisting olivine inclusions from the studied diamonds. Diamonds with “mixed” mineral inclusions demonstrate that plume activity also occurred in the Archean cratons.  相似文献   

10.
广丰县李家膨润土矿床赋存于白垩系上统南雄组第二岩性段酸性火山岩的顶底部。膨润土的主要矿物成分为蒙脱石,矿石结构构造与成矿原岩有关。矿石化学成分与酸性熔岩相近,矿体形态及空间分布受酸性熔岩流相带的控制。因此认为,膨润土矿床成矿原岩为酸性玻质熔岩,矿床是由酸性玻璃质熔岩经水解脱玻化而形成,其成因类型为风化淋滤蚀变岩型矿床。膨润土可自然改型,由原来的钠基膨润土改型成钙基膨润土和偏镁的钙基膨润土。对时代较新的酸性火山岩,在玻质熔岩发育处都有可能找到有利用价值的膨润土矿。由于膨润土常由珍珠岩、沸石脱玻化形成,三者常共生出现,是很好的找矿标志。  相似文献   

11.
Sub-micrometer inclusions in diamonds carry high-density fluids (HDF) from which the host diamonds have precipitated. The chemistry of these fluids is our best opportunity of characterizing the diamond-forming environment. The trace element patterns of diamond fluids vary within a limited range and are similar to those of carbonatitic/kimberlitic melts that originate from beneath the lithospheric mantle. A convecting mantle origin for the fluid is also implied by C isotopic compositions and by a preliminary Sr isotopic study (Akagi, T., Masuda, A., 1988. Isotopic and elemental evidence for a relationship between kimberlite and Zaire cubic diamonds. Nature 336, 665–667.). Nevertheless, the major element chemistry of HDFs is very different from that of kimberlites and carbonatites, varying widely and being characterized by extreme K enrichment (up to ~ 39 wt.% on a water and carbonate free basis) and high volatile contents. The broad spectrum of major element compositions in diamond-forming fluids has been related to fluid–rock interaction and to immiscibility processes.Elemental signatures can be easily modified by a variety of mantle processes whereas radiogenic isotopes give a clear fingerprint of the time-integrated evolution of the fluid source region. Here we present the results of the first multi radiogenic-isotope (Sr, Nd, Pb) and trace element study on fluid-rich diamonds, implemented using a newly developed off-line laser sampling technique. The data are combined with N and C isotope analysis of the diamond matrix to better understand the possible sources of fluid involved in the formation of these diamonds. Sr isotope ratios vary significantly within single diamonds. The highly varied but unsupported Sr isotope ratios cannot be explained by immiscibility processes or fluid-mineral elemental fractionations occurring at the time of diamond growth. Our results demonstrate the clear involvement of a mixed fluid, with one component originating from ancient incompatible element-enriched parts of the lithospheric mantle while the trigger for releasing this fluid source was probably carbonatitic/kimberlitic melts derived from greater depths. We suggest that phlogopite mica was an integral part of the enriched lithospheric fluid source and that breakdown of this mica releases K and radiogenic Sr into a fluid phase. The resulting fluids operate as a major metasomatic agent in the sub-continental lithospheric mantle as reflected by the isotopic composition and trace element patterns of G10 garnets.  相似文献   

12.
Groundwater flow and contaminant transport are strongly influenced by hydrogeological spatial variation. Understanding the textural heterogeneity of aquifer and aquitard units is critical for predicting preferential flow pathways, but is often hindered by sparse hydrogeological data, widely spaced data points, and complex stratigraphy. Here, we demonstrate the application of a relatively new air permeameter technology, providing a cost-effective, rapid alternative for characterizing hydrostratigraphic units in the field. The aim of this research is to (1) characterize the variation of saturated hydraulic conductivity across shallow-marine hydrostratigraphic units of the Whanganui Basin, New Zealand, and (2) assess the variation of saturated hydraulic conductivity within individual hydrostratigraphic units and relate these changes to facies and depositional environments. Results suggest heterogeneity within fine-grained aquitard units is controlled by bioturbation, whereby burrowing, ingestion and defecation results in grain size segregation and differential micrite cementation. Coarse-grained heterolithic aquifer facies display sharp changes in permeability across planar to cross-bedded sets, related to current and wave energy fluctuations within shallow-marine depositional settings. Bedding plane orientation creates high permeability zones that promotes down dip subsurface flow. Down dip gradation of coarse-grained nearshore facies into fine-grained shelf facies along the paleo shoreline-shelf transect is suggested to promote lateral and vertical groundwater flow within the basin fill. Air permeameter techniques have potential for application within groundwater basins around the world, providing datasets that facilitate greater understanding of groundwater systems, informing practices and policies for targeted water quality management.  相似文献   

