首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider the Alfvén-Arrhenius fall-down mechanism and describe an approximate model for the infall, capture and distribution of dust particles on a given magnetic field line and their possible neutralization at the ‘2’/3 points, the points at which the field aligned compnents of the gravitational and centrifugal forces are equal and opposite. We find that a small fraction (<10%) of an incoming particle distribution will actually contribute to the above ‘2’/3 fall-down process. We also show that if at the 2/3 points, the ratio of dust to plasma density is $$\frac{{n_D \left( {\tfrac{2}{3}} \right)}}{{n_p \left( {\tfrac{2}{3}} \right)}} > \frac{{10^{ - 3} }}{{r_{g_\mu } T_{eV} }}$$ . (r gμ=radius of a grain in microns,T=plasma temperature in eV), then the dust particles will lose their charge, decouple from the field line and follow Keplerian orbits in accordance with the Alfvén-Arrhenius mechanism. We then determine the limits on the plasma parameters in order that rotation of a quasi-neutral plasma in thermal equilibrium be possible in the gravitational and dipole field of a rotating central body. The constraints imposed by the above conditions are rather weak, and the plasma parameters can have a wide range of values. For a plasma corotating with an angular velocity Ω~10?4s?1, we show that the plasma temperature and density must satisfy $$10^{ - 1}<< T_{(eV)}<< 10^2 ,10T_{eV}^2<< n^p \left( {cm^3 } \right)<< 10^6 $$ .  相似文献   

2.
The spheroidal harmonics expressions $$\left[ {P_{2k}^{2s} \left( {i\xi } \right)P_{2k - 2r}^{2s} \left( \eta \right) - P_{2k - 2r}^{2s} \left( {i\xi } \right)P_{2k}^{2s} \left( \eta \right)} \right]e^{i2s\theta } $$ and $$\left[ {\eta ^2 P_{2k}^{2s} \left( {i\xi } \right)P_{2k - 2r}^{2s} \left( \eta \right) + \xi ^2 P_{2k - 2r}^{2s} \left( {i\xi } \right)P_{2k}^{2s} \left( \eta \right)} \right]e^{i2s\theta } $$ , have ξ22 as a factor. A method is presented for obtaining for these two expressions the coefficient of ξ22 in the form of a linear combination of terms of the formP 2m 2s (iξ)P 2n 2s (η)e i2sθ. Explicit formulae are exhibited for the casesr=1, 2, 3 and any positive or zero integersk ands. Such identities are useful in gravitational potential theory for ellipsoidal distributions when matching Legendre function expansions are employed.  相似文献   

3.
A two degree-of-freedom, conservative system is reduced to a single degree-of-freedom, kinematic system with Hamiltonian integral under the change of independent variable: $$dt = \zeta dt (\zeta = \upsilon _x - \upsilon _y )$$ where ζ is the curl (or vorticity) of the velocity field with cartesian inertial componentsu(x, y, t) andv(x, y, t). In the autonomous case whenu t=v t=0, orbits are globally represented by the level curves of an autonomous Hamiltonian functionH(x,y) satisfying a second-order quasilinear partial differential equation (Szebehely's Equation): $$2(H + U)\left( {H_{xx} H_y^2 - 2H_{xy} H_x H_y + H_{yy} H_x^2 } \right) + (H_x U_x + H_y U_y )\left( {H_x^2 + H_y^2 } \right) = 0$$ whereU(x, y) is the autonomous potential function. An inversion of dependent and independent variables reduces this equation to a second-order, ordinary differential equation for a function specifying the orbital curve. The true time variable is recovered by evaluating a quadrature. Fundamental differences exist between this approach and Hamilton-Jacobi theory.  相似文献   

4.
Book reviews     
A phenomenological model of double galaxy dynamics is constructed, assuming a Bohr model for isolated point galaxies bound together in circular orbits by the Newtonian gravitational force. The model is tested by using experimental data from three, independent, random samples of isolated pairs. In each case, the data provides cautious support for the existance of gravitational Bohr orbits in double galaxies, with a mean cosmic Planck's constant/2π given by: $$\langle \hbar _g \rangle \approx 5 \times 10^{74} {\text{erg s }}{\text{.}}$$   相似文献   

