首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 487 毫秒
1.
Analyses of cloud condensation nuclei (CCN) number concentrations (cm− 3) measured at the Mace Head Atmospheric Research Station, near Carna, County Galway, Ireland, using a DH Associates Model M1 static thermal diffusion cloud chamber over the period from March 1994 to September 2002 are presented in this work. Air masses are defined as being ‘marine’ if they originate from a wind direction of 180–300° and ‘continental’ air masses are defined as originating from a wind direction of 45–135°. Air masses without such filtering were classified as ‘undefined’ air masses. Air masses were found to be dominated by marine sector air, re-affirming Mace Head as a baseline atmospheric research station. CCN levels for specific air masses at Mace Head were found to be comparable with earlier studies both at Mace Head and elsewhere. Monthly averaged clean marine (wind direction of 180–300° and black carbon absorption coefficient < 1.425 Mm− 1) CCN and marine CCN varied between 15–247 cm− 3 and 54–670 cm− 3, respectively. As expected, significant increases in number concentration were found in continentally sourced CCN over that of marine CCN and were found to follow a log-normal distribution significantly tighter than that of clean marine air masses. No significant trend was found for CCN over the 9-year period. While polluted continental air masses showed a slight increase in CCN concentrations over the winter months, most likely due to increased fuel usage and a lower mixed boundary layer, the dominance of marine sector air arriving at Mace Head, which generally consists of background CCN concentrations, reduced seasonal differences for polluted air. Marine air showed a distinct seasonal pattern, with elevated values occurring over the spring and summer seasons. This is thought to be due to enhanced biogenic aerosol production as a result of phytoplankton bloom activity in the North Atlantic.  相似文献   

2.
Three independent methods have been used to sort the ozone, carbonmonoxide, and other radiatively important trace gases measured at Mace Head,Ireland, and thereby distinguish clean air masses transported over the NorthAtlantic from the more polluted air masses which have recently travelledfrom the European continent. Over the period April 1987–June 1995 theNorthern Hemisphere surface ozone baseline concentrations exhibited a meanconcentration of 34.8 ppb, with a small positive trend (+0.19 ppbyr-1), while the corresponding trend in air originating fromthe polluted European areas was negative (–0.39 ppbyr-1). Carbon monoxide measurements from March 1990 toDecember 1994 showed negative trends for both the unpolluted (–0.17ppb yr-1) and polluted data (–13.6 ppbyr-1). Overall the continent of Europe was shown to be a smallnet sink of 2.6 ppb for all occasions when European air was transported tothe North Atlantic.  相似文献   

3.
Estimates of the Chemical Budget for Ozone at Waliguan Observatory   总被引:6,自引:0,他引:6  
Waliguan Observatory (WO) is an in-land Global Atmosphere Watch (GAW) baseline station on the Tibetan plateau. In addition to the routine GAW measurement program at WO, measurements of trace gases, especially ozone precursors, were made for some periods from 1994 to 1996. The ozone chemical budget at WO was estimated using a box model constrained by these measured trace gas concentrations and meteorological variables. Air masses at WO are usually affected by the boundary layer (BL) in the daytime associated with an upslope flow, while it is affected by the free troposphere (FT) at night associated with a downslope flow. An anti-relationship between ozone and water vapor concentrations at WO is found by investigating the average diurnal cycle pattern of ozone and water vapor under clear sky conditions. This relationship implies that air masses at WO have both the FT and BL characteristics. Model simulations were carried out for clear sky conditions in January and July of 1996, respectively. The chemical characteristics of mixed air masses (MC) and of free tropospheric air masses (FT) at WO were investigated. The effects of the variation in NOx and water vapor concentrations on the chemical budget of ozone at WO were evaluated for the considered periods of time. It was shown that ozone was net produced in January and net destroyed in July for both FT and MC conditions at WO. The estimated net ozone production rate at WO was –0.1 to 0.4 ppbv day–1 in FT air of January, 0.0 to 1.0 ppbv day–1 in MC air of January, –4.9 to –0.2 ppbv day–1 in FT air of July, and –5.1 to 2.1 ppbv day–1 in MC air of July.  相似文献   

