首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 327 毫秒
1.
富营养水体中沉水植物与浮游藻类相互竞争的研究   总被引:21,自引:6,他引:15  
杨清心 《湖泊科学》1996,8(Z1):17-24
本文就沉水植物与浮游藻类在富营养水体中的相互竞争现象及机制作了初步研究。室内外实验结果表明,二者之间存在着复杂的相互竞争关系。在光资源竞争上,浮游藻类占有相对优势;对水中营养盐的竞争是单向的,沉水植物因可以从底泥中得到营养盐而处于优势地位;当光照和营养盐充足时沉水植物对浮游藻类有明显的生化抑制效应,这种抑制可能通过促进藻类沉降而起作用。二者的互竞争受水深、水温及水中营养盐含量的强烈影响,高水温、高营养盐含量及深水均不利于沉水植物,而助长了浮游藻类的竞争优势。沉水植物群落一旦形成较大的密度,就能对浮游藻类产生强烈的抑制,保持自己的优势地位。因此,沉水植被恢复应从水温和水位均较底的冬季开始,严格控制营养盐输入量是非常重要的。  相似文献   

2.
基于生态模型的太湖蓝藻生长因子解析   总被引:1,自引:0,他引:1  
熊文  钱新  叶瑞  王炳权 《湖泊科学》2012,24(5):698-704
基于生态模型对2009年4月-2010年11月太湖监测数据进行逐月解析,结果显示太湖蓝藻生长率在时间与空间上都表现出显著的差异性,1-4月及10-12月蓝藻生长率表现为低水平,6-9月为高水平,5月年际差异较大,湖西岸相对于湖中区蓝藻生长率优势较明显,水面至水深1 m之间为蓝藻生长活跃区域.蓝藻的生长与消亡主要受水温、光照、磷三种影响因子控制,这三种因子表现出较明显的季节性特点,并且对蓝藻生长率的影响具有相互交替作用的动态变化特征,其中水面附近为温度及磷限制,水深0.5 m处为温度、磷及光限制交替作用,水深1 m及以下为光限制.计算结果表明在研究时段内营养盐总体表现为磷限制,夏秋季局部水域也存在氮限制.  相似文献   

3.
沉水植物附植生物群落生态学研究进展   总被引:6,自引:4,他引:2  
在高等水生植物表面经常附着生长着藻类、真菌和细菌等,这些有机群体组成附植生物群落,在大中型浅水湖泊中普遍存在.附植生物群落具有特定的物种组成和空间结构,并随季节推移和沉水植物生长表现出一定的动态变化特征.附植生物群落与宿主植物及周围水体环境联系密切,不仅能够表征水体营养盐、光照、温度等环境因子特征,与沉水植物、食草动物、浮游植物等水生生物类群也存在不同的相互作用.水生生态系统中,附植生物群落参与水体营养物质转化,在草-藻型湖泊生态系统的相互转化过程中起重要作用;其较高的初级生产力作为水生动物重要的食物来源,增加了食物网的多样性;同时,附植生物群落因其独特的生理生态特征正逐渐被应用于水质净化和水环境质量监测.本文在综述近年来附植生物群落研究进展的基础上,分析了附植生物群落的组成结构和动态变化特征,阐述了附植生物群落在水生生态系统中的功能,可为湖泊富营养化治理,尤其是沉水植被的生态修复和管理提供科学依据.  相似文献   

4.
通过梅梁湾和东太湖的四季原位实验,研究CO_2浓度升高对不同营养水平淡水生态系统中浮游藻类C、N、P元素计量值的影响.实验设置了270、380和750 ppm共3个CO_2浓度,分别代表工业革命前、当前和IPCC预测的21世纪末的CO_2浓度.结果表明梅梁湾水体营养盐浓度在四季均高于东太湖水体营养盐浓度,但梅梁湾原位实验中浮游藻类C、N、P含量却普遍低于东太湖原位实验中浮游藻类营养元素含量,并且前者在季节上变化更大.CO_2浓度升高使梅梁湾原位实验中浮游藻类C∶P比明显增加,N∶P比略有增加,这种增加归因于藻细胞内C、N含量的升高,而东太湖浮游藻类化学计量值对CO_2浓度变化的响应不显著.因此浮游藻类元素化学计量值对CO_2浓度变化的响应程度与水体营养盐的绝对浓度无关,而与浮游藻类的生长是否受营养盐限制有关,只有当藻类生长受到水体营养盐浓度限制时,CO_2浓度升高才会显著改变其元素组成.  相似文献   