5.
For an autonomous, conservative, two degree-of-freedom dynamical system, vorticity (the curl of velocity) is constant along the orbit if the velocity field is divergence-free such that: $$u\left( {x, v} \right) - \psi _y , v\left( {x, y} \right) = - \psi _x .$$ Isovortical orbits in configuration space are level curves of a scalar autonomous function Ψ (x, v) satisfying a second-order, non-linear partial differential equation of the Monge-Ampere type: $$2\left( {\psi _{xx} \psi _{yy} - \psi _{xy}^2 } \right) + U_{xx} + U_{yy} = 0,$$ where U(x. y) is the autonomous potential function. The solution Soc the time variable is reduced to a quadrature following determinatio of Ψ. Self-similar solutions of the Monge-Ampere equation under Birkhoff's one-parameter transformation group are derived for homogeneous (power-law) potential functions. It is shown that Keplerian orbits belong to the class of planar isovortical flows.  相似文献   

6.
RecentR-matrix calculations of electron impact excitation rates in Ov are used to derive the emission line intensity ratios (in energy units) $$\begin{gathered} R_1 = I(2s2p^{ 3} P - 2p^{2 3} P)/I(2s^{2 1} S_0 - 2s2p^{ 1} P_1 ) = I(761.1\mathop A\limits^ \circ )/I(629.7\mathop A\limits^ \circ ), \hfill \\ R_2 = I(2s^{2 1} S_0 - 2s2p^{ 3} P_1 )/I(2s^{2 1} S_0 - 2s2p^{ 1} P_1 ) = I(1218.4\mathop A\limits^ \circ )/I(629.7\mathop A\limits^ \circ ), \hfill \\ \end{gathered} $$ and $$R_3 = I(2s2p^{ 1} P_1 - 2p^{2 1} S_0 )/I(2s^{2 1} S_0 - 2s2p^{ 1} P_1 ) = I(774.5\mathop A\limits^ \circ )/I(629.7\mathop A\limits^ \circ )$$ as a function of electron temperature (T e) and density (N e). These results are presented as plots ofR 1 vsR 2, andR 1 vsR 3, which should allowboth N e andT e to be deduced for the Ov line emitting region of a plasma. Electron densities derived from the (R 1,R 2) and (R 1,R 3) diagrams in conjunction with observational data for several solar features obtained with the Harvard S-055 spectrometer on boardSkylab are found to be compatible, and in good agreement with values ofN e estimated from line ratios in species formed at similar electron temperatures to Ov. In addition, values ofT e determined from (R 1,R 2) and (R 1,R 3) are generally close to that expected theoretically. These results provide experimental support for the accuracy of the diagnostic calculations presented in this paper, and hence the atomic data used in their derivation.  相似文献   