4.
In situ AGAGE GC-MS measurements of methyl bromide (CH3Br) and methyl chloride (CH3Cl) at Mace Head, Ireland and Cape Grim, Tasmania (1998–2001) reveal a complex pattern of sources. At Mace Head both gases have well-defined seasonal cycles with similar average annual decreases of 3.0% yr−1 (CH3Br) and 2.6% yr−1 (CH3Cl), and mean northern hemisphere baseline mole fractions of 10.37 ± 0.05 ppt and 535.7 ± 2.2 ppt, respectively. We have used a Lagrangian dispersion model and local meteorological data to segregate the Mace Head observations into different source regions, and interpret the results in terms of the known sources and sinks of these two key halocarbons. At Cape Grim CH3Br and CH3Cl also show annual decreases in their baseline mixing ratios of 2.5% yr−1 and 1.5% yr−1, respectively. Mean baseline mole fractions were 7.94 ± 0.03 ppt (CH3Br) and 541.3 ± 1.1 ppt (CH3Cl). Although CH3Cl has astrong seasonal cycle there is no well-defined seasonal cycle in the Cape Grim CH3Br record. The fact that both gases are steadily decreasing in the atmosphere at both locations implies that a change has occurred which is affecting a common, major source of both gases (possibly biomass burning) and/or their major sink process (destruction by hydroxyl radical).  相似文献   

5.
Ozone production efficiencies (EN), which can be defined as the netnumber of ozone molecules produced per molecule of NOxoxidised, have been calculated from measurements taken during three intensive field campaigns (one in the spring, EASE 96, and two in the summer, EASE 97 and TIGER 95), at two European coastal sites (Mace Head, Ireland (EASE) and Weybourne, Norfolk (TIGER)) impacted by polluted air masses originating from both the U.K. and continental Europe, as well as relatively clean oceanic air masses from the Arctic and Atlantic. From a detailed wind sector analysis of the EASE 96 and 97 data it is clear that two general types of pollution regime were encountered at Mace Head. The calculated ozone production efficiency in clean oceanic air masses was approximately 65, which contrasted to more polluted air, from the U.K. and the continental European plume, where the efficiency decreased to between 4 and 6. The latter values of ENagree well with literature measurements conducted downwind of various urban centres in the U.S. and Europe, which are summarised in a wide-ranging review table. The EN value calculated for clean oceanic air is effectivelyan upper limit, owing to the relatively rapid deposition of HNO3 tothe ocean. Consideration of the variation of EN with NOx forthe three campaigns suggests that ozone production efficiency is relatively insensitive to both geographical location and season. The measuredEN values are also compared with values derived from steady-state expressions. An observed anti-correlation between EN and measured ozone tendencyis briefly discussed.  相似文献   

6.
Simultaneous measurements of ozone and ozoneprecursors were made during a field campaign atSchauinsland in the Black Forest and in the valleynorth of Schauinsland that channels the flow ofpolluted air from the city of Freiburg to the site.From the decay of hydrocarbons and NOx between the twomeasuring sites and the known rate coefficients, theconcentration of OH radicals was calculated. From abudget analysis of OH and HOx it is concluded that therelatively high OH concentrations (5–8 ×106cm-3) in the presence of high NO2concentrations cannot be explained by the knownprimary sources. The budget can be closed if efficientrecycling of OH via HO2 is assumed to occur andthat, based on the measured hydrocarbons, 2 HO2molecules are formed for each OH radical that reactswith a hydrocarbon molecule. This assumption is inaccordance with the budget of Ox obtained from ourmeasurements and with results from earliermeasurements of alkylnitrates and peroxy radicals atSchauinsland. A possible conclusion is that the decayof precursors and production of photooxidants in urbanplumes proceeds at a faster rate than is currentlyassumed. The potential role of biogenichydrocarbons for the radical budget is alsodiscussed.  相似文献   