5.
水动力条件对水体富营养化的影响   总被引:6,自引:3,他引:3  
梁培瑜  王烜  马芳冰 《湖泊科学》2013,25(4):455-462
水动力条件是影响水体富营养化状态和进程的主要自然因素.研究水动力条件对水体富营养化的影响对于水体富营养化模拟、预测和控制具有十分重要的意义.水动力条件能直接作用于水华藻类细胞,影响其生长繁殖与种间竞争,同时改变水体环境及营养盐的状况.其中,流速不仅对藻类的生长聚集与分布具有十分明显的影响,同时还能影响水体营养物质与优势藻的种类;流量则主要通过单位时间内水量的变化影响水体富营养化的发生与消亡;水体扰动直接作用于水体中藻类细胞与藻团,加强藻类的聚集,同时影响营养物质的混合与运移,从而使水体富营养化得以发生并持续.本文综述了流速、流量和水体扰动等水动力因子对水体富营养化的影响研究,并对其未来的研究方向进行展望,最后指出:不同水动力条件对营养盐存在形态、藻类生长及水体富营养化状态的影响机理和水动力条件对水体富营养化影响的滞后性规律与临界值研究有待进一步加强.  相似文献   

6.
张运林  秦伯强  朱广伟 《湖泊科学》2020,32(5):1348-1359
过去40年,全球气候变暖、辐射变暗和变亮、风速减弱、气候异常波动等自然环境变化以及筑坝建闸、岸堤硬质化和调水引流等强烈人类活动势必会深刻改变太湖湖泊物理环境和过程,驱动湖泊生态系统演化.基于历史文献、档案数据以及气象水文和透明度等长期观测数据,本文系统梳理了太湖气温、水温、风速、水位和透明度等物理环境空间分布和长期变化特征,探讨了气温和风速、水位和透明度相互协同作用机制及其潜在生态环境意义.受全球变化和城市化等影响,过去40年太湖气温和水温呈现显著升高趋势,而近地面风速则表现为持续下降,湖泊增温和风速下降有利于藻类生长和蓝藻水华漂浮聚集,某种程度上增加了蓝藻水华出现频次和集聚的面积.为防洪和满足流域日益增长的水资源需求,闸坝管控和调水引流使太湖水位呈现缓慢增加趋势,而入湖污染物增加和富营养化则造成水体透明度逐渐下降,致使透明度与水位(水深)的比值明显降低,减少了湖底可利用光强,恶化水下光环境,在一定程度上驱动了太湖水生植被和草型生态系统退化.湖泊物理环境长期变化逐渐拓展了太湖藻型生境空间而压缩了草型生境空间,加剧了草型生态系统向藻型生态系统转化和增强了藻型生态系统的自我长期维持.太湖湖泊物理环境的显著变化也会部分抵消流域营养盐削减和湖体营养盐下降对藻类生物量和蓝藻水华的控制,增加了太湖蓝藻水华防控和湖泊富营养化治理的难度.这意味着未来流域控源截污需要更加严格的标准,而湖泊水位等物理环境的有效管控是应对藻华加剧和恢复草型生态系统的适应性管理策略.  相似文献   

7.
东巢湖湖滨农田生态拦截沟中浮游植物群落结构   总被引:1,自引:0,他引:1  
在巢湖市烔炀镇西宋村农田示范基地中建立生态拦截沟来处理农业生产排放的农业面源污水,就生态拦截沟中浮游植物丰度、生物量和群落结构进行了研究.实验历时6个月,研究中共检测到浮游植物9门48属75种.研究发现尽管农田生态拦截沟中的水生植被能有效削减水体中的氮、磷营养盐,但对浮游植物群落结构产生的影响不大.生态拦截沟中主要藻类为绿藻、蓝藻和硅藻,且出水口蓝藻所占比例较进水口有显著上升.生态拦截前后浮游植物优势种类的变化不大,主要为蓝藻门的铜绿微囊藻(Microcystis aeruginosa)、绿藻门的微球衣藻(Chlamydomonas microsphaera)和硅藻门的孟氏小环藻(Cyclotell meneghiniana)等.藻类生物多样性研究表明生态拦截沟中的水体主要为清洁或寡污型水体,仅在夏季的7月份出现了轻微的水体污染.典型对应分析发现,TN/TP对浮游植物种类分布的解释度最高.同时,发现水体总磷的对数、总溶解磷的对数与藻类的生物量呈正比,而TN/TP与藻类的生物量呈反比.研究表明农田生态拦截沟尽管具有削减农业氮、磷营养盐面源污染的作用,但不能有效地降低水体中蓝藻的生物量.农业面源污水中的藻类营养盐限制主要为磷限制,削减农田径流中的磷含量是控制巢湖流域水体富营养化和遏制蓝藻水华的关键环节.  相似文献   