7.
If a dynamical problem ofN degress of freedom is reduced to the Ideal Resonance Problem, the Hamiltonian takes the form 1 $$\begin{array}{*{20}c} {F = B(y) + 2\mu ^2 A(y)\sin ^2 x_1 ,} & {\mu \ll 1.} \\ \end{array} $$ Herey is the momentum-vectory k withk=1,2?N, x 1 is thecritical argument, andx k fork>1 are theignorable co-ordinates, which have been eliminated from the Hamiltonian. The purpose of this Note is to summarize the first-order solution of the problem defined by (1) as described in a sequence of five recent papers by the author. A basic is the resonance parameter α, defined by 1 $$\alpha \equiv - B'/\left| {4AB''} \right|^{1/2} \mu .$$ The solution isglobal in the sense that it is valid for all values of α2 in the range 1 $$0 \leqslant \alpha ^2 \leqslant \infty ,$$ which embrances thelibration and thecirculation regimes of the co-ordinatex 1, associated with α2 < 1 and α2 > 1, respectively. The solution includes asymptotically the limit α2 → ∞, which corresponds to theclassical solution of the problem, expanded in powers of ε ≡ μ2, and carrying α as a divisor. The classical singularity at α=0, corresponding to an exact commensurability of two frequencies of the motion, has been removed from the global solution by means of the Bohlin expansion in powers of μ = ε1/2. The singularities that commonly arise within the libration region α2 < 1 and on the separatrix α2 = 1 of the phase-plane have been suppressed by means of aregularizing function 1 $$\begin{array}{*{20}c} {\phi \equiv \tfrac{1}{2}(1 + \operatorname{sgn} z)\exp ( - z^{ - 3} ),} & {z \equiv \alpha ^2 } \\ \end{array} - 1,$$ introduced into the new Hamiltonian. The global solution is subject to thenormality condition, which boundsAB″ away from zero indeep resonance, α2 < 1/μ, where the classical solution fails, and which boundsB′ away from zero inshallow resonance, α2 > 1/μ, where the classical solution is valid. Thedemarcation point 1 $$\alpha _ * ^2 \equiv {1 \mathord{\left/ {\vphantom {1 \mu }} \right. \kern-\nulldelimiterspace} \mu }$$ conventionally separates the deep and the shallow resonance regions. The solution appears in parametric form 1 $$\begin{array}{*{20}c} {x_\kappa = x_\kappa (u)} \\ {y_1 = y_1 (u)} \\ {\begin{array}{*{20}c} {y_\kappa = conts,} & {k > 1,} \\ \end{array} } \\ {u = u(t).} \\ \end{array} $$ It involves the standard elliptic integralsu andE((u) of the first and the second kinds, respectively, the Jacobian elliptic functionssn, cn, dn, am, and the Zeta functionZ (u).  相似文献   

8.
Stars are gravitationally stabilized fusion reactors changing their chemical composition while transforming light atomic nuclei into heavy ones. The atomic nuclei are supposed to be in thermal equilibrium with the ambient plasma. The majority of reactions among nuclei leading to a nuclear transformation are inhibited by the necessity for the charged participants to tunnel through their mutual Coulomb barrier. As theoretical knowledge and experimental verification of nuclear cross sections increases it becomes possible to refine analytic representations for nuclear reaction rates. Over the years various approaches have been made to derive closed-form representations of thermonuclear reaction rates (Critchfield, 1972; Haubold and John, 1978; Haubold, Mathai and Anderson, 1987). They show that the reaction rate contains the astrophysical cross section factor and its derivatives which has to be determined experimentally, and an integral part of the thermonuclear reaction rate independent from experimental results which can be treated by closed-form representation techniques in terms of generalized hypergeometric functions. In this paper mathematical/statistical techniques for deriving closed-form representations of thermonuclear functions, particularly the four integrals $$\begin{gathered} I_1 (z,v)\mathop = \limits^{def} \int\limits_0^\infty {y^v e^{ - y} e^{ - zy^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } dy,} \hfill \\ I_2 (z,d,v)\mathop = \limits^{def} \int\limits_0^\infty {y^v e^{ - y} e^{ - zy^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } dy,} \hfill \\ I_3 (z,t,v)\mathop = \limits^{def} \int\limits_0^\infty {y^v e^{ - y} e^{ - z(y + 1)^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } dy,} \hfill \\ I_4 (z,\delta ,b,v)\mathop = \limits^{def} \int\limits_0^\infty {y^v e^{ - y} e^{ - by^\delta } e^{ - zy^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } dy,} \hfill \\ \end{gathered} $$ will be summarized and numerical results for them will be given. The separation of thermonuclear functions from thermonuclear reaction rates is our preferred result. The purpose of the paper is also to compare numerical results for approximate and closed-form representations of thermonuclear functions. This paper completes the work of Haubold, Mathai, and Anderson (1987).  相似文献   

9.
The new analysis of radar observations of inner planets for the time span 1964–1989 is described. The residuals show that Mercury topography is an important source of systematic errors which have not been taken into account up to now. The longitudinal and latitudinal variations of heights of Mercury surface were found and an approximate map of equatorial zone |?|≤120° was constructed. Including three values characterizing global nonsphericity of Mercury surface into the set of parameters under determination allowed to improve essentially all estimates. In particular, the variability of the gravitational constantG was evaluated: $$\dot G/G = (0.47 \pm 0.47) \times 10^{ - 11} yr^{ - 1} $$ . The correction to Mercury perihelion motion: $$\Delta \dot \pi = - 0''.017 \pm 0''.052 cy^{ - 1} $$ and linear combination of the parameters of PPN formalism: $$\upsilon = (2 + 2\gamma - \beta )/3 = 0.9995 \pm 0.0013$$ were determined; they are in a good agreement with General Relativity predictions. The obtained values Δ.π and ν correspond to the negligible solar oblateness, the estimate of solar quadrupole moment being: $$J_2 = ( - 0.13 \pm 0.41) \times 10^{ - 6} $$ .  相似文献   