7.
A new version of an atmospheric pressure chemical ionisation mass spectrometer has been developed for ground based in situ atmospheric measurements of OH and total peroxy (HO2 + organic peroxy) radicals. Based on the previously developed principle of chemical conversion of OH radicals to H2SO4 in reaction with SO2 and detection of H2SO4 using an ion molecule reaction with NO3, the new instrument is equipped with a turbulent chemical conversion reactor allowing for measurements in moderately polluted atmosphere at NO concentrations up to several ppb. Unlike other similar devices, where the primary NO3 ions are produced using radioactive ion sources, the new instrument is equipped with a specially developed corona discharge ion source. According to laboratory measurements, the overall accuracy and detection limits are estimated to be, respectively, 25% and 2 × 105 molecule cm-3 for OH and 30% and 1 × 105 molecule cm-3 for HO2 at 10 min integration times. The detection limit for measurements of OH radicals under polluted conditions is 5 × 105 molecules cm-3 at 10 min integration times. Examples of ambient air measurements during a field campaign near Paris in July 2007 are presented demonstrating the capability of the new instrument, although with reduced performance due to the employment of non isotopic SO2.  相似文献   

8.
Coastal nucleation events and behavior of cluster ions were characterized through the measurements of air ion mobility distributions at the Mace Head research station on the west coast of Ireland in 2006. We measured concentrations of cluster ions and charged aerosol particles in the size range of 0.34–40 nm. These measurements allow us to characterize freshly nucleated charged particles with diameters smaller than 3 nm. The analysis shows that bursts of intermediate ions (1.6–7 nm) are a frequent phenomenon in the marine coastal environment. Intermediate ion concentrations were generally close to zero, but during some nucleation episodes the concentrations increased to several hundreds per cm3. Nucleation events occurred during most of the measurement days. We classified all days into one of seven classes according to the occurrence and type of new particle formation. Nucleation events were observed during 207 days in 2006, most prominently in the spring and summer months. Rain-induced events, in turn, were observed during 132 days. Particle formation and growth events mostly coincided with the presence of low tide. Also small cluster ions (0.34–1.6 nm) were characterized. Average concentrations of small ions were 440 cm− 3 for the negative ions and 423 cm− 3 for the positive ions. Average mean mobilities of small ions were 1.86 cm2V− 1s− 1 and 1.49 cm2V− 1s− 1 for the negative and positive polarities, respectively. Concentrations of small ions were observed to be strongly dependent on the variations of meteorological parameters including wind speed and direction.  相似文献   

9.
Surface measurements of cloud condensation nuclei (CCN) number concentration (cm−3) are presented for unmodified marine air and for polluted air at Mace Head, for the years 1994 and 1995. The CCN number concentration active at 0.5% supersaturation is found to be approximately log-normal for marine and polluted air at the site. Values of geometric mean, median and arithmetic mean of CCN number concentration (cm−3) for marine air are in the range 124–135, 140–150 and 130–157 for the two years of data. Analysis of CCN number concentration for high wind speed, U, up to 20 m s−1 show enhanced CCN production for U in excess of about 10–12 m s−1. Approximately 7% increase in CCN per 1 m s−1 increase in wind speed is found, up to 17 m s−1. A relationship of the form log10CCN=a+bU is obtained for the periods March 1994 and January, February 1995 for marine air yielding values a of 1.70; 1.90 and b of 0.035 for both periods.  相似文献   

10.
Highlights of fifty years of atmospheric aerosol research at Mace Head   总被引:1,自引:0,他引:1  
This paper summarises the development and principal results of fifty years of research on aerosols in the marine atmosphere at Mace Head Atmospheric Research Station on the west coast of Ireland. It concentrates on the sources, physico-chemical properties, number and mass concentrations, size range, volatility and chemical composition of aerosols in different air masses. It also examines optical properties of the aerosols and their long-range transport.  相似文献   

11.
《Atmospheric Research》2009,91(2-4):338-355
This paper summarises the development and principal results of fifty years of research on aerosols in the marine atmosphere at Mace Head Atmospheric Research Station on the west coast of Ireland. It concentrates on the sources, physico-chemical properties, number and mass concentrations, size range, volatility and chemical composition of aerosols in different air masses. It also examines optical properties of the aerosols and their long-range transport.  相似文献   

