首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
We present our observations of the pair of interacting galaxies NGC 6285/86 carried out with the 6-m Special Astrophysical Observatory (SAO) telescope using 1D and 2D spectroscopy. The observations of NGC 6286 with a long-slit spectrograph (UAGS) near the Hα line revealed the rotation of the gaseous disk around an axis offset by 5″–7″ from the photometric center and a luminous gas at a distance up to 9 kpc in a direction perpendicular to the galactic plane. Using a multipupil fiber spectrograph (MPFS), we constructed the velocity fields of the stellar and gaseous components in the central region of this galaxy, which proved to be similar. The close radial velocities of the pair and the wide (5′×5′) field of view of the scanning Fabry-Perot interferometer (IFP) allowed us to simultaneously obtain images in the Hα and [N II]λ6583 lines and in the continuum, as well as to construct the radial velocity fields and to map the distribution of the [N II]λ6583/Hα ratio for both galaxies. Based on all these data, we studied the gas kinematics in the galaxies, constructed their rotation curves, and estimated their masses (2 × 1011M for NGC 6286 and 1.2 × 1010M for NGC 6285). We found no evidence of gas rotation around the major axis of NGC 6286, which argues against the assumption that this galaxy has a forming polar ring. The IFP observations revealed an emission nebula around this galaxy with a structure characteristic of superwind galaxies. The large [N II]λ6583/Hα ratio, which suggests the collisional excitation of its emission, and the high infrared luminosity are additional arguments for the hypothesis of a superwind in the galaxy NGC 6286. A close encounter between the two galaxies was probably responsible for the starburst and the bipolar outflow of hot gas from the central region of the disk.  相似文献   

2.
We present VLA A-array 21-cm atomic hydrogen (H  i ) absorption observed against the central region of the starburst galaxy M82 with an angular resolution of ∼1.3 arcsec (≃20 pc). These observations, together with MERLIN H  i absorption measurements, are compared with the molecular (CO) and ionized ([Ne  ii ]) gas distributions and are used to constrain the dynamics and structure of the ionized, neutral and molecular gas in this starburst.
A position–velocity diagram of the H  i distribution reveals an unusual 'hole' feature which, when previously observed in CO, has been interpreted as an expanding superbubble contained within a ring of gas in solid body rotation. However, we interpret this feature as a signature of a nearly edge-on barred galaxy. In addition, we note that the CO, H  i and [Ne  ii ] position–velocity diagrams reveal two main velocity gradients, and we interpret these as gas moving on x1- and x2-orbits within a bar potential. We find the best fit to the data to be produced using a bar potential with a flat rotation curve velocity v b=140 km s−1 and a total length of 1 kpc, a non-axisymmetry parameter q =0.9, an angular velocity of the bar Ωb=217 km s−1 arcsec−1, a core radius R c=25 pc, an inclination angle i =80° and a projected angle between the bar and the major axis of the galaxy φ '=4°. We also discuss the orientation of the disc and bar in M82.  相似文献   

3.
On a plate obtained with the 2-m RC telescope at the Bulgarian National Observatory about 1400 stars in the spiral arm S4 of the Andromeda galaxy were measured. The limit of completeness is 20 . m 2 (B magnitudes). In the central part of S4 (Figure 3) a pronounced gradient of star luminosity and density is found (Figures 6 and 7a). Here the stars become fainter at about 2 m and their surface density decreases tenfold at the distance 1 kpc from the inner edge of the arm. We have interpreted the decline of star maximum brightness from this edge as age gradient and have evaluated from it the velocity of star formation propagation across the arm, which is about 60 km s–1. If the Andromeda galaxy has trailing spiral arms and the pitch angle of S4 is about 25° in its central part, the pattern velocity p7–14 km s–1 kpc–1. This value is close to that obtained earlier with the help of the Cepheids in the same part of S4 (Efremov, 1980). The absence of a pronounced asymmetry in the star distribution across the arm in the OB82 region may be connected with the position of the strongest dust lanes in front of the stellar spiral arm here. We have stressed that in one part of the same spiral arm there may be a pronounced age gradient, and there may be no such gradient in the near-by one. In spite of the known difficulties in understanding the structure of the Andromeda galaxy it is possible to draw some conclusions which are important for the theory of spiral arms. The detailed investigations of the nearest galaxies are, therefore, most useful for understanding the spiral structure nature.  相似文献   