10.
The locations and stability features of the main symmetrical periodic orbits in the potential $$V = \tfrac{1}{2}\left( {Ax^2 + By^2 + Cz^2 } \right) - \varepsilon xz^2 - \eta yz^2 with \sqrt {A:} \sqrt {B:} \sqrt C = 6:4:3$$ are calculated. Two resonant 1-periodic orbits reveal themselves to be the most important of the system. The third dimension and the additional coupling term have a large effect upon the emergence and stability of p.o. prolongated from the bi-dimensional cases 4∶3 and 2∶1. The existence of three main instability types leads to behaviours much more complicated than in systems with two degrees of freedom. Particularly the presence of complex instability, a new feature with respect to bi-dimensional problems, may produce large instability regions in the set of initial conditions. Some asymptotic curves emanating from unstable orbits are calculated in the four-dimensional space of section. The aspect of such curves is considerably modified when a perturbation is added in the third dimension. The neighbourhood of orbits suffering from complex instability is studied in the space of section and by means of the maximum Lyapunov Characteristic Number technique. It is shown that the motion can deviate far from the vicinity of the p.o. representative point as soon as the orbit is of complex instability. When the perturbation is large enough, the stochasticity produced by this type of instability can be very important.  相似文献   

11.
The Ideal Resonance Problem, defined by the Hamiltonian $$F = B(y) + 2\mu ^2 A(y)\sin ^2 x,\mu \ll 1,$$ has been solved in Garfinkelet al. (1971). As a perturbed simple pendulum, this solution furnishes a convenient and accurate reference orbit for the study of resonance. In order to preserve the penduloid character of the motion, the solution is subject to thenormality condition, which boundsAB" andB' away from zero indeep and inshallow resonance, respectively. For a first-order solution, the paper derives the normality condition in the form $$pi \leqslant max(|\alpha /\alpha _1 |,|\alpha /\alpha _1 |^{2i} ),i = 1,2.$$ Herep i are known functions of the constant ‘mean element’y', α is the resonance parameter defined by $$\alpha \equiv - {\rm B}'/|4AB\prime \prime |^{1/2} \mu ,$$ and $$\alpha _1 \equiv \mu ^{ - 1/2}$$ defines the conventionaldemarcation point separating the deep and the shallow resonance regions. The results are applied to the problem of the critical inclination of a satellite of an oblate planet. There the normality condition takes the form $$\Lambda _1 (\lambda ) \leqslant e \leqslant \Lambda _2 (\lambda )if|i - tan^{ - 1} 2| \leqslant \lambda e/2(1 + e)$$ withΛ 1, andΛ 2 known functions of λ, defined by $$\begin{gathered} \lambda \equiv |\tfrac{1}{5}(J_2 + J_4 /J_2 )|^{1/4} /q, \hfill \\ q \equiv a(1 - e). \hfill \\ \end{gathered}$$   相似文献   

12.
Exact solutions of Einstein field equations are obtained in the scalar-tensor theories developed by Saez and Ballester (1985) and Lau and Prokhovnik (1986) when the line-element has the form $$ds^2 = \exp \left( {2h} \right)dt^2 - \exp \left( {2A} \right)\left( {dx^2 + dy^2 } \right) - \exp \left( {2B} \right)dz^2 $$ whereh, A andB are functions oft only. The solutions are spatially homogeneous, locally rotationally symmetric and admit a Bianchi I group of motions on hypersurfacest = constant. The dynamical behaviours of these models have also been discussed.  相似文献   

