首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
I will argue that an ambitious programme of human space exploration, involving a return to the Moon, and eventually human missions to Mars, will add greatly to human knowledge. Gathering such knowledge is the primary aim of science, but science’s compartmentalisation into isolated academic disciplines tends to obscure the overall strength of the scientific case. Any consideration of the scientific arguments for human space exploration must therefore take a holistic view, and integrate the potential benefits over the entire spectrum of human knowledge. Moreover, science is only one thread in a much larger overall case for human space exploration. Other threads include economic, industrial, educational, geopolitical and cultural benefits. Any responsibly formulated public space policy must weigh all of these factors before deciding whether or not an investment in human space activities is scientifically and socially desirable.  相似文献   

2.
Swarms are characterized in nature by a dynamic behaviour which is quite appealing for researchers involved in numerous fields of study, like robotics, computer science, pure mathematics and space sciences. Global group organization acquired in absence of centralized control is the feature of natural swarms which is most interesting to reproduce. This study proposes to make use of some evolutionary robotics findings in order to obtain the autonomous group organization in the framework of a deeper knowledge of the astrodynamics. The main task which will be accomplished is the implementation of the control laws for the single satellite. A careful tuning of the parameters at member level is necessary in order to gain an autonomously evolving global behaviour in a number of space missions of immediate interest. In remote sensing missions, for example, trains of a small number of satellites are already orbiting and integrating their collected data: in near future entire swarms of agents could accomplish this task, and should be controlled in order to acquire and maintain the desired leader-follower configuration. Another example can be seen in deep space exploration of unknown celestial bodies, where the migration of the entire swarm from a reference orbit to a (previously unknown) targeted one is an issue; the same group migration is of interest in Earth orbit, when transferring from parking to operational orbit. Finally, self-assembly of rigid-like virtual structures is also simulated. This paper shows that all these cases are autonomously performed by the swarm by correctly implementing four simple rules at individual level, which assess the primal needs for any satellite: avoid collision, remain grouped, align to the neighbor, reach a goal.  相似文献   

3.
I argue that science stands to benefit from the infrastructure developed to support a human space programme. By infrastructure I mean all those facilities and capabilities which purely scientific budgets could never afford to develop, but which nevertheless act to facilitate scientific research which would not otherwise take place. For example, the human presence on the Moon during the Apollo Project resulted in the acquisition of scientific data which would not have been obtained otherwise, and the same is likely to hold true for future human missions to both the Moon and Mars (and indeed elsewhere). In the more distant future, an important scientific application of a well-developed human spaceflight infrastructure may be the construction of interstellar space probes for the exploration of planets around other nearby stars. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Robotic platforms are essential for future human planetary and lunar exploration as they can operate in more extreme environments with a greater endurance than human explorers. In this era of space exploration, a terrestrial analog that can be used for development of the coordination between manned and robotic vehicles will optimize the scientific return of future missions while concurrently minimizing the downtime of both human explorers and robotic platforms. This work presents the use of underwater exploratory robots - autonomous underwater vehicles (AUV), remotely operated vehicles (ROV), and manned submersibles - as analogues for mixed human-robot exploration of space. Subaqueous settings present diverse challenges for navigation, operation and recovery that require the development of an exploration model of a similar complexity as required for space exploration. To capitalize on the strengths of both robotic and human explorers this work presents lessons learnt with respect to the fields of human-robotic interface (HRI) and operator training. These are then used in the development of mission evaluation tools: (1) a task efficiency index (TEI), (2) performance metrics, and (3) exploration metrics. Although these independent evaluations were useful for specific missions, further refinement will be required to fully evaluate the strengths and capabilities of multiple platforms in a human-robotic exploration campaign in order to take advantage of unforeseen science opportunities in remote settings.  相似文献   