13.
A low aspect ratio, decimeter-thick ash deposit, axisymmetrically distributed around the Latera Caldera (Western Vulsini Volcanoes, central Italy) has been studied by means of field and laboratory investigations. Field studies comprise facies analysis at centimeter scale and maximum clast size and deposit thickness measurements. Grain size and component distribution, chemical composition and particle morphoscopic features have been determined on selected samples. We discuss the co-ignimbrite ash fall vs. pyroclastic surge origin of the deposit and the hydrovolcanic vs. magmatic eruption nature. Complex facies association, textural features and grain size data rule out an ash fall origin for the whole deposit. The hydrovolcanic nature of the eruption has been discarded on the grounds of componentry and morphoscopic features of vitric fragments. We propose that the main body of the ash deposit formed from a radially expanding, dilute, turbulent pyroclastic density current, originated by a continuous collapse of a low-altitude (a few kilometers) eruptive column with a possible radial jet component.  相似文献   

14.
The BK9 kimberlite consists of three overlapping pipes. It contains two dark varieties of massive volcaniclastic kimberlite, informally termed dark volcaniclastic kimberlite (DVK). DVK(ns) is present in the north and south pipes and is interbedded with lenses of basalt breccia at the margins of the pipes. DVK(c) is present within the central pipe where it is overlain by a sequence of basalt breccias with interbedded volcanogenic sediments. The features observed within the DVK units of the BK9 kimberlite provide strong evidence for gas fluidisation of the accumulating pyroclastic material. These include the massive interior of the pipes, marginal epiclastic units, well-dispersed country-rock xenoliths and small-scale heterogeneities in lithic clast abundance. The upper portions of the central pipe provide a record of the transition from pyroclastic eruption and infill to passive epiclastic infilling of the crater, after the eruption has ceased. The wall-rock of the BK9 kimberlite dips inwards and is interpreted as post pipe-fill subsidence of the adjacent country rock. The two DVK units contain interstitial, silt-sized pyroclasts. The DVK(ns) has a higher fraction of former melt and displays evidence of incipient welding, as a result of differences in eruption dynamics. These units demonstrate that whilst DVK is comparable in many respects to MVK and forms part of a spectrum of volcaniclastic rocks formed by fluidisation, it differs in frequently containing silt-sized particles and including agglutinated and welded varieties with a high melt fraction. The DVK varieties, studied here, also have a distinctive hydrothermal assemblage, resulting from the abundance of low-silica accidental lithic clasts. Both the hydrothermal alteration and the abundance of silt-sized particles contribute to the DVKs distinctive dark colour.  相似文献   

15.
Most if not all kimberlite pipes show a multitude of facies types, which imply that the pipes were emplaced under an episodic re-occurrence of eruptive phases, often with intermittent phases of volcanic quiescence. The majority of these facies can be related to either the fragmentation behaviour of the magma during emplacement or changing conditions during sedimentation of volcaniclastic deposits, as well as their alteration and compaction after deposition. An additional factor controlling pipe-facies architecture is the degree of mobility of the loci of explosions in the explosion chambers of the root zone or root zones at the base of the maar-diatreme volcano. In a growing pipe, the root zone moves downward and, with that movement, the overlying diatreme enlarges both in size and diameter. However, during the life span of the volcano, the explosion chamber can also move upward, back into the lower diatreme, where renewed explosions result in the destruction of older deposits and their structures. Next to vertical shifts of explosion chambers, the loci of explosions can also move laterally along the feeder dyke or dyke swarm. This mobility of explosion chambers results in a highly complex facies architecture in which a pipe can be composed of several separate root zones that are overlain by an amalgamated, crosscutting diatreme and maar crater with several lobes. Pipe complexity is amplified by periodic changes of the fragmentation behaviour and explosivity of kimberlite magma. Recent mapping and logging results of Canadian and African kimberlite pipes suggest that kimberlite magma fragmentation ranges from highly explosive with abundant entrained country rock fragments to weakly explosive spatter-like production with scarce xenoliths. On occasions, spatter may even reconstitute and form a texturally coherent deposit on the crater floor. In addition, ascending kimberlite magma can pass the loci of earlier fragmentation events in the root zone and intrudes as coherent hypabyssal kimberlite dykes in high pipe levels or forms extrusive lava lakes or flows on the crater floor or the syneruptive land surface, respectively. This highly variable emplacement behaviour is typical for basaltic maar-diatreme volcanoes and since similar deposits can also be found in kimberlites, it can be concluded that also the volcanological processes leading to these deposits are similar to the ones observed in basaltic pipes.  相似文献   