13.
Some useful results and remodelled representations ofH-functions corresponding to the dispersion function $$T\left( z \right) = 1 - 2z^2 \sum\limits_1^n {\int_0^{\lambda r} {Y_r } \left( x \right){\text{d}}x/\left( {z^2 - x^2 } \right)} $$ are derived, suitable to the case of a multiplying medium characterized by $$\gamma _0 = \sum\limits_1^n {\int_0^{\lambda r} {Y_r } \left( x \right){\text{d}}x > \tfrac{1}{2} \Rightarrow \xi = 1 - 2\gamma _0< 0} $$   相似文献   

14.
The fact that the energy density ρg of a static spherically symmetric gravitational field acts as a source of gravity, gives us a harmonic function \(f\left( \varphi \right) = e^{\varphi /c^2 } \) , which is determined by the nonlinear differential equation $$\nabla ^2 \varphi = 4\pi k\rho _g = - \frac{1}{{c^2 }}\left( {\nabla \varphi } \right)^2 $$ Furthermore, we formulate the infinitesimal time-interval between a couple of events measured by two different inertial observers, one in a position with potential φ-i.e., dt φ and the other in a position with potential φ=0-i.e., dt 0, as $${\text{d}}t_\varphi = f{\text{d}}t_0 .$$ When the principle of equivalence is satisfied, we obtain the well-known effect of time dilatation.  相似文献   

15.
A plane-wave analysis on a simplified scheme based on the Boussinesq approximation and shallow convection is used to establish the necessary conditions for stability of a differentiallyrotating, compressible flow between two coaxial cylinders subject to non-axisymmetric perturbations. To test the adequateness of this simplification, the sufficient conditions for stability are again established which agree with those obtained by a normal-mode analysis on an exact scheme in an earlier paper by the author. This model is applicable to stellar models with rotation Ω=Ω(ω), where ω is the radial distance from the axis of rotation (thez-axis). A necessary condition for stability, in the non-dissipative case, is found to be that $$\frac{1}{\varrho }G_\varpi S_\varpi + \frac{{k_z^2 }}{M}\Phi - \frac{1}{4}\frac{{m^2 }}{M}\left( {D\Omega } \right)^2 \geqslant 0$$ everywhere. Here,m andk z are the wave numbers in the ø- andz-direction, \(M \equiv k_z^2 + m^2 /\varpi ^2 ,D \equiv d/d\varpi ,G_\varpi \equiv - \varrho ^{ - 1} Dp,\varrho \) the density,p the pressure,S ω and Φ the Schwarzschild and the Rayleigh discriminants defined as \(S_\varpi \equiv \left( {\gamma p/\varrho } \right)^{ - 2} Dp - D\varrho and \Phi \equiv ^{ - 3} d\left( {\varpi ^4 \Omega ^2 } \right)/d\varpi \) respectively, γ the ratio of specific heats. This condition is also a sufficient one. Some conjectures regarding the stabilizing influence of uniform rotation and the destabilizing influence of differential rotation are also verified. The most striking instability mechanism introduced by shear forces and by radiative dissipation is the excitation of the stable motion of small oscillations into that of oscillations with growing amplitude, i. e., overstability. In the case of radiative dissipation and axisymmetric perturbations, the Goldreich-Schubert criterion is only necessary but not sufficient for stability. Instability sets in as soon as the Schwarzschild criterion is violated. When the perturbations are non-axisymmetric, instability always sets in as overstability as long as rotation is differential. This may explain the convective turbulence in the upper atmosphere where the radiation is active.  相似文献   