5.
We search for a dichotomy/bimodality between radio-loud (RL) and radio-quiet (RQ) type 1 active galactic nuclei (AGN). We examine several samples of Slogan Digital Sky Survey (SDSS) quasi-stellar objects (QSOs) with high signal-to-noise ratio optical spectra and matching Faint Images of the Radio Sky at Twenty-cm/NRAO VLA Sky Survey (FIRST/NVSS) radio observations. We use the radio data to identify the weakest RL sources with a Fanaroff–Riley type II (FR II) structure to define a RL/RQ boundary which corresponds to log   L 1.4 GHz= 31.6  erg s−1 Hz−1. We measure the properties of broad-line Hβ and Fe  ii emission to define the optical plane of a 4DE1 spectroscopic diagnostic space. The RL quasars occupy a much more restricted domain in this optical plane compared to the RQ sources, which a 2D Kolmogorov–Smirnov test finds to be highly significant. This tells us that the range of broad-line region kinematics and structure for RL sources is more restricted than for the RQ QSOs, which supports the notion of dichotomy. FR II and CD RL sources also show significant 4DE1 domain differences that likely reflect differences in line-of-sight orientation (inclined versus face-on, respectively) for these two classes. The possibility of a distinct radio-intermediate (RI) population between RQ and RL source is disfavoured because a 4DE1 diagnostic space comparison shows no difference between RI and RQ sources. We show that searches for dichotomy in radio versus bolometric luminosity diagrams will yield ambiguous results mainly because in a reasonably complete sample, the radio brightest RQ sources will be numerous enough to blur the gap between RQ and RL sources. Within resolution constraints of NVSS and FIRST, we find no FR I sources among the broad-line quasar population.  相似文献   

6.
The theme of this conference is the evolution of telescopes over the last 400 years. I present my view on what the major leaps of technology have been, and attempt to predict what new technologies could come along in the next 50 years to change the way we do astronomy and help us make new discoveries. Are we approaching a peak of innovation and discovery, and will this be followed by a slow decline? Or are there prospects for even further technology leaps and consequent new discoveries? Will global resource and financial crises bring an end to our great ambitions, or will we continue with bigger telescopes and more ambitious space observatories?  相似文献   

7.
We propose a simplified model of outflow/jet driven by the Blandford–Payne (BP) process from advection-dominated accretion flows (ADAF) and derive the expressions of the BP power and disk luminosity based on the conservation laws of mass, angular momentum and energy. We fit the 2–10 keV luminosity and kinetic power of 15 active galactic nucleus (AGNs) of sub-Eddington luminosity. It is found that there exists an anti-correlation between the accretion rate and the advection parameter, which could be used to explain the correlation between Eddington-scaled kinetic power and bolometric luminosity of the 15 samples. In addition, the Ledlow–Owen relation for FR I/II dichotomy is re-expressed in a parameter space consisting of logarithm of dimensionless accretion rate versus that of the BH mass. It turns out that the FR I/II dichotomy is determined mainly by the dimensionless accretion rate, being insensitive to the BH mass. And the dividing accretion rate is less than the critical accretion rate for ADAFs, suggesting that FR I sources are all in the ADAF state.  相似文献   

8.
Through the continuing development of improved detectors and detector arrays, far-infrared/submillimeter astronomical space missions have had enormous successes in recent years. Despite these advances, the diffraction-limited angular resolving power has remained virtually constant. The advent of telescopes with apertures of several meters will improve this capability, but will still leave image resolution many orders of magnitude poorer than in most other spectral ranges. Here we point out that the only foreseeable way to improve image quality to rival that of modern optical telescopes will be with interferometers whose light collectors are connected by tethers. After making the scientific case for high spatial resolution far-infrared/submillimeter imaging and the use of interferometry as the most immediate way of producing results, we discuss recent advances in dynamic analysis and control of tethered formations, and argue that the further development and testing of tethers in space is a first step toward providing improved far-infrared/submillimeter angular resolution and astronomical image quality.  相似文献   

9.
Emergency surgery will be needed to prevent death if humans are used to explore beyond low earth's orbit. Laparoscopic surgery (LS) is envisioned as a less invasive option for space, but will induce further stresses and complicate logistical requirements. Thus, further study into the technology and physiology of LS in weightlessness is required. We recently utilized the National Research Council of Canada's Flight Research Laboratory's Falcon 20 aircraft as a terrestrial analogue space environment (TASE) for space surgery research. The Falcon 20 had never been used for this purpose nor had the involved teams collaborated previously. There were many process challenges including the lack of antecedent surgical studies on this aircraft, a requirement for multiple disciplines who were unfamiliar and geographically distant from each other, flight performance limitations with the Falcon 20, complex animal care requirements, requirements for prototypical in-flight life-support surgical suites, financial limitations, and a need to use non-flight hardened technologies. Stepwise suggested solutions to these challenges are outlined as guidelines for future investigators intending similar research. Overall, the Falcon 20 TASE, backed by the flight resources, especially the design and fabrication capabilities of the NRC-FRL, provide investigators with a versatile and responsive opportunity to pursue research into advanced medical techniques that will be needed to save lives during space exploration.  相似文献   

