首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 481 毫秒
1.
The purpose of the investigation is to reveal the dependences of P p = f(C p) on reservoir conditions and the lithological composition of rocks. The samples were studied using a set of lithological-petrographic investigations. To obtain the dependences on thermobaric conditions, 90 samples of different porosities (C p) of 15, 20, and 25% were collected. As a result, the general pattern of the change in the rock resistivity during the transition from atmospheric conditions of measuring to reservoir conditions was established. Dependences of porosity parameter P p on porosity coefficient C p were obtained for three values of formation water salinity and three reservoir conditions. The measurement errors of the porosity parameter P p were calculated using dependences obtained under atmospheric conditions.  相似文献   

2.
A procedure for the estimation of distribution parameters of a Weibull distribution model K1 = f(KIc12/4/σC23/4) for solid particle erosion, as recently suggested in Rock Mech Rock Eng, doi: 10.1007/s00603-014-0658-x, 2014, is derived. The procedure is based on examinations of elastic–plastically responding rocks (rhyolite, granite) and plastically responding rocks (limestone, schist). The types of response are quantified through SEM inspections of eroded surfaces. Quantitative numbers for the distribution parameter K1 are calculated for 30 rock materials, which cover a wide range of mechanical properties. The ranking according to the parameter K1 is related to qualitative rock classification schemes. A modified proposal for the erosion of schist due to solid particle impingement at normal incidence is introduced.  相似文献   

3.
Channel sand acts as a stratigraphic trap for hydrocarbon accumulation in many parts of the world. Delineation of this type of reservoir is crucial as channel sand may be scarce, and inaccurate location of the drilling wells could lose a huge currency. The Hassi Messaoud (HMD) field was subjected to multiphase tectonic events, where deep-seated structures were rejuvenated leading to intensive fault complexity. The main effective tectonic events upon the studied area are the Hercynian compression and deep erosion till the Ordovician Hamra Quartzite (HQZ) oil reservoir, followed by active Triassic rifting and filling the deeply eroded areas or the graben areas by eruptive volcanic rocks at Triassic time. Hercynian erosion and volcanic rocks distribution introduce a big uncertainty to the reservoir structural model. Amplitude versus offset (AVO) method is used as a helpful tool to differentiate channel sand from surrounding formations. Several attributes (P-impedance, S-impedance, longitudinal velocity Vp, shear velocity Vs and density ρ) are estimated from pre-stack seismic inversion. They have different sensitivity to the reservoir properties. Derived attributes such as Lamé parameters, incompressibility × density (λρ) and rigidity × density (μρ) can provide key lithology and fluid indicators (Goodway et al. 1997, Goodway CSEG Rec 26(6):39-60 2001). Petrophysically relating AVO attributes both to λρ and μρ and to each other in Lambda–Mu–Rho (LMR) cross-plot space can be a good tool for AVO interpretation (Rutherford and Williams Geophysics 54:680–688 1989 and Castagna and Swan Lead Edge 16(4):337–342 1997). After proper data conditioning, simultaneous inversion of pre-stack angle gathers is performed to get acoustic wave impedance (P-impedance), elastic wave impedances (S-impedance) and density ρ, then to calculate λρ and μρ volumes. In the studied area, λρ and μρ are used as a very important key to separate reservoir sands. The λρ and μρ curves are generated at each well location. Cross plots showed a fair separation of sand in the formation, i.e. higher μρ and lower λρ can detect sand. The output λρ and μρ volumes after simultaneous inversion follow the distribution of the sand which is consistent with the wells penetrating the target reservoir. This finding on the extension of the sand reservoir in terms of λρ and μρ. 3D cross-plot zonations are used for lithology discrimination. In this study, well logs were used to constrain lithology and to control the zonation filters by reducing the limits ambiguity. Other types of advanced attributes are calculated and tested. The obtained (μρλρ) volume acts as a good indicator for the sand distribution. It was finally used as sand presence index in the area. Also μρ has shown a good linear relationship with porosity. To note that the porosity volume is created based on the linear relationship with μρ. A product of derived porosity and the sand presence index (μρλρ) provides a good tool for reservoir characterization and lead to reservoir management, future planning of the field, and setting location for new wells.  相似文献   