4.
The problem of the change in gravitational energy of a colliding galaxy due to tidal effects is considered. The change in the internal energy, the mass of escaping matter and the change in the mean radius of the test galaxy have been estimated for a relative velocity of 1000 km s–1 for three distances of closest approach for the following four cases: (a) both galaxies centrally concentrated, (b) both galaxies homogeneous, (c) test galaxy centrally concentrated, field galaxy homogeneous, and (d) test galaxy homogeneous, field galaxy centrally concentrated. The masses and radii of the two galaxies are taken as 1011 M and 10 kpc respectively. For simplicity, the galaxies are assumed to be spherically symmetric and the distribution of mass within a centrally concentrated galaxy is assumed to be that of a polytrope of indexn=4. The results also provide estimates for the minimum relative velocity a galaxy must have in order that it may not be captured by another to form a double system. It has been found that normally a relative velocity of less than about 500 km s–1 will lead to the formation of a double galaxy by tidal capture. In the case of a head-on collision between two centrally concentrated galaxies even a relative velocity of about 1000 km s–1 is small enough for tidal capture. The changes in the structure of the galaxies for relative velocities equal to velocity of escape are also indicated. These results show that there is no escape of matter from the test galaxy in cases (b) and (c). In the case (a) the escape of matter can be as high as 4% of the total mass. The head-on collision between galaxies are normally not accompanied by any escape of matter. All the gain in the internal energy of galaxies during such collisions results in increase in their dimensions. The fractional increase in the mean radius of the test galaxy in the head-on collision is 1.5 in the case (a), 3.2 in the case (b) and 0.01 in the case (c). In the case (d) the test galaxy will be disrupted by the tidal forces.  相似文献   

5.
Self-consistent simulations of seven groups of galaxies with halos have been performed to find a constraint upon the size of missing halos around spiral galaxies. An initial galaxy, which consists of 100 superstars, has half-mass radius 41 kpc and central velocity dispersion 235 km s–1. The simulations start from the epoch of maximum expansion. The initial conditions involve a variety of spatial distributions of galaxies, and the velocity dispersion of galaxies as would be permitted for maximum expansion. Dense groups having collapse times shorter than (2/3)H 0 –1 are shown to form multiple mergers in a Hubble timeH 0 –1 . From a comparison of the frequencies of cD galaxies, or multiple mergers, in observed and simulated groups, it is concluded that the effective radius of missing halos is less than 41 kpc.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.  相似文献   

6.
We report the detection of a bisymmetric nuclear spiral structure in the spiral galaxy NGC 5248.The two red spiral arms can be followed for about 3 arcsec, before they appear to end inside the radius of the circumnuclear starburst `ring' at about 5.5 arcsec or 400 pc distance from the nucleus. We combine our near-infrared Canada–France–Hawaii Telescope adaptive optics images with traditional near-infrared and optical images and show that spiral structure is present in this galaxy at spatial scales reaching from a hundred parsecs to 15 kpc. Comparison with a Hubble Space Telescope ultraviolet image shows how the starburst ring is related to the nuclear spiral structure. We also show a two-dimensional Hα velocity field that reveals no evidence for systematic streaming motions near the nuclear spiral or the starburst ring, nor for a rapidly rising rotation curve. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
An ultraviolet-excess galaxy Markarian 313 (NGC 7465), which consists of a multiple system with NGC 7463 and NGC 7464, is studied using the low- and high-resolution optical spectrum. Emission lines of H, H, [NII], and [OIII] have conspicuous blueward asymmetrical wings or blue slanted profiles in the spectrum of the nuclear region of the galaxy. The width of these emission lines is as broad as 600 km s–1 at the zero-intensity level, and the velocity difference between the narrow and broad components is estimated at around 80 km s–1 from the two-component Gaussian profile fitting. This fact could be an evidence of a large-scale dynamical motion in or surrounding the nuclear region of the galaxy, implying that it bears an intermediate characteristic between a Seyfert and a starburst galaxy.  相似文献   