10.
The historical development of ground based astronomical telescopes leads us to expect that space‐based astronomical telescopes will need tobe operational for many decades. The exchange of scientific instruments in space will be a prerequisite for the long lasting scientific success of such missions. Operationally, the possibility to repair or replace key spacecraft components in space will be mandatory. We argue that these requirements can be fulfilled with robotic missions and see the development of the required engineering as the main challenge. Ground based operations, scientifically and technically, will require a low operational budget of the running costs. These can be achieved through enhanced autonomy of the spacecraft and mission independent concepts for the support of the software. This concept can be applied to areas where the mirror capabilities do not constrain the lifetime of the mission (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The crustal dichotomy of Mars describes the topographic division between the young plains in the northern hemisphere and the old terrain in the southern hemisphere. The highland-lowland boundary separates the younger plains from the older, high-standing terrain and consists of three geologically-distinct regions: the Tharsis Province, the chaotic terrain, and the fretted terrain (which includes gradational boundary types)-all are characterised by tensional tectonics. This paper presents new geological evidence that shows the topographic division at the fretted terrain formed in the late Noachian-early Hesperian time period: the same time period in which the Tharsis Province and chaotic terrain formed, and fracturing of a southern-hemisphere-type surface beneath the northern plains occurred. These are inherent features of the crustal dichotomy, indicating it must have also formed during the late Noachian-early Hesperian time period. An analogy is made between the northern lowlands and sedimentary basins on Earth: both are basin like and are surrounded by provinces that have been subjected to pronounced tensional tectonics. This paper uses the White and McKenzie model (1989a) to propose that a lithospheric-stretching event on Mars, in the late Noachian-early Hesperian time period, produced the crustal dichotomy; the Tharsis Province formed by uplift (over a sub-surface hotspot) and gave rise to lithospheric stretching, and the northern lowlands formed by subsidence (over normal asthenospheric temperatures). Detachment faults, operating from the Tharsis Province and around northern lowlands, allowed structural equilibrium and large lithospheric extensions to be attained during this period: they also defined the geometry of the lowlands. The proposal is supported with calculations used to estimate the amount of subsidence that can be achieved in this way.  相似文献   

12.
Continuous access to the UV domain has been considered of importance to astrophysicists and planetary scientists since the mid-sixties. However, the future of UV missions for the post-HST era is believed by a significant part of astronomical community to be less encouraging. We argue that key science problems of the coming years will require further development of UV observational technologies. Among these hot astrophysical issues are: the search for missing baryons, revealing the nature of astronomical engines, properties of atmospheres of exoplanets as well as of the planets of the Solar System etc. We give a brief review of UV-missions both in the past and in the future. We conclude that UV astronomy has a great future but the epoch of very large and efficient space UV facilities seems to be a prospect for the next decades. As to the current state of the UV instrumentation we think that this decade will be dominated by the HST and coming World Space Observatory-Ultraviolet (WSO-UV) with a 1.7 m UV-telescope onboard. The international WSO-UV mission is briefly described. It will allow high resolution/high sensitivity imaging and high/low resolution spectroscopy from the middle of the decade.  相似文献   