4.
Subcritical crack growth plays an important role in evaluating the long-term stability of structures in rocks. By applying the constant-displacement-relax method, two groups of test specimens that one immersed in groundwater and the other in air were tested to get the parameters of subcritical crack growth in double torsion test. The relations of the stress intensity factor K I versus the subcritical crack growth velocity V were obtained under the two different environments, and the behavior of subcritical crack growth was also analyzed. The results showed: the relations of lg K I  ? lg V accorded with linear rules, which is in good agreement with Charles theory; Compared with specimens in nature state, the lg K I  ? lg V curves of saturated water specimens locate top left comer of those of air specimens. The slope of curve is smaller, and the intercept is bigger, which shows that the water–rock interaction speeds up the subcritical crack growth. And A increases 2.9 × 1018 folds but n decreases from 85.12 to 40.83 because of the water–rock interaction. Meanwhile, the fracture toughness K IC also decreases obviously from 2.55 in air to 2.26 in water due to water rock interaction. The testing results provide a basis for time-dependence of rock engineering stability.  相似文献   

5.
Accurate laboratory measurement of geo-engineering properties of intact rock including uniaxial compressive strength (UCS) and modulus of elasticity (E) involves high costs and a substantial amount of time. For this reason, it is of great necessity to develop some relationships and models for estimating these parameters in rock engineering. The present study was conducted to forecast UCS and E in the sedimentary rocks using artificial neural networks (ANNs) and multivariable regression analysis (MLR). For this purpose, a total of 196 rock samples from four rock types (i.e., sandstone, conglomerate, limestone, and marl) were cored and subjected to comprehensive laboratory tests. To develop the predictive models, physical properties of studied rocks such as P wave velocity (Vp), dry density (γd), porosity, and water absorption (Ab) were considered as model inputs, while UCS and E were the output parameters. We evaluated the performance of MLR and ANN models by calculating correlation coefficient (R), mean absolute error (MAE), and root-mean-square error (RMSE) indices. The comparison of the obtained results revealed that ANN outperforms MLR when predicting the UCS and E.  相似文献   

6.
Reduced amplitude and distorted dispersion of seismic waves caused by attenuation, especially strong attenuation, always degrade the resolution of migrated images. To improve seismic imaging, attenuation must be compensated. This study addresses the factors causing seismic attenuation in Jati Block. Jati Block lies in Lower Indus Basin, Pakistan, approximately 25 mi north of the offshore Indus. Method used for Q factor is empirical equation method. Q factor correlation indicates that there are three major zones of attenuation in Jati block, i.e., zone I (surface to top Khadro), zone II (Upper Goru Formation), and zone III (Lower Goru Formation). Lowest Q value is in zone I, followed by zone II and zone III, respectively. Commonly, Khadro Formation (Basalt) of Paleocene and saucer-shaped igneous intrusion is considered as sources of attenuation. However, surprisingly, Khadro Formation of Paleocene and saucer-shaped igneous intrusion is zone of minimum attenuation and causes minimal transmission loss. Anisotropy analysis is performed to determine cause of attenuation within these zones. Thomson anisotropic parameters are computed for vertical wells using Backus averaging algorithm. These parameters are calibrated using sonic scanner data available for one well. Correlation of Q factor curve with mud log suggests that loose, unconsolidated sands and sand-shale layering are sources of attenuation within zone I. Attenuation in this zone is mostly due to fluid motion relative to the framework of loosely packed grains. Major lithology of Upper Goru Formation is marl. It is a slow formation, and in this formation, P wave loses energy to the formation in what is known as leaky P mode (sonic logging) and is dispersive (seismic). Epsilon (?) value is greater than almost 0.02 throughout Lower Goru Formations, indicating that this formation is strongly anisotropic. Fluctuation of epsilon (?) in Lower Goru Formation also suggests that this formation is causing layer-induced anisotropy. This layer-induced anisotropy in Lower Goru Formation added by dispersive and slow nature of Upper Goru Formation causes rapid attenuation.  相似文献   