8.
The sidereal rotation rate of the high-latitude solar regions is examined using long-lived photospheric polar faculae. The observations were carried out with the photoheliograph of Kislovodsk Mountain Station of the Pulkovo Observatory from 1982 to 1986. The following facts have been established: (a) There is a differential rotation of the polar faculae close to the maximum of solar activity, while the amount of latitude gradient of solar rotation decreases towards the sunspot minimum; (b) small differences of rotation in the northern and southern hemispheres of the Sun are observed; (c) some deviations of differential rotation curves constructed for each Carrington rotation from the mean curve of differential rotation are revealed. The total amplitude of the maximum positive and negative excesses is about 40–50 m s–1. The positive surplus velocities of solar rotation (the amplitude of which is about 20–25 m s–1) move in the form of a wave from heliographic latitudes 40° with a velocity of 1.6 m s–1. The latitude width of this flow is B 15°. This wave of abnormally high velocity starts in the year of minimum solar activity and reaches the pole 11 years later. The picture is symmetrical relative to the equator.  相似文献   

9.
S. Latushko 《Solar physics》1996,166(2):261-266
A study is made of the rotation of large-scale magnetic fields using the synoptic maps from the Kitt Peak National Observatory for the time interval 1976–1985. The auto-correlation method and the mass-centers method of magnetic structures was applied to infer mean differential rotation profiles and rotation profiles separately for each magnetic field polarity. It has been found that in both hemispheres the leading polarity rotates faster than the following polarity at all latitudes by about 0.04° day–1. The maximum rotation rate of the leading polarity is reached at about 6° latitude. In the mean profile for both polarities, this brings about two angular velocity maxima at 6° latitudes in both hemispheres. Such a profile appears as to have a dimple on the equator.  相似文献   

10.
By analysing a sample of 158 globular clusters belonging to the galaxy M 31 or Andromeda Nebula (AN) in the framework of a spherically symmetric model with constant circular velocity a value of 260 ± 40 kms–1 for this quantity is obtained. It is also found that the number density of AN globulars roughly decreases as the cube of the distance to the centre with a cutoff radius of about 40 kpc. The implied AN mass within this cutoff is about 0.6 TM (1 TM = 1012 M ). Bearing in mind the model limitations this mass is rather an upper limit. The present results suggest 1.5 as a probable value for the mass ratio of AN to the Milky Way unless their massive dark coronae are significantly different in size.The velocity distribution of AN globulars seems to be close to isotropic.  相似文献   

11.
We present the results of our study of the stellar kinematics in the elliptical galaxy UGC 5119, which has previously been suspected to be a polar-ring galaxy. We have detected a rapidly rotating disk in the central region (r ≤ 3.2 kpc) of the galaxy’s main body and found a radial velocity gradient along its minor axis (in the putative ring). We conclude that UGC 5119 is a medium-luminosity elliptical galaxy with a rapidly rotating disk component and a stellar (probably polar) ring. We have calculated the Lick indices of the Hβ, Mggb, Fe 5270, and Fe 5335 absorption lines and compared them with evolutionary synthesis models. Differences in the [Mg/Fe] ratios, metallicities, and ages of the stars have been found: the young stellar population with a solar [Mg/Fe] ratio and a high metallicity dominates in the circumnuclear region (r ≤ 1 kpc), while the old one with a low metal abundance dominates in the ring.  相似文献   

12.
We present subarcsec angular resolution observations of the neutral gas in the nearby starburst galaxy NGC 520. The central kpc region of NGC 520 contains an area of significantly enhanced star formation. The radio continuum structure of this region resolves into ∼10 continuum components. By comparing the flux densities of the brightest of these components at 1.4 GHz with published 15-GHz data we infer that these components detected at 1.4 and 1.6 GHz are related to the starburst and are most likely to be collections of several supernova remnants within the beam. None of these components is consistent with emission from an active galactic nuclei. Both neutral hydrogen (H  i ) and hydroxyl (OH) absorption lines are observed against the continuum emission, along with a weak OH maser feature probably related to the star formation activity in this galaxy. Strong H  i absorption  ( N H∼ 1022 atoms cm−2)  traces a velocity gradient of 0.5 km s−1 pc−1 across the central kpc of NGC 520. The H  i absorption velocity structure is consistent with the velocity gradients observed in both the OH absorption and in CO emission observations. The neutral gas velocity structure observed within the central kpc of NGC 520 is attributed to a kpc-scale ring or disc. It is also noted that the velocity gradients observed for these neutral gas components appear to differ with the velocity gradients observed from optical ionized emission lines. This apparent disagreement is discussed and attributed to the extinction of the optical emission from the actual centre of this source hence implying that optical ionized emission lines are only detected from regions with significantly different radii to those sampled by the observations presented here.  相似文献   