16.
The discovery of ‘twin quasistellar objects’ arose interests among astronomers and astrophysicists to study gravitational lensing problems. The deviation of light from its straight line path is caused by two sources according to the general theory of relativity: (i) the presence of massive objects, i.e. the presence of gravitational field and (ii) the presence of a ‘vacuum field’ which arises because there is a non-zero cosmological vacuum energy. Recently, the research on the relationship between cosmological constant and gravitational lensing process is rather active (see reference [1, 2, 3]. According to the Kottler space time metric, we have deduced an explicit representation of the angular deviation of light path. The deviation term is found to be simply , where M is the mass of the ‘astronomical lens’, rmin is the distance between the point of nearest approach and the centre of M, other symbols have their usual meaning. The presence of this term may be meaningful to the study of cosmological constant using the concept of gravitational lensing; however more sophisticated analysis awaits. Consider a signal radar to be sent from one planet to another. We have found that the radar echo delay contributed by the existence of the cosmological constant Λ is expressible as This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
New theoretical electron-density-sensitive Fe xii emission line ratios $$R_1 = I(3s^2 3p^3 {}^4S_{3/2} - 3s3p^4 {}^4P_{5/2} )/I(3s^2 3p^3 {}^2P_{3/2} - 3s3p^4 D_{5/2} )$$ and $$R_2 = I(3s^2 3p^3 {}^2P_{3/2} - 3s3p^4 {}^2D_{5/2} )/I(3s^2 3p^3 {}^4S_{3/2} - 3s3p^2 P_{3/2} )$$ are derived using R-matrix electron impact excitation rate calculations. We have identified the Fexii \(3s^2 3p^3 {}^4S_{3/2} - 3s3p^4 {}^4P_{5/2} ,{\text{ }}3s^2 3p^3 {}^2P_{3/2} - 3s^3 3p^4 {}^2D_{5/2} ,{\text{ }}3s^2 3p^3 S_{3/2} - 3s^2 3p^3 P_{3/2} \) and \(3s^2 3p^3 {}^4S_{3/2} - 3s^2 3p^3 {}^2P_{1/2}\) transitions in an active region spectrum obtained with the Harvard S-055 spectrometer on board Skylab at wavelengths of 364.0, 382.8, 1241.7, and 1349.4 Å, respectively. Electron densities determined from the observed values of R 1 (log N e ? 11.0) and R 2(log N e ? 11.4) are significantly larger than the typical active region measurements, but are similar to those derived from some active region spectra observed with the Skylab 2082A instrument, which provides observational support for the atomic data adopted in the line ratio calculations, and also for the identification of the Fe xii transitions in the S-055 spectrum. However the observed value of R 3 = I(1349.4 Å)/I(1241.7 Å) is approximately a factor of two larger than one would expect from theory which, considering that the 1349.4 Å line lies at the edge of the S-055 wavelength coverage, may reflect errors in the instrument efficiency curve. Another possibility is that the 1349.4 Å transition is blended, probably with Si ii 1350.1 Å.  相似文献   

18.
19.
A spherically-symmetric static scalar field in general relativity is considered. The field equations are defined by $$\begin{gathered} R_{ik} = - \mu \varphi _i \varphi _k ,\varphi _i = \frac{{\partial \varphi }}{{\partial x^i }}, \varphi ^i = g^{ik} \varphi _k , \hfill \\ \hfill \\ \end{gathered} $$ where ?=?(r,t) is a scalar field. In the past, the same problem was considered by Bergmann and Leipnik (1957) and Buchdahl (1959) with the assumption that ?=?(r) be independent oft and recently by Wyman (1981) with the assumption ?=?(r, t). The object of this paper is to give explicit results with a different approach and under a more general condition $$\phi _{;i}^i = ( - g)^{ - 1/2} \frac{\partial }{{\partial x^i }}\left[ {( - g)^{1/2} g^{ik} \frac{\partial }{{\partial x^k }}} \right] = - 4\pi ( -g )^{ - 1/2} \rho $$ where ?=?(r, t) is the mass or the charge density of the sources of the field.  相似文献   

20.
In 1982 and 1993, we carried out highly accurate photoelectric WBVR measurements for the close binary IT Cas. Based on these measurements and on the observations of other authors, we determined the apsidal motion $\left[ {\dot \omega _{obs} = {{(11\mathop .\limits^ \circ 0 \pm 2\mathop .\limits^ \circ 5)} \mathord{\left/ {\vphantom {{(11\mathop .\limits^ \circ 0 \pm 2\mathop .\limits^ \circ 5)} {100 years}}} \right. \kern-0em} {100 years}}} \right]$ . This value is in agreement with the theoretically calculated apsidal motion for these stars $\left[ {\dot \omega _{th} = {{(14^\circ \pm 3^\circ )} \mathord{\left/ {\vphantom {{(14^\circ \pm 3^\circ )} {100 years}}} \right. \kern-0em} {100 years}}} \right]$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号