16.
In an attempt to constrain the origin of polycrystalline diamond, combined analyses of rare gases and carbon and nitrogen isotopes were performed on six such diamonds from Orapa (Botswana). Helium shows radiogenic isotopic ratios of R/Ra = 0.14–1.29, while the neon ratios (21Ne/22Ne of up to 0.0534) reflect a component from mantle, nucleogenic and atmospheric sources. 40Ar/36Ar ratios of between 477 and 6056 are consistent with this interpretation. The (129Xe/130Xe) isotopic ratios range between 6.54 and 6.91 and the lower values indicate an atmospheric component. The He, Ne, Ar and Xe isotopic compositions and the Xe isotopic pattern are clear evidence for a mantle component rather than a crustal one in the source of the polycrystalline diamonds from Orapa. The δ13C and δ15N isotopic values of − 1.04 to − 9.79‰ and + 4.5 to + 15.5‰ respectively, lie within the range of values obtained from the monocrystalline diamonds at that mine. Additionally, this work reveals that polycrystalline diamonds may not be the most appropriate samples to study if the aim is to consider the compositional evolution of rare gases through time. Our data shows that after crystallization, the polycrystalline diamonds undergo both gas loss (that is more significant for the lighter rare gases such as He and Ne) and secondary processes (such as radiogenic, nucleogenic and fissiogenic, as well as atmospheric contamination). Finally, if polycrystalline diamonds sampled an old mantle (1–3.2 Ga), the determined Xe isotopic signatures, which are similar to present MORB mantle – no fissiogenic Xe from fission of 238U being detectable – imply either that Xe isotopic ratios have not evolved within the convective mantle since diamond crystallization, or that these diamonds are actually much younger.  相似文献   

17.
We distinguish three eruptive units of pyroclastic flows (T1, T2, and T3; T for trass) within the late Quaternary Laacher See tephra sequence. These units differ in the chemical/mineralogical composition of the essential pyroclasts ranging from highly differentiated phonolite in T1 to mafic phonolite in T3. T1 and T2 flows were generated during Plinian phases, and T3 flows during a late Vulcanian phase. The volume of the pyroclastic flow deposits is about 0.6 km3. The lateral extent of the flows from the source vent decreases from > 10 km (T1) to < 4.5 km (T3). In the narrow valleys north of Laacher See, the total thickness of the deposits exceeds 60 m.At least 19 flow units in T1, 6 in T2, and 4 in T3 can be recognized at individual localities. Depositional cycles of 2 to 5 flow units are distinguished in the eruptive units. Thickness and internal structure of the flow units are strongly controlled by topography. Subfacies within flow units such as strongly enriched pumice and lithic concentration zones, dust layers, lapilli pipes, ground layers, and lithic breccias are all compositionally related to each other by enrichment or depletion of clasts depending on their size and density in a fluidized flow. While critical diameters of coarse-tail grading were found to mark the boundary between the coarse nonfluidized and the finer fluidized grain-size subpopulations, we document the second boundary between the fluidized and the very fine entrained subpopulations by histograms and Rosin-Rammler graphs. Grain-size distribution and composition of the fluidized middle-size subpopulations remained largely unchanged during transport.Rheological properties of the pyroclastic flows are deduced from the variations in flow-unit structure within the valleys. T1 flows are thought to have decelerated from 25 m/s at 4 km to < 15 m/s at 7 km from the vent; flow density was probably 600–900 kg/m3, and viscosity 5–50 P. The estimated yield strength of the flows of 200– > 1000 N/m2 is consistent with the divergence of lithic size/distance curves from purely Newtonian models; the transport of lithics must be treated as in a Bingham fluid. The flow temperature probably decreased from T1 (300°–500°C) to T3 (<200°C).A large-scale longitudinal variation in the flow units from proximal through medial to distal facies dominantly reflects temporal changes during the progressive collapse of an eruption column. Only a small amount of fallout tephra was generated in the T1 phase of eruption. The pyroclastic flows probably formed from relatively low ash fountains rather than from high Plinian eruption columns.  相似文献   