8.
浅水水体存在着强烈的底栖-浮游生境耦合作用,耦合的结果决定着水生态系统关键特征.在缺少大型水生植物的浅水系统中,底栖藻类和浮游藻类对光照和营养盐的竞争是底栖-浮游生境耦合最为重要的生态过程之一,但该过程受到杂食性鱼类的影响.本文以浅水水体的底栖-浮游生境耦合作用为切入点,综述了杂食性鱼类对浅水水体底栖-浮游生境耦合作用的影响过程及机理.一般而言,杂食性鱼类有利于提高水层营养盐浓度,促进浮游藻类生长,降低水体透明度,不利于底栖藻类竞争,从而加速水体富营养化.但不同种类的杂食性鱼类(如底栖杂食性鱼类、偏植物性饵料的杂食性鱼类、偏动物性饵料的杂食性鱼类以及小型杂食性鱼类)因食性差异,对底栖-浮游生境耦合的影响机理不同,产生的生态环境效应各异;即便同一种杂食性鱼类也可因发育阶段不同对底栖-浮游生境耦合产生不同的影响.在人类活动、全球变暖以及富营养化等多重因子胁迫下杂食性鱼类在鱼类群落结构中的比例上升,因此,杂食性鱼类对水生态环境产生的影响深远、复杂,值得持续关注.  相似文献   

9.
许多证据表明缓慢的水动力条件是水华暴发的重要诱因,尽管以临界流速和水体置换为基础的流量管理实践在水华控制中已见成效,但受限于水动力对藻类生长小生境的干扰机制尚不明晰,长期的流量管理实践效果并不理想.在长期野外观测、围隔实验和室内模拟等一系列研究的基础上,以现有水动力对藻类影响机制的讨论为依据,从细胞学角度提出了水动力对藻类生长影响的3种不同的概念机制,即低强度的水力扰动导致藻细胞外扩散层厚度变薄,有利于周边水体向藻细胞输送营养物质,促进藻类生长;中等强度的水力扰动导致藻类营养盐吸收及光合作用能力受损,抑制藻类生长;高强度的水流剪切导致藻细胞壁破损.基于该机制认为流量管理中临界流速应分别从水体置换和细胞学两方面考虑.研究结果可为流量管理中控制藻类水华暴发和维持水体水质的策略提供重要的理论支持.  相似文献   

10.
基于2013年3月-2014年2月的长寿湖浮游藻类以及水质的监测结果,分析浮游藻类物种组成、密度以及多样性指数的季节动态,利用非度量多维尺度和相似性分析检验不同季节浮游藻类群落差异,同时利用典范对应分析法确定影响不同季节浮游藻类群落结构的关键环境因子.结果表明:泽丝藻(Limnothrix sp.)、小尖头藻(Raphidiopsis sp.)、汉斯冠盘藻(Stephanodiscus hantzschii)、具尾逗隐藻(Komma caudata)、鞘丝藻(Lyngbya sp.)和马索隐藻(Cryptomonas marssonii)为长寿湖优势种群,不同季节间浮游藻类群落组成结构存在较大差异.浮游藻类群落结构以春季最为简单,夏季次之,秋、冬季最为复杂.不同季节影响浮游藻类群落结构的环境因子差异较大,水温和营养盐是影响浮游藻类群落结构最重要的环境因子,光照强度、高锰酸盐指数、氧化还原电位、溶解有机碳在秋、冬季节同样成为影响浮游藻类群落结构的关键环境因子.  相似文献   

11.
城市湖泊富营养化问题日趋严峻,以往对水华的研究多集中于大型自然淡水湖库,而对小型城市浅水湖泊的水华动态相对较少.以宁波月湖为研究对象,探讨水华暴发期间浮游植物变化特征及与影响因子之间的关系,以期判别影响城市湖泊水华的主控因子.月湖水华期间营养盐水平处于中富营养至极端富营养之间,此次共检出浮游植物8门61属,藻种组成以绿藻门(51.79%)和硅藻门(21.43%)为主,各点位浮游植物生长主要受水温、光照驱动,经历了隐藻门→硅藻门→绿藻门→蓝藻门的演替.水华种为雷氏衣藻(Chlamydomonas reinhardtii),总藻密度最高达到1.55×108 cells/L,水华暴发后各点位衣藻属比例升高(最高达到81.10%),群落结构呈现单一化特征.通过Pearson相关性分析和RDA分析发现衣藻属生长与水温、pH、总磷浓度均呈显著正相关,春季气温回升、天气持续晴好,城市浅水湖泊高营养盐负荷、水体流动性差等特点为带鞭毛的衣藻属提供了适宜的生存条件,在环境条件均适宜的情况下拥有最大生长潜力的衣藻属在营养盐、光照等竞争中生长速率明显优于其他藻种,从而发生绿藻水华.  相似文献   