12.
There are large uncertainties in identifying and quantifying the globally significant sources and sinks of methyl bromide (CH3Br) and methyl iodide (CH3I). Long-term, quasi-continuous observations can provide valuable information about their regional sources, which may be significant in the global context. We report 3 years of in situobservations of these trace gases from the AGAGE (Advanced Global Atmospheric Gas Experiment) program at Cape Grim, Tasmania (41 °S, 145 °E). The average background levels of CH3Br and CH3I during March 1998–March 2001 were 8.05 and 1.39 ppt (dry air mole fractions expressed in parts per 1012), respectively. The CH3Br background data showed little seasonal variability. Trajectory analyses reveal that air masses showing elevated CH3Br levels at Cape Grim have had significant contact with coastal-terrestrial and/or coastal-seawater and/or urban source regions. The CH3I background data showed a seasonal cycle with a 3-year average amplitude of 0.47 ppt and maximum concentrations in summer, suggesting that the Southern Ocean is a significant source.Trajectory analyses reveal that air masses showing highly elevated CH3I levels at Cape Grim have had significant contact with coastal-terrestrial and/or coastal-seawater regions and/or the open-ocean regions of Bass Strait and the Tasman Sea.  相似文献   

13.
Free Radicals and Fast Photochemistry during BERLIOZ   总被引:4,自引:0,他引:4  
The free radicals OH, HO2, RO2, and NO3 are known to be the driving force for most chemical processes in the atmosphere. Since the low concentration of the above radicals makes measurements particularly difficult, only relatively few direct measurements of free radical concentrations have been reported to date.We present a comprehensive set of simultaneous radical measurements performed by Laser Induced Fluorescence (LIF), Matrix Isolation –Electron spin Resonance (MI-ESR), Peroxy Radical Chemical Amplification (PERCA), and Differential Optical Absorption Spectroscopy (DOAS) during the BERLIner OZonexperiment (BERLIOZ) during July and August of 1998 near Berlin, Germany. Most of the above radical species were measured by more than one technique and an intercomparison gave good agreement. This data set offered the possibility to study and quantify the role of each radical at a rural, semi-polluted site in the continental boundary layer and to investigate interconnections and dependencies among these free radicals.In general (box) modelled diurnal profiles of the different radicals reproduced the measurements quite well, however measured absolute levels are frequently lower than model predictions. These discrepancies point to disturbing deficiencies in our understanding of the chemical system in urban air masses.In addition considerable night-time peroxy radical production related to VOC reactions with NO3 and O3 could be quantified.  相似文献   

14.
A field instrument has been developed for the purpose of measuring gas-phase atmospheric iodine species in the marine boundary layer. Vacuum UV resonance-fluorescence (RF), generated using a microwave discharge lamp, is employed to detect atomic iodine via the (5p46s)–(5p5) transitions around 178–184 nm. The system can be operated in two modes; either to directly measure ambient iodine atoms, or to measure the total photolabile iodine loading of ambient air, through broadband visible photolysis of photolabile iodine-containing species, with subsequent RF detection of the iodine atoms released. In both cases the instrument allows for the in situ measurement of the species detected, which is advantageous for gathering information concerning their local sources and distribution. The instrument is calibrated through generation of a known concentration of iodine atoms from the photolysis of I2 using a mercury pen-ray lamp. The instrument was deployed for the first time in August 2007 at Mace Head on the west coast of Ireland; initial results from this field trial are presented. Ambient iodine atoms were measured at levels up to 22 ± 4.8 ppt during the day, coinciding with the lowest tides, when Laminaria seaweed beds were exposed. The total photolabile iodine loading was also measured during several night-time and day-time periods and was found to correlate inversely with tidal height. Inferred I2 concentrations based on these measurements indicate levels of several hundred ppt at the Mace Head site. These measurements represent the first direct observations of ambient iodine atoms and measurement of total photolabile iodine in the atmosphere.  相似文献   