18.
Large, rapid rockslope failures generate deposits with complex morphologies due to a number of causal and influencing factors. To investigate these, we conducted a detailed case study at the carbonate Tschirgant deposit (Tyrol, Austria). It preserved evidence of simultaneous rock sliding (very large, coherent hummocks) and rock avalanche spreading (smaller, more scattered hummocks and ridges). Motion indicators, such as longitudinal ridges furthermore pinpoint the transition between linear sliding and radial spreading. The lithological distribution in the Tschirgant deposit shows that it retained source stratigraphy despite being split into two accumulation lobes by a high bedrock ridge. Furthermore, lithology had a very strong control on the final deposit morphology in that the different lithologic units form individual deposit surfaces. River erosion has created fortuitous outcrops that reveal the basal rock avalanche contact. The underlying valley‐fill sediments (substrates) have been intricately involved in shaping the rock avalanche morphology and, where entrained, highlight internal rock avalanche deformation features. This study shows that intrinsic dynamic properties of granular media (e.g. tendency for longitudinal alignments), emplacement mode, lithology (and source predisposition), runout path topography, and substrates form the quintet of causal factors that shape rock avalanche morphology. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
The study describes a methodology used to integrate legacy resistivity data with limited geological data in order to build three-dimensional models of the near subsurface. Variogram analysis and inversion techniques more typically found in the petroleum industry are applied to a set of 1D resistivity data taken from electrical surveys conducted in the 1980s. Through careful integration with limited geological data collected from boreholes and outcrops, the resultant model can be visualized in three dimensions to depict alluvium layers as lithological and structural units within the bedrock. By tuning the variogram parameters to account for directionality, it is possible to visualize the individual lithofacies and geomorphological features in the subsurface. In this study, an electrical resistivity data set collected as part of a groundwater study in an area of the Peshawar basin in Pakistan has been re-examined. Additional lithological logs from boreholes throughout the area have been combined with local outcrop information to calibrate the data. Tectonic activity during the Himalayan orogeny has caused uplift in the area and generated significant faulting in the bedrock resulting in the formation of depressions which are identified by low resistivity values representing clays. Paleo-streams have reworked these clays which have been eroded and replaced by gravel–sand facies along paleo-channels. It is concluded that the sediments have been deposited as prograding fan-shaped bodies and lacustrine deposits with interlayered gravel–sand and clay–silt facies. The Naranji area aquifer system has thus been formed as a result of local tectonic activity with fluvial erosion and deposition and is characterized by coarse sediments with high electrical resistivities.  相似文献   

20.
Multiple‐layered tsunami deposits have been frequently reported from coastal stratigraphic sequences, but the formation processes of these layers remain uncertain. A terrestrial sandy deposit formed by the 2004 Indian Ocean Tsunami was investigated at Ban Nam Kem, southern Thailand. Four internal layers induced by two tsunami waves were identified in the tsunami deposit. Sedimentary structures indicated that two units were formed by run‐up currents caused by the tsunami and the other two units were deposited by the backwash flows. Graded bedding was common in the layers, but inverse grading was observed at limited intervals on the surveyed transects. The characteristics of the multiple‐layered tsunami deposit vary remarkably over a very short distance (<1 m) in response to the local topography. Remarkable asymmetries in thickness and grain‐size distribution are recognized between the run‐up and backwash flow deposits. On the basis of the interpretation of sedimentary structures, the formation process of the multiple‐layered tsunami deposit observed in this study can be explained in a schematic model as the modification of the ideal tsunami sequence by local erosion and the asymmetric hydraulic properties of tsunami waves, such as the maximum shear velocity and the heterogeneity of the flow velocity field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号