7.
Laboratory measurements are required to study geophysical properties of the subsurface because of lacking direct observation of Earth’s crust. In this research, compressional (P) and shear (S) wave velocity measurements have been conducted on cylindrical specimens of Quartz-micaschist cored using rock blocks taken from the zinc and lead Angouran mine, Zanjan, northwest of Iran. Cylindrical rock specimens were prepared from the blocks by coring in 0°, 30°, 45°, 60°, and 90° into the foliation direction. P- and S-wave velocities were measured along the cylindrical specimens with different foliation orientations. Percent variations of the P- and S-wave velocities (Thomsen’s anisotropic parameters ε and γ) and constant dynamic modulus of test results have been determined. Percent variations of the P-wave velocity (ε) increase with an increase of the foliation angle with respect to the propagating waves direction by a parabolic function as it shows P-wave velocity differences up to a maximum value of 50 %. Thomsen’s anisotropic parameter of γ has also the same function with the foliation angle. Meanwhile, foliation orientation has a much greater influence on ε than γ for foliation angle from 45° to 90° as \( \frac{\varepsilon }{\gamma } \) ratio increases with an increase of foliation angle. Values of dynamic elastic modulus (E), Poisson’s ratio (ν), shear modulus (μ), bulk modulus (K), and Lamé’s constant (λ) increase with the increase of foliation angle with the parabolic function. The results show that dynamic elastic modulus, Poisson’s ratio, shear modulus, bulk modulus, and Lamé’s constant have anisotropic behavior in relation with the foliation orientation.  相似文献   

8.
The recent development of the coalbed methane (CBM) industry has a significant role in advancing hydraulic fracturing theory and technology. However, further development requires a better understanding of how fractures influence reservoir permeability. In situ stress data from 54 CBM wells in the southern Qinshui Basin, China, were obtained by the injection/falloff test method to analyse the effect of in situ stress on the permeability of the CBM reservoir. The types of in situ stress states were classified, and the coal reservoir permeability under different in situ stress states was analysed. The results indicate that the maximum horizontal principal stress (σH), minimum horizontal principal stress (σh) and vertical principal stress (σv) all have positive linear relationships with the coal seam burial depth. Three in situ stress states were observed from the shallow to deep regions of the CBM reservoir in the study area: σH?>?σh?>?σv, σH?>?σv?>?σh and σv?>?σH?>?σh, which account for 9, 76 and 15% of the test wells, respectively. Coal reservoir permeability decreases with increasing horizontal principal stress, whereas it first decreases with increasing σv, then increases and finally decreases. The variation in permeability with σv is due to the conversion of the in situ stress states. Coal reservoir permeability has obvious differences under different in situ stress states. The permeability is the largest when σv?>?σH?>?σh, followed by σH?>?σh?>?σv and smallest when σH?>?σv?>?σh. The permeability differences are caused by the fracture propagation shape of the rock strata under different in situ stress states.  相似文献   

9.
This paper presents a seismic hazard evaluation and develops an earthquake catalogue for the Constantine region over the period from 1357 to 2014. The study contributes to the improvement of seismic risk management by evaluating the seismic hazards in Northeast Algeria. A regional seismicity analysis was conducted based on reliable earthquake data obtained from various agencies (CRAAG, IGN, USGS and ISC). All magnitudes (M l, m b) and intensities (I 0, I MM, I MSK and I EMS) were converted to M s magnitudes using the appropriate relationships. Earthquake hazard maps were created for the Constantine region. These maps were estimated in terms of spectral acceleration (SA) at periods of 0.1, 0.2, 0.5, 0.7, 0.9, 1.0, 1.5 and 2.0 s. Five seismogenic zones are proposed. This new method differs from the conventional method because it incorporates earthquake magnitude uncertainty and mixed datasets containing large historical events and recent data. The method can be used to estimate the b value of the Gutenberg-Richter relationship, annual activity rate λ(M) of an event and maximum possible magnitude M max using incomplete and heterogeneous data files. In addition, an earthquake is considered a Poisson with an annual activity rate λ and with a doubly truncated exponential earthquake magnitude distribution. Map of seismic hazard and an earthquake catalogue, graphs and maps were created using geographic information systems (GIS), the Z-map code version 6 and Crisis software 2012.  相似文献   