13.
The impact of the space environment upon living organisms is profound. Its effects range from alterations in sub-cellular processes to changes in the structure and function of whole organ systems. As the number of astronaut and cosmonaut crews flown in space has grown, so to has our understanding of the effects of the space environment upon biological systems. There are many parallels between the physiology of space flight and terrestrial disease processes, and the response of astronaut crews themselves to long-duration space deployment is therefore of central interest. In the next 15 years the International Space Station (ISS) will serve as a permanently manned dedicated life and physical sciences platform for the further investigation of these phenomena. The European Space Agency's Columbus module will hold the bulk of the ISS life science capability and, in combination with NASA's Human Research Facility (HRF) will accommodate the rack mounted experimental apparatus. The programme of experimentation will include efforts in fundamental biology, human physiology, behavioural science and space biomedical research. In the four decades since Yuri Gagarin first orbited the Earth, space life science has emerged as a field of study in its own right. The ISS takes us into the next era of human space exploration, and it is hoped that its programme of research will yield new insights, novel therapeutic interventions, and improved biotechnology for terrestrial application. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
《New Astronomy Reviews》2000,44(1-2):119-124
I review detached binaries consisting of white dwarfs with either other white dwarfs or low mass main-sequence stars in tight orbits around them. Orbital periods have been measured for 15 white dwarf/white dwarf systems and 22 white dwarf/M dwarf systems. While small compared to the number of periods known for CVs (>300), I argue that each variety of detached system has a space density an order of magnitude higher that of CVs. While theory matches the observed distribution of orbital periods of the white dwarf/white dwarf binaries, it predicts white dwarfs of much lower mass than observed. Amongst both types of binary are clear examples of helium core white dwarfs, as opposed to the usual CO composition; similar systems must exist amongst the CVs. White dwarf/M dwarf binaries suffer from selection effects which diminish the numbers seen at long and short periods. They are useful for the study of irradiation; I discuss evidence to suggest that Balmer emission is broadened by optical depth effects to an extent which limits its usefulness for imaging the secondary stars in CVs.  相似文献   

15.
The present-day large increase of the amount of data relevant to cosmology, as well as their increasing accuracy, leads to the idea that the determination of cosmological parameters has been achieved with a rather good precision, may be of the order of 10%. There is a large consensus around the so-called concordance model. Indeed this model does fit an impressive set of independent data, the most impressives been: CMB Cl curve, most current matter density estimations, Hubble constant estimation from HST, apparent acceleration of the Universe, good matching of the power spectrum of matter fluctuations. However, the necessary introduction of a non zero cosmological constant is an extraordinary new mystery for physics, or more exactly the come back of one of the ghost of modern physics since its introduction by Einstein. Here, I would like to emphasize that some results are established beyond reasonable doubt, like the (nearly) flatness of the universe and the existence of a dark non-baryonic component of the Universe. But also that the evidence for a positive cosmological constant may not be as strong as needed for its existence to be considered as established beyond doubt. In this respect, I will argue that an Einstein-De Sitter universe might still be a viable option. Some observations do not fit the concordance picture. I discuss several of the claimed observational evidences supporting the concordance model and will focus more specifically on the observational properties of clusters which offer powerful constraints on various quantities of cosmological interest. They are particularly interesting in constraining the cosmological density parameter, nicely complementing the CMB result, which by its own does not request a non vanishing cosmological constant, contrary to what is sometimes claimed. Early, local, estimations based on the M/L ratio are now superseded by new tests that have been proposed during the last ten years which are globalin nature. Here, I will briefly discuss three of them: 1) the evolution of the abundance of clusters with redshift 2) the baryon fraction measured in local clusters 3) apparent evolution of the baryon fraction with redshift. I will show that these three independent tests lead to high matter density for the Universe in the range 0.6 — 1. I therefore conclude that the dominance of vacuum to the various density contributions to the Universeis presently a fascinating possibility, but it is still premature to consider it as an established scientific fact.  相似文献   

16.
The Moon does not seem to be a place for a biologist. However, it offers the possibility of unravelling a better understanding of the conditions for habitability on the Earth and the conditions for life on the early Earth. It will be a place where much of the life sciences technologies required to establish a permanent human presence in space can be tested to complete reliability. Specifically, a long-term life sciences laboratory on the Moon can be used to investigate three areas of science that are currently poorly understood: (1) the linearity or non-linearity of the effects of different magnitudes of space environmental stresses on organisms, particularly gravity; (2) the effects of cumulative environmental effects both in individual organisms and across generations, (3) the synergistic effects of different space environmental parameters on organisms. The close proximity and scientific importance of the Moon makes it a useful permanent location and staging post for the human expansion into space.  相似文献   