15.
Observations of the tropical atmosphere are fundamental to the understanding of global changes in air quality, atmospheric oxidation capacity and climate, yet the tropics are under-populated with long-term measurements. The first three years (October 2006–September 2009) of meteorological, trace gas and particulate data from the global WMO/Global Atmospheric Watch (GAW) Cape Verde Atmospheric Observatory Humberto Duarte Fonseca (CVAO; 16° 51′ N, 24° 52′ W) are presented, along with a characterisation of the origin and pathways of air masses arriving at the station using the NAME dispersion model and simulations of dust deposition using the COSMO-MUSCAT dust model. The observations show a strong influence from Saharan dust in winter with a maximum in super-micron aerosol and particulate iron and aluminium. The dust model results match the magnitude and daily variations of dust events, but in the region of the CVAO underestimate the measured aerosol optical thickness (AOT) because of contributions from other aerosol. The NAME model also captured the dust events, giving confidence in its ability to correctly identify air mass origins and pathways in this region. Dissolution experiments on collected dust samples showed a strong correlation between soluble Fe and Al and measured solubilities were lower at high atmospheric dust concentrations. Fine mode aerosol at the CVAO contains a significant fraction of non-sea salt components including dicarboxylic acids, methanesulfonic acid and aliphatic amines, all believed to be of oceanic origin. A marine influence is also apparent in the year-round presence of iodine and bromine monoxide (IO and BrO), with IO suggested to be confined mainly to the surface few hundred metres but BrO well mixed in the boundary layer. Enhanced CO2 and CH4 and depleted oxygen concentrations are markers for air-sea exchange over the nearby northwest African coastal upwelling area. Long-range transport results in generally higher levels of O3 and anthropogenic non-methane hydrocarbons (NMHC) in air originating from North America. Ozone/CO ratios were highest (up to 0.42) in relatively fresh European air masses. In air heavily influenced by Saharan dust the O3/CO ratio was as low as 0.13, possibly indicating O3 uptake to dust. Nitrogen oxides (NOx and NOy) show generally higher concentrations in winter when air mass origins are predominantly from Africa. High photochemical activity at the site is shown by maximum spring/summer concentrations of OH and HO2 of 9?×?106 molecule cm?3 and 6?×?108 molecule cm?3, respectively. After the primary photolysis source, the most important controls on the HOx budget in this region are IO and BrO chemistry, the abundance of HCHO, and uptake of HOx to aerosol.  相似文献   

16.
Airborne measurements of volatile organic compounds (VOC) were performed overthe tropical rainforest in Surinam (0–12 km altitude,2°–7° N, 54°–58° W) using the proton transferreaction mass spectrometry (PTR-MS) technique, which allows online monitoringof compounds like isoprene, its oxidation products methyl vinyl ketone,methacrolein, tentatively identified hydroxy-isoprene-hydroperoxides, andseveral other organic compounds. Isoprene volume mixing ratios (VMR) variedfrom below the detection limit at the highest altitudes to about 7 nmol/molin the planetary boundary layer shortly before sunset. Correlations betweenisoprene and its product compounds were made for different times of day andaltitudes, with the isoprene-hydroperoxides showing the highest correlation.Model calculated mixing ratios of the isoprene oxidation products using adetailed hydrocarbon oxidation mechanism, as well as the intercomparisonmeasurement with air samples collected during the flights in canisters andlater analysed with a GC-FID, showed good agreement with the PTR-MSmeasurements, in particular at the higher mixing ratios.Low OH concentrations in the range of 1–3 × 105molecules cm-3 averaged over 24 hours were calculated due to lossof OH and HO2 in the isoprene oxidation chain, thereby stronglyenhancing the lifetime of gases in the forest boundary layer.  相似文献   

17.
The intensive field study POPCORN (Photo-Oxidant Formation by Plant Emitted Compounds and OH Radicals in North-Eastern Germany) was carried out in a rural area of North-Eastern Germany during August 1994. An overview of the objectives, measurements and major results of this campaign is presented. Measurements of a set of relevant atmospheric trace compounds, including the hydroxyl radical, along with meteorological data were performed to increase the understanding of OH radical chemistry and photo-oxidant formation. Additionally, plant emissions and the exchange of trace gases between a maize field and the atmosphere were investigated. Budgets of selected trace gases were calculated to assess the relative importance of local sources, chemistry or transport. Intercomparisons between measurement techniques were a central issue of POPCORN and included measurements of OH, hydrocarbons, formaldehyde, photolysis frequencies and vertical fluxes. OH radical concentrations were measured simultaneously by LIF (Laser Induced Fluorescence) and DOAS (Differential Optical Absorption Spectroscopy). Both methods showed good agreement. Maximum OH concentrations were around 107 cm–3 and the diurnal cycles closely followed the rate of primary production via ozone photolysis. Generally, the trace gas composition during POPCORN was characterized by relatively low concentrations of most compounds, e.g. CO: 85–200 ppb, ethane: 0.6–2 ppb, and moderate NOx levels: 0.5–5 ppb (at noontime). Concentrations of individual biogenic volatile organic compounds (VOC) were mostly well below 100 ppt. However, formaldehyde and acetaldehyde which partly originate from biological sources were observed at mixing ratios of some ppb.  相似文献   