10.
Textural variational pattern of economic and accessible Quaternary aquifer repositories and its conductivity in the south-eastern Nigeria have been assessed through the integration of vertical electrical sounding and laboratory measurements. The results have shown the lithological attributes, pore-water and amount of residual clay minerals in the assumed clean sand; mechanism of charge fixation at the fluid - surface interface; intricate geometry of pores and pore channels; formation’s ability to transmit pore-water and cation exchange capacity.The connections of electrical and hydraulic properties and their distributions have been established. The average interface conductivity contributed by residual clay minerals in assumed clean sands of the aquifer repositories in the study area have been estimated as 30µS/m. Intrinsic average porosity and formation factor have been respectively deduced as 12% and 14.75. Comparing the simulated aquifer formation factor obtained from the observed porosity data with the observed aquifer formation factor, indicates the that study area has 0.5 ≤ a ≤ 0.8 pore geometry factor and 1.5 ≤ m ≤ 2.0 cementation factor as the best fitting values. The interrelations between aquifer parameters have been established through different plots and the aquifer have been empirically proved to be associated with residual clay minerals as the interface conductivity Cq is not equal to zero. The wide ranges of parameters estimated are an indication of variations in grain size. The estimated intrinsic average porosity, formation factor and the average BQv are viable in characterizing the aquifer flow dynamics and contaminant modelling in the associated aquifer sands For low pore geometry factors a (0.2) and low cementation factor m (0.5) the formation factor remains fairly constant. However, marked variability is noticed at higher a (1.0) and m (2.5). Despite the observed variability in formation factors at the indicated porosities, the spatial or geometrical spread of the formation factor remains unchanged in the aquifer units. The Tables for geoelectric and petrophysical parameters and the associated mathematical models generated in this study can be used for groundwater contaminant modelling and simulation of pore space parameters with reasonable accuracy.  相似文献   

11.
Well log analysis provides the information on petrophysical properties of reservoir rock and its fluid content. The present study depicts interpretation of well log responses such as gamma ray, resistivity, density and neutron logs from six wells, namely W-1, W-2, W-9, W-12, W-13 and W-14 under the study area of Krishna-Godavari (K-G) basin. The logs have been used primarily for identification of lithology and hydrocarbon-bearing zones. The gamma ray log trend indicates deposition of cleaning upward sediment. Coarsening upward, clayey-silty-sandy bodies have been evidenced from the gamma ray log. Gas-bearing zones are characterised by low gamma ray, high deep resistivity and crossover between neutron and density logs. Total 14 numbers of hydrocarbon-bearing zones are identified from wells W-9, W-12, W-13 and W-14 using conventional log analysis. Crossplotting techniques are adopted for identification of lithology and fluid type using log responses. Crossplots, namely P-impedance vs. S-impedance, P-impedance vs. ratio of P-wave and S-wave velocities (Vp/Vs) and lambda-mu-rho (LMR), have been analysed to discriminate between lithology and fluid types. Vp/Vs vs. P-impedance crossplot is able to detect gas sand, brine sand and shale whereas P-impedance vs. S-impedance crossplot detects shale and sand trends only. LMR technique, i.e. λρ vs. μρ crossplot is able to discriminate gas sand, brine sand, carbonate and shale. The LMR crossplot improves the detectability and sensitivity of fluid types and carbonate lithology over other crossplotting techniques. Petrophysical parameters like volume of shale, effective porosity and water saturation in the hydrocarbon-bearing zones in these wells range from 5 to 37%, from 11 to 36 and from 10 to 50% respectively. The estimated petrophysical parameters and lithology are validated with limited core samples and cutting samples from five wells under the study area.  相似文献   

12.
This paper presents revision of the Neogene chronostratigraphic framework of the Huanghekou area in the Bohai Bay Basin, northern China, on the basis of integration of palaeomagnetic data and Neogene seismic stratigraphy. The modern Lake Dongting was selected for analyses of bottom sediments, water depth and elemental composition. Four elements, namely Al, V, Ni and Ga with R 2 value larger than 0.7, were chosen to establish a quantitative relationship (F P) between elemental composition and water depth of bottom sediments. A water depth of ~2.4 m was identified as an accumulation depth of Candoniella albicans, which is used to derive environmental variable (Φ) of formula F P. Candoniella albicans is also found within the Neogene well W10 in the Huanghekou area. Considering 2.4 m as D value in formula F p and measured element values at different depths of W10, Φ values were obtained at different depths. The quantitative palaeowater depths of each drilling well were estimated for the first time in this area by considering elemental composition of chip samples of four drilling wells in the Huanghekou area, which are directly iterated to the F F. Palaeowater depth reconstruction of the Neogene in the Huanghekou area indicates an initial deepening trend and a later shallowing trend during the evolution, with average and deepest bathymetry at ~2.3 and ~4.8 m, respectively. Frequent fluctuations of palaeowater depth control the sand dispersal pattern in a shallow delta during the lower part of the Lower Member of Minghuazhen Formation.  相似文献   