17.
I derive a second-order local relation between the redshift-space mass density field and the real-space velocity field. This relation can be useful for comparisons between the cosmic density and peculiar velocity fields, for a number of reasons. First, relating the real-space velocity directly to the redshift-space density enables one to avoid the Ω-dependent reconstruction of the density field in real space. Secondly, the reconstruction of the three-dimensional velocity field in redshift space, questionable because of its vorticity, is also unnecessary. Finally, a similar relation between the galaxy density field and the velocity field offers a way to break the Ω-bias degeneracy in density–velocity comparisons, when combined with an additional measurement of the redshift-space galaxy skewness. I derive the latter relation under the assumption of non-linear but local bias; accounting for stochasticity of bias is left for further study.  相似文献   

18.
Observations of QSOs and Seyfert I galaxies show an anomalously steep Balmer decrement, which is in contradiction to the prediction of the traditional recombination theory. This is a long standing puzzle in past three decades in the study of AGNs. In this paper, we provide an alternative approach to solve this puzzle by using a newly recognized line emission mechanism, namely, the “Cerenkov line-like radiation”. For this purpose, we collected about a hundred of QSOs and Seyfert I galaxies, whose Balmer decrements have been measured and published in the past 30 years, and make the theoretical calculations on the observed Balmer decrements using an improved formula for the Cerenkov line intensity. The agreement between the calculations and observations is excellent. Therefore, we argue that the broad hydrogen lines of the QSOs and Seyfert I galaxies mainly originate from the Cerenkov line-like radiation of relativistic electrons. If this suggestion is further confirmed, our knowledge about the physics of AGNs will be greatly changed.  相似文献   

19.
We have used deep ground-based imaging in the near-infrared (near-IR) to search for counterparts to the luminous submillimetre (submm) sources in the catalogue of Smail et al. For the majority of the submm sources the near-IR imaging supports the counterparts originally selected from deep optical images. However, in two cases (10 per cent of the sample) we find a relatively bright near-IR source close to the submm position, sources that were unidentified in the deep Hubble Space Telescope ( HST ) and ground-based R -band images used by Smail et al. We place limits on colours of these sources from deep high-resolution Keck II imaging and find they have 2 σ limits of ( I − K )≳6.8 and ( I − K )≳6.0, respectively. Both sources thus class as extremely red objects (EROs). Using the spectral properties of the submm source in the radio and submm we argue that these EROs are probably the source of the submm emission, rather than the bright spiral galaxies previously identified by Smail et al. This connection provides important insights into the nature of the enigmatic ERO population and faint submm galaxies in general. From the estimated surface density of these submm-bright EROs we suggest that this class accounts for the majority of the reddest members of the ERO population, in good agreement with the preliminary conclusions of pointed submm observations of individual EROs. We conclude that the most extreme EROs represent a population of dusty, ultraluminous galaxies at high redshifts; further study of these will provide useful insights into the nature of star formation in obscured galaxies in the early Universe. The identification of similar counterparts in blank-field submm surveys will be extremely difficult owing to their faintness ( K ∼20.5, I ≳26.5). Finally, we discuss the radio and submm properties of the two submm-bright EROs discovered here and suggest that both galaxies lie at z ≳2.  相似文献   

20.
We argue that it is important to expand the consideration of climate in the context of provision of ecosystem services in drylands. In addition to climate change, it is necessary to include climate variability on timescales relevant to human and ecological considerations, namely interannual to decadal and multidecadal. The period of global instrumental record (about a century and a half long at the very most) is neither an adequate nor an unbiased sample of the range and character of natural climate variability that might be expected with the climate system configured as it is now. We base this on evidence from W. N. America, where there has recently been a major multi-year drought, of a scale and intensity that has occurred several times in the last 2000 years, and on attempts to provide explanations of these phenomena based on physical climatology. Ensembles of runs of forced climate system models suggest the next 50 years will bring much more extensive and intense drought in the continental interior of North America. The trajectory followed by the supply of ecosystem services will be contingent not only on the genotypes available and the antecedent soil, economic and social conditions but also on climate variability and change. The critical features of climate on which patterns of plant growth and water supply depend may vary sharply during and between human generations, resulting in very different experiences and hence, expectations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号