12.
Our view of how water quality effects ecosystems of the Great Barrier Reef (GBR) is largely framed by observed or expected responses of large benthic organisms (corals, algae, seagrasses) to enhanced levels of dissolved nutrients, sediments and other pollutants in reef waters. In the case of nutrients, however, benthic organisms and communities are largely responding to materials which have cycled through and been transformed by pelagic communities dominated by micro-algae (phytoplankton), protozoa, flagellates and bacteria. Because GBR waters are characterised by high ambient light intensities and water temperatures, inputs of nutrients from both internal and external sources are rapidly taken up and converted to organic matter in inter-reefal waters. Phytoplankton growth, pelagic grazing and remineralisation rates are very rapid. Dominant phytoplankton species in GBR waters have in situ growth rates which range from approximately 1 to several doublings per day. To a first approximation, phytoplankton communities and their constituent nutrient content turn over on a daily basis. Relative abundances of dissolved nutrient species strongly indicate N limitation of new biomass formation. Direct ((15)N) and indirect ((14)C) estimates of N demand by phytoplankton indicate dissolved inorganic N pools have turnover times on the order of hours to days. Turnover times for inorganic phosphorus in the water column range from hours to weeks. Because of the rapid assimilation of nutrients by plankton communities, biological responses in benthic communities to changed water quality are more likely driven (at several ecological levels) by organic matter derived from pelagic primary production than by dissolved nutrient stocks alone.  相似文献   

13.
Response of aquatic plants to abiotic factors: a review   总被引:7,自引:0,他引:7  
This review aims to determine how environmental characteristics of aquatic habitats rule species occurrence, life-history traits and community dynamics among aquatic plants, and if these particular adaptations and responses fit in with general predictions relating to abiotic factors and plant communities. The way key abiotic factors in aquatic habitats affect (1) plant life (recruitment, growth, and reproduction) and dispersal, and (2) the dynamics of plant communities is discussed. Many factors related to plant nutrition are rather similar in both aquatic and terrestrial habitats (e.g. light, temperature, substrate nutrient content, CO2 availability) or differ markedly in intensity (e.g. light), variations (e.g. temperature) or in their effective importance for plant growth (e.g. nutrient content in substrate and water). Water movements (water-table fluctuations or flow velocity) have particularly drastic consequences on plants because of the density of water leading to strong mechanical strains on plant tissues, and because dewatering leads to catastrophic habitat modifications for aquatic plants devoid of cuticle and support tissues. Several abiotic factors that affect aquatic plants, such as substrate anoxia, inorganic carbon availability or temperature, may be modified by global change. This in turn may amplify competitive processes, and lead ultimately to the dominance of phytoplankton and floating species. Conserving the diversity of aquatic plants will rely on their ability to adapt to new ecological conditions or escape through migration.  相似文献   

14.
水生高等植物-浮游植物关系和湖泊营养状态   总被引:29,自引:5,他引:24  
章宗涉 《湖泊科学》1998,10(4):83-86
本文根据中国一些湖泊的资料,从湖泊营养化角度分析了水生高等植物的生物量,分布和优势种以及浮游植物,透明度和湖泊营养状态的关系,表明高等植物和浮游藻类这两种初级生产者的生产在浅水湖泊中呈负相关,并反映在水质指标和湖泊营养状态下,同是,简要讨论了光限制,营养供给和生化抑制作用在浮游植物与水生高等植物关系中的作用。  相似文献   