13.
The rock mass failure process can be divided into several distinct deformation stages: the compaction stage, elastic stage, stable failure stage, accelerated failure stage, and post-peak stage. Although each stage has been well studied, the relationship among the stages has not been established. Here, we establish two models which are the Strain model Q and Energy density model S by using the renormalization group theory and investigate the mechanical relationship between the volume dilatant point and peak stress point on the rock stress-strain curve. Our models show that the strain ratio (ε f /ε c ) and energy ratio (E f /E c ) at the volume dilatant point and peak stress point are solely functions of the shape parameter m. To verify our models, we further studied the failure process of rock specimens through several uniaxial compression experiments and found that the relationship between ε f /ε c or E f /E c and m shares a notably similar pattern to that from our theoretical model. However, the ε f /ε c and E f /E c values in our experiments are slightly smaller than those predicted by the models. In brief, we demonstrate that our models can be used to predict the failure process of the laboratory-scale hard brittle rock samples.  相似文献   

14.
We have calculated profiles of the CIV 1550, NV 1240, OVI 1035, and SiIV 1400 resonance doublets for a plane-parallel shock viewed at various angles. Calculations were performed for the range of preshock gas velocities V0 and gas densities ρ0 appropriate for classical T Tauri stars. The parameters of accretion shocks in young stars can be determined by comparing the calculated and observed profiles of the studied lines and their relative intensities. It is not possible to derive the parameters of the accreting gas from the line profiles without knowing the geometry of the accretion zone. The relation I v (µ,V0,ρ0) for a plane shock, where I v is the intensity μ=cosθ, can be used to determine the accretion parameters by either choosing a geometry for the radiating region or using a technique similar to Doppler tomography. The results obtained for DR Tau, T Tau, and RY Tau indicate that, in contrast to current concepts, the inner regions of the accretion disk are not disrupted by the magnetic field of the star, and the disk reaches the stellar surface. As a result, only a small fraction of the accreted matter passes through the shock and falls onto the star.  相似文献   

15.
The specific energy (SE) is the most important parameter to estimate the energy consumption in tunnel boring machines (TBMs). It is defined as the amount of required energy to excavate a unit volume of rock mass which used to predict the performance of TBMs. Several models are used to estimate the SE based on different parameters such as the rock mass properties, disc cutter dimensions and cutting geometry. The aim of this work is to propose new relations between the SE and the strain energy of rock mass (W) using the geological mappings of rock mass and TBM operational parameters from Amir-Kabir Water Transferring Tunnel of Iran. W is an appropriate criterion to estimate SE because it is a function of different parameters such as rock mass behavior, pre and post failure properties and peak and residual strains. In this study, to increase the correlation coefficient of relation between the mentioned parameters, the rock mass is classified in two methods, in the first method according to the geological strength index (GSI) all data is classified in three classes such as weak, fair and good and in the second method using the drop to deformation modulus ratio (η) the classification of data is performed in three classes such as η < 0.05, 0.05 ≤ η < 10 and η ≥ 10. The results show that there are direct relations between both parameters. It is suggested to estimate SE in all rock mass classes using the proposed relations based on GSI classification.  相似文献   

16.
Mechanical characterization tests are performed to determine the effects of carnallite contents on the strength, elasticity, and time-dependent parameters of rock salt specimens obtained from the Lower Member of the Maha Sarakham formation. The specimens are prepared with carnallite content (C %) varying from 0% (pure halite) to 100% (pure carnallite). The compressive and tensile strengths and elastic moduli of the specimens exponentially decrease with increasing C %. Specimens with higher C % tend to dilate more than those with lower C %, as evidenced by the increasing of the Poisson’s ratio. The strength reduction due to the carnallite content decreases as the confining pressures increase. The elastic, visco-elastic, and visco-plastic parameters of the creep test specimens are defined as a function of C %. They rapidly decrease with increasing C %. Pure halite tends to behave as the Burgers material while pure carnallite behaves as the Maxwell material. The different creep rates and deformation mechanisms between halite and carnallite explain the occurrences and structures of potash ore deposit at the shelves and flanks of the salt domes and anticlines in the salt basin.  相似文献   