18.
Hydroxyl radical (OH) concentrations in the atmospheric boundary layer over a number of remote ocean locations are calculated from the measured diurnal variation in atmospheric dimethylsulfide (DMS). By using averaged DMS data sets from extended periods, the calculation yields OH concentrations averaged over periods from several days to weeks. These average OH concentrations range from 7×105 to 2.9×106 molecules cm-3, corresponding to midday maxima of 3 to 12×106 molecules cm-3. The lowest values correspond to studies with the lowest light intensity (Antarctic summer and South Atlantic winter), and the highest values to regions with probable anthropogenic influence. In addition to the long term averages, daily average OH levels can be calculated for most days in a two week period from a cruise in the tropical eastern Pacific. These calculations are in good argeement with global average OH levels derived from other tracers, and are consistent with model OH calculations when allowance is made for variation in ambient ozone levels between the studies. Estimates of gas exchange made from the diurnal variation of DMS suggest that either the gas exchange coefficient of DMS or the boundary layer mixing depth may have been overestimated in past analyses.  相似文献   

19.
Measurements of OH reactivity were made at the Weybourne Atmospheric Observatory on the North Norfolk coast, UK in May 2004. A wide range of supporting species was also measured concurrently as part of the TORCH-2 field campaign, allowing a detailed study of the OH oxidation chemistry to be carried out. Measurements were made in a variety of air masses, with the 3 most prevalent being air from the Atlantic that arrived at the site from over mainland UK in a South Westerly direction, and much cleaner Northerly air that originated over the far North Sea or Arctic, passed over the North Sea and arrived at the site from a North/North Easterly direction. Direct OH reactivity measurements were made on 6 days during the campaign and with influence of 2 of the 3 air masses prevalent during the study period. The average, minimum and maximum measured OH reactivity are: 4.9, 1.3 and 9.7 respectively. The measured OH reactivity was compared to key OH sinks such as NO2 and CO and a general positive correlation was observed. OH reactivity (k′) was then calculated using the full range of OH sinks species that were measured (including >30 NMHCs) and their pseudo first order rate constants for reaction with OH. For much of the measurement period there is a significant difference between the measured and calculated k′, with an average value of kmeas- kcalc?=?1.9 s-1, indicative of unmeasured OH sinks. A zero-dimensional box model containing a subset of the Master Chemical Mechanism was used to calculate the OH reactivity more accurately. The simultaneously measured trace species were used as inputs to the model and their oxidative degradation was described by a chemical mechanism containing ~5,000 species. The extra OH sinks species produced by the model, resulted in an improvement in the agreement between kmeas and kcalc, however the averaged missing OH reactivity across the entire measurement period remained at 1.4 s-1. Speculation is made as to the source of this missing reactivity, including reference to studies showing that a potentially large number of high molecular weight aromatic species could be unmeasured by standard instrumentation.  相似文献   

20.
Rate constants for the reaction of OH radicals with some branched alkyl nitrates have been measured applying a competitive technique. Methyl nitrite photolysis in synthetic air was used as OH radical source at 295±2 K and 1000 mbar total pressure. Using a rate constant of 2.53×10-12 cm3 s-1 for the reaction of OH radicals with n-butane as reference, the following rate constants were obtained (units: 10-12 cm3 s-1): isopropyl nitrate, 0.59±0.22; isobutyl nitrate, 1.63±0.20; 3-methyl-2-butyl nitrate, 1.95±0.15; 2-methyl-1-butyl nitrate, 2.50±0.15; 3-methyl-1-butyl nitrate, 2.55±0.35. These values have been combined with the literature data to recalculate the substituent factors F(X) for the different nitrate groups which can be used to predict OH rate constants for organic nitrates for which experimental data are not available.Preliminary measurements of the photolysis frequency of isopropyl nitrate have shown that for this nitrate as a model substance, OH reactions and direct photolysis are of equal importance under tropospheric conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号