13.
A model of the formation of large-scale magnetic fields of dipole configuration in the central regions (r 100 pc) of active galaxies is studied. It is assumed that these regions contain a rapidly rotating, highly ionized gas ( 5·10–15 sec, Ne 103 cm–3). Ionized matter escapes from the center of the region with a velocity of several hundred km/sec and is entrained by the rotation of the surrounding medium. Biermann's "battery" effect [L. Biermann, Z. Naturforsch., 5a, 65 (1950)] operates under such conditions, and circular electric currents are formed in the medium, which amplify the dipole magnetic fields. During the active phase of a galaxy, about 108 years, the magnetic field strength at the boundary of this region may reach 10–4–10–3 G.Translated from Astrofizika, Vol. 39, No. 1, pp. 111–119, January–March, 1996.  相似文献   

14.
We used the Revised Flat Galaxy Catalog (RFGC) to select 817 ultra-flat (UF) edge-on disk galaxies with blue and red apparent axial ratios of (a/b)B > 10.0 and (a/b)R > 8.5. The sample covering the whole sky, except the Milky Way zone, contains 490 UF galaxies with measured radial velocities. Our inspection of the neighboring galaxies around them revealed only 30 companions with radial velocity difference of | ΔV |< 500 kms?1 inside the projected separation of Rp < 250 kpc. Wherein, the wider area around the UF galaxy within Rp < 750 kpc contains no other neighbors brighter than the UF galaxy itself in the same velocity span. The resulting sample galaxies mostly belong to the morphological types Sc, Scd, Sd. They have a moderate rotation velocity curve amplitude of about 120 km s?1 and a moderate K-band luminosity of about 1010L. The median difference of radial velocities of their companions is 87 km s?1, yielding the median orbital mass estimate of about 5 × 1011M. Excluding six probable non-isolated pairs, we obtained a typical halo-mass-to-stellar-mass of UF galaxies of about 30, what is almost the same one as in the principal spiral galaxies, like M31 and M81 in the nearest groups. We also note that ultra-flat galaxies look two times less “dusty” than other spirals of the same luminosity.  相似文献   

15.
A search for neutral hydrogen in the velocity range –300>V>–1000 km s–1 has been made in the zone around the galactic nucleus. Observations of 100 points reveal no neutral hydrogen at such high velocities, with brightness temperatures exceeding 0.25 K in the latitude range |b|<1°, and 0.20 K for |b|1°.  相似文献   

16.
We present the results based on multiwavelength imaging observations of the prominent dust lane starburst galaxy NGC 1482 aimed to investigate the extinction properties of dust existing in the extreme environment. (B-V) colour-index map derived for the starburst galaxy NGC 1482 confirms two prominent dust lanes running along its optical major axis and are found to extend up to ∼11 kpc. In addition to the main lanes, several filamentary structures of dust originating from the central starburst are also evident. Though, the dust is surrounded by exotic environment, the average extinction curve derived for this target galaxy is compatible with the Galactic curve, with RV = 3.05, and imply that the dust grains responsible for the optical extinction in the target galaxy are not really different than the canonical grains in the Milky Way. Our estimate of total dust content of NGC 1482 assuming screening effect of dust is ∼2.7 × 105 M, and provide lower limit due to the fact that our method is not sensitive to the intermix component of dust. Comparison of the observed dust in the galaxy with that supplied by the SNe to the ISM, imply that this supply is not sufficient to account for the observed dust and hence point towards the origin of dust in this galaxy through a merger like event.Our multiband imaging analysis reveals a qualitative physical correspondence between the morphologies of the dust and Hα emission lines as well as diffuse X-ray emission in this galaxy. Spatially resolved spectral analysis of the hot gas along outflows exhibit a gradient in the temperature. Similar gradient was also noticed in the measured values of metallicity, indicating that the gas in the halo is not yet enriched. High resolution, 2-8 keV Chandra image reveals a pair of point sources in the nuclear region with their luminosities equal to 2.27 × 1039 erg s−1 and 9.34 × 1039 erg s−1, and are in excess of the Eddington-limit of 1.5 M accreting source. Spectral analysis of these sources exhibit an absorbed-power law with the hydrogen column density higher than that derived from the optical measurements.  相似文献   