15.
全球变暖对淡水湖泊浮游植物影响研究进展   总被引:9,自引:6,他引:3  
全球变暖对湖泊生态系统的影响已经成为近年来湖沼学领域的研究热点.本文首先列举了目前研究全球变暖对淡水湖泊浮游植物影响的常用方法:监测数据分析、时空转换、遥感信息提取、控制实验、模型预测和古湖沼学技术等.研究结果表明气候变暖导致的气温升高、湖泊热力分层提前破坏以及无冰期提前等因素可导致春季物候提前;在全球变暖大背景下浮游植物群落结构正朝着蓝藻占优的方向发展,但是不同地区以及不同物种对全球变暖的响应不一致.在营养盐充足的湖泊中,由于全球变暖延长了浮游植物生长季节等,从而能提高浮游植物初级生产力;但在贫营养湖泊中,浮游植物初级生产力与变暖趋势甚至可能呈负相关.由于生态系统往往是多因子的共同作用,这也使得全球变暖对浮游植物群落的影响效应复杂化,区分各因子的净影响份额是目前研究的一个难点;全球变暖引起的风场改变会促进浅水湖泊中营养盐从底泥的释放,同时也会增加水体中悬浮物的浓度而影响水下光场,因此开展气候变化对再悬浮及浮游植物群落结构的影响可能是将来研究的一个切入点.  相似文献   

16.
The CE-Qual-ICM model computes phytoplankton biomass and production as a function of temperature, light, and nutrients. Biomass is computed as carbon while inorganic nitrogen, phosphorus, and silica are considered as nutrients. Model formulations for production, metabolism, predation, nutrient limitation, and light limitation are detailed. Methods of parameter determination and parameter values are presented. Results of model application to a ten-year period in Chesapeake Bay indicate the model provides reasonable representations of observed biomass, nutrient concentrations, and limiting factors. Computed primary production agrees with observed under light-limited conditions. Under strongly nutrient-limited conditions, computed product is less than observed. The production characteristics of the model are similar to behavior reported for several similar models. Process omitted from the model that may account for production shortfalls include variable algal stoichiometry, use of urea as nutrient, and vertical migration by phytoplankton.  相似文献   

17.
浅水湖泊中的初级生产者主要由分布在底栖生境中的底栖植物和生活在敞水生境中的浮游植物组成.底栖植物主要包括维管束沉水植物和底栖藻类等,浮游植物则主要为浮游藻类.贫营养浅水湖泊湖水营养盐浓度低,透明度高,底栖植物因能直接从沉积物中获取营养盐,往往是浅水湖泊的优势初级生产者.随着外源营养盐负荷的增加,湖水中的营养盐浓度不断升高,浮游植物受到的营养盐限制作用减小,加上其在光照方面的竞争优势,逐步发展成为湖泊的优势初级生产者,湖泊逐步从底栖植物为优势的清水态转变为浮游植物为主的浑水态,即稳态转换.在稳态转换过程中,浅水湖泊生态系统结构与功能发生了一系列变化,本文综述了浅水湖泊沉积物性质和生物(浮游植物、底栖植物、底栖动物和鱼类等)群落结构的变化,分析了这些变化对底栖植物、浮游植物之间竞争优势和底栖敞水生境间磷交换的影响,探讨了富营养化驱动的底栖敞水生境耦合过程变化和稳态转换机理.了解浅水湖泊底栖敞水生境耦合过程与稳态转换机理对富营养化浅水湖泊修复有重要意义.富营养化浅水湖泊修复实际就是重建其清水态,在制定修复目标时应该关注评价清水态的指标,如透明度、浮游植物生物量、底栖植物的覆盖度或优势度等.在开展湖泊修复技术研发与工程应用时,应该重点关注对底栖敞水生境耦合有重要影响的关键技术,如沉积物磷释放和底栖生物食性鱼类控制以及底栖植物(尤其是沉水植物)恢复等有关技术.  相似文献   

18.
Ecological restoration of eutrophic lakes using aquatic macrophytes is an important and practical technology. Here, we investigated the response of phytoplankton and zooplankton to a large-scale 2015-built aquatic macrophyte enclosure (AME, 200,000 m2) screened of by a PVC net in Baima Lake, a eutrophic lake, from spring to autumn of 2019. AME significantly improved water quality by increasing water transparency, and reducing total nitrogen, total phosphorus, and chlorophyll-a content during the growing season. AME significantly decreased phytoplankton abundance and biomass and marginally increased zooplankton abundance and biomass. Phytoplankton and zooplankton communities were closely related to environmental factors, such as water temperature, conductivity, total phosphorus, chemical oxygen demand, and chlorophyll-a inside and outside the AME. The zooplankton:phytoplankton biomass ratio inside was slightly higher than outside the AME. Zooplankton and phytoplankton biomass were significantly positively correlated inside and outside the AME, as were chlorophyll-a and total phosphorus. We found phosphorus to be a key factor limiting primary productivity in Baima Lake, and that bottom-up effects were the main driver to control phytoplankton in the AME. Using aquatic macrophytes to reduce nutrient loads is an effective way to manage eutrophication in Baima Lake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号