17.
Geoelectric investigation using vertical electrical sounding (VES) (Schlumberger electrode configuration) was carried out in 14 locations at Ninth Mile area, southeastern Nigeria to determine the variations and interrelationship of some geoelectric and geohydraulic parameters of a sandstone hydrolithofacies. The measured resistivity data were interpreted using manual and computer software packages, which gave the resistivity, depth, and thickness for each layer within the maximum current electrodes separation. The aquifer resistivity values range from 86.56 to 4753.0 Ωm with 1669.40 Ωm average value. The values of water resistivity from borehole locations close to the sounding points range from 79.49 to 454 .55 Ωm and averaging about 264.7 Ωm. Porosity values of the sandy aquifer range from 30.19 to 34.20%. Fractional porosity values range from 0.3019 to 0.3292, while the tortuosity values vary between 2.91 and 22.85. The geohydraulic parameters estimated vary across the study area. Formation factor ranges from 0.28 to 15.29, hydraulic conductivity ranges from 1.21 to 66.54 m/day which, however, influences the natural flow of water in the aquifer while tortuosity values range from 2.91 to 23.27. The contour maps clearly show the variation of these parameters in the subsurface and the plots show their relationship and high correlation coefficients with one another. The results of this study have revealed the geological characteristics of the subsurface aquifer, established the influence on the amount of groundwater, and proposed a strategy for the management and exploitation of groundwater resources in the area and other aquiferous formations.  相似文献   

18.
The classical aquitard-drainage model COMPAC has been modified to simulate the compaction process of a heterogeneous aquitard consisting of multiple sub-units (Multi-COMPAC). By coupling Multi-COMPAC with the parameter estimation code PEST++, the vertical hydraulic conductivity (K v) and elastic (S ske) and inelastic (S skp) skeletal specific-storage values of each sub-unit can be estimated using observed long-term multi-extensometer and groundwater level data. The approach was first tested through a synthetic case with known parameters. Results of the synthetic case revealed that it was possible to accurately estimate the three parameters for each sub-unit. Next, the methodology was applied to a field site located in Changzhou city, China. Based on the detailed stratigraphic information and extensometer data, the aquitard of interest was subdivided into three sub-units. Parameters K v, S ske and S skp of each sub-unit were estimated simultaneously and then were compared with laboratory results and with bulk values and geologic data from previous studies, demonstrating the reliability of parameter estimates. Estimated S skp values ranged within the magnitude of 10?4 m?1, while K v ranged over 10?10–10?8 m/s, suggesting moderately high heterogeneity of the aquitard. However, the elastic deformation of the third sub-unit, consisting of soft plastic silty clay, is masked by delayed drainage, and the inverse procedure leads to large uncertainty in the S ske estimate for this sub-unit.  相似文献   

19.
Mining of hard rock ore deposits produces large amounts of tailings. The safe disposal and management of these tailings require an extensive characterization that should include their drying and desaturation behaviour. Desiccation tests have been performed to characterize the shrinkage response of low plasticity tailings having an initially loose state. The testing procedure developed for this purpose is briefly described here. The main shrinkage tests results are then presented. The experimental data are compared with those obtained from water retention tests performed in a pressure plate with volume change measurements. These two types of results are combined to define unsaturated (drying and shrinkage) relationships in six complementary planes that include the volumetric shrinkage curve and the water retention curve. Specific material characteristics are then determined, including the shrinkage limit w S, final void ratio e f, and air entry value ψ a. Additional tests were also performed to define critical parameters at the initiation of cracking in terms of suction ψ, water content w, and degree of saturation S r. The original results presented here indicate that the onset of desaturation is closely linked with the end of volumetric straining and with crack initiation. Results also show that the shrinkage limit w S is a function of the specimen initial water content w 0. Other related characteristics are also presented and discussed.  相似文献   

20.
In the well-log data processing, the principal advantage of the nuclear magnetic resonance (NMR) method is the measurement of fluid volume and pore size distribution without resorting to parameters such as rock resistivity. Preliminary processing of the well-log data allowed first to have the petrophysical parameters and then to evaluate the performances of the transverse relaxation time T 2 NMR. Petrophysical parameters such as the porosity of the formation as well as the effective permeability can be estimated without having recourse the fluid type. The well-log data of five wells were completed during the construction of intelligent models in the Saharan oil field Oued Mya Basin in order to assess the reliability of the developed models. Data processing of NMR combined with conventional well data was performed by artificial intelligence. First, the support vector regression method was applied to a sandy clay reservoir with a model based on the prediction of porosity and permeability. NMR parameters estimated using intelligent systems, i.e., fuzzy logic (FL) model, back propagation neural network (BP-NN), and support vector machine, with conventional well-log data are combined with those of NMR, resulting in a good estimation of porosity and permeability. The results obtained during the processing are then compared to the FL and NN regression models performed by the regression method during the validation stage. They show that the correlation coefficients R 2 estimated vary between 0.959 and 0.964, corresponding to the root mean square error values of 0.20 and 0.15.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号