17.
Cluster analysis (a Bayesian iteration procedure) was used to study the space-time distribution of sunspot groups in the time interval from 1965 to 1977. (Data were taken from the Greenwich and Debrecen Heliographic Results.) The distribution proved to be significantly non-random for the 8–10 groups cluster–1 (gr cl–1) level of clustering. Convincing evidence also favours non-random behaviour for other levels of clustering from the lowest (3–4 gr cl–1) up to the highest ( 150 gr cl–1) level. The rotation rate of the non-random pattern is generally slightly lower than the Carrington rate.The 8–10 gr cl–1 level, crudely corresponding to the sunspot nests investigated earlier, was studied in more detail. The cycle- and latitude-averaged rotational rate of the nests is slightly ( 1%) but significantly lower than the Carrington rate. Their differential rotation is strongly reduced: the cycle-averaged rotational rate varies only by 2–3% within the sunspot belt. A slight but significant bimodality is seen in the differential rotation curve: the intermediate latitudes ( 10°–20°) show a somewhat slower rotation than both the equatorial and the higher latitude regions. This might be explained by a time-dependence of the rotation rate coupled with the butterfly diagram.  相似文献   

18.
The main kinematic characteristics of our Galaxy are analyzed using a catalog of about 2700 Galactic star-forming regions. The terminal velocities of the star-forming regions confirm that the rotation curve for the inner Galaxy is flat from |l| 23°. Bends in the rotation curve are probably due to motions in spiral arms. The Galaxy rotates with a circular velocity of 200 ± 10 km s-1. Evidence for an expanding ring-like structure at 3 kpc is presented. An l - v diagram for the catalog sources in the first and fourth Galactic quadrants is constructed. Density wave theory is used to show that a two-spiral model with a pitch angle of -9° and large-amplitude velocity perturbations in the region of 3 kpc can satisfactory describe the main features of the l - v diagram to Galactocentric radii of 6-7 kpc.  相似文献   

19.
The tidal force effects of a spherical galaxy passing head-on through a disk galaxy have been studied for various orientations of the disk galaxy with respect to the direction of relative motion of the two galaxies. The density distribution of the spherical galaxy is taken to be that of a polytrope of indexn=4 and that of the disk galaxy is taken to be, (r)=ce–4r/R, where c is the central density andR the radius of the disk. It is found that the disruptive effects due to the tidal force are minimum when the plane of the disk lies along the direction of relative motion, but are maximum when the plane of the disk is slightly inclined to this direction (about 15°). The tidal force effects at the median radius have also been computed. The tadal force effects are much higher in the interior region of the disk.  相似文献   

20.
General ideas, as well as experimental and theoretical efforts concerning the prediction and discovery of new structures in the disks of spiral galaxies – giant anticyclones - are reviewed. A crucial point is the development of a new method to restore the full vector velocity field of the galactic gas from the line-of-sight velocity field. This method can be used to get self-consistent solutions for the following problems: 1) determination of non-circular velocities associated with spiral-vortex structure; 2) determination of fundamental parameters of this structure: pattern speed, corotation radius, location of giant anticyclones; 3) refinement of galactic rotation curves taking into account regular non-circular motion in the spiral density wave, which makes it possible to build more accurate models of the mass distribution in the galaxy; 4) refinement of parameters of the rotating gaseous disk: inclination angle, center of rotation and position angle of the major dynamical axis, systematic velocity. The method is demonstrated using the restoration of the velocity field of the galaxy NGC 157 as an example. Results for this and some other spiral galaxies suggest that giant anticyclones are a universal property of galaxies with grand design structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号