首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
This paper presents the results of a probabilistic evaluation of the seismic performance of 3D steel moment‐frame structures. Two types of framing system are considered: one‐way frames typical of construction in the United States and two‐way frames typical of construction in Japan. For each framing system, four types of beam–column connections are considered: pre‐Northridge welded‐flange bolted‐web, post‐Northridge welded‐flange welded‐web, reduced‐beam‐section, and bolted‐flange‐plate connections. A suite of earthquake ground motions is used to compute the annual probability of exceedence (APE) for a series of drift demand levels and for member plastic‐rotation capacity. Results are compared for the different framing systems and connection details. It is found that the two‐way frames, which have a larger initial stiffness and strength than the one‐way frames for the same beam and column volumes, have a smaller APE for small drift demands for which members exhibit no or minimal yielding, but have a larger APE for large drift demands for which members exhibit large plastic rotations. However, the one‐way frames, which typically comprise a few seismic frames with large‐sized members that have relatively small rotation capacities, may have a larger APE for member failure. The probabilistic approach presented in this study may be used to determine the most appropriate frame configuration to meet an owner's performance objectives. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
In many land seismic situations, the complex seismic wave propagation effects in the near‐surface area, due to its unconsolidated character, deteriorate the image quality. Although several methods have been proposed to address this problem, the negative impact of 3D complex near‐surface structures is still unsolved to a large extent. This paper presents a complete 3D data‐driven solution for the near‐surface problem based on 3D one‐way traveltime operators, which extends our previous attempts that were limited to a 2D situation. Our solution is composed of four steps: 1) seismic wave propagation from the surface to a suitable datum reflector is described by parametrized one‐way propagation operators, with all the parameters estimated by a new genetic algorithm, the self‐adjustable input genetic algorithm, in an automatic and purely data‐driven way; 2) surface‐consistent residual static corrections are estimated to accommodate the fast variations in the near‐surface area; 3) a replacement velocity model based on the traveltime operators in the good data area (without the near‐surface problem) is estimated; 4) data interpolation and surface layer replacement based on the estimated traveltime operators and the replacement velocity model are carried out in an interweaved manner in order to both remove the near‐surface imprints in the original data and keep the valuable geological information above the datum. Our method is demonstrated on a subset of a 3D field data set from the Middle East yielding encouraging results.  相似文献   

3.
We present a novel application of the Kinect?, an input device designed for the Microsoft® Xbox 360® video game system. The device can be used by Earth scientists as a low‐cost, high‐resolution, short‐range 3D/4D camera imaging system producing data similar to a terrestrial light detection and ranging (LiDAR) sensor. The Kinect contains a structured light emitter, an infrared camera (the combination of these two produce a distance image), a visual wavelength camera, a three‐axis accelerometer, and four microphones. The cost is ~ US $100, frame rate is 30 Hz, spatial and depth resolutions are mm to cm depending on range, and the optimal operating range is 0.5 to ~5 m. The resolution of the distance measurements decreases with distance and is ≤1 mm at 0.5 m and ~75 mm at 5 m. We illustrate data collection and basic data analysis routines in three experiments designed to demonstrate the breadth and utility of this new sensor in domains of glaciology, stream bathymetry, and geomorphology, although the device is applicable to a number of other Earth science fields. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
5.
In soil‐structure interaction modeling of systems subjected to earthquake motions, it is classically assumed that the incoming wave field, produced by an earthquake, is unidimensional and vertically propagating. This work explores the validity of this assumption by performing earthquake soil‐structure interaction modeling, including explicit modeling of sources, seismic wave propagation, site, and structure. The domain reduction method is used to couple seismic (near‐field) simulations with local soil‐structure interaction response. The response of a generic nuclear power plant model computed using full earthquake soil‐structure interaction simulations is compared with the current state‐of‐the‐art method of deconvolving in depth the (simulated) free‐field motions, recorded at the site of interest, and assuming that the earthquake wave field is spatially unidimensional. Results show that the 1‐D wave‐field assumption does not hold in general. It is shown that the way in which full 3‐D analysis results differ from those which assume a 1‐D wave field is dependent on fault‐to‐site geometry and motion frequency content. It is argued that this is especially important for certain classes of soil‐structure systems of which nuclear power plants subjected to near‐field earthquakes are an example.  相似文献   

6.
Potential, potential field and potential‐field gradient data are supplemental to each other for resolving sources of interest in both exploration and solid Earth studies. We propose flexible high‐accuracy practical techniques to perform 3D and 2D integral transformations from potential field components to potential and from potential‐field gradient components to potential field components in the space domain using cubic B‐splines. The spline techniques are applicable to either uniform or non‐uniform rectangular grids for the 3D case, and applicable to either regular or irregular grids for the 2D case. The spline‐based indefinite integrations can be computed at any point in the computational domain. In our synthetic 3D gravity and magnetic transformation examples, we show that the spline techniques are substantially more accurate than the Fourier transform techniques, and demonstrate that harmonicity is confirmed substantially better for the spline method than the Fourier transform method and that spline‐based integration and differentiation are invertible. The cost of the increase in accuracy is an increase in computing time. Our real data examples of 3D transformations show that the spline‐based results agree substantially better or better with the observed data than do the Fourier‐based results. The spline techniques would therefore be very useful for data quality control through comparisons of the computed and observed components. If certain desired components of the potential field or gradient data are not measured, they can be obtained using the spline‐based transformations as alternatives to the Fourier transform techniques.  相似文献   

7.
Vertical fractures with openings of less than one centimetre and irregular karst cause abundant diffractions in Ground‐Penetrating Radar (GPR) records. GPR data acquired with half‐wavelength trace spacing are uninterpretable as they are dominated by spatially undersampled scattered energy. To evaluate the potential of high‐density 3D GPR diffraction imaging a 200 MHz survey with less than a quarter wavelength grid spacing (0.05 m × 0.1 m) was acquired at a fractured and karstified limestone quarry near the village of Cassis in Southern France. After 3D migration processing, diffraction apices line up in sub‐vertical fracture planes and cluster in locations of karstic dissolution features. The majority of karst is developed at intersections of two or more fractures and is limited in depth by a stratigraphic boundary. Such high‐resolution 3D GPR imaging offers an unprecedented internal view of a complex fractured carbonate reservoir model analogue. As seismic and GPR wave kinematics are similar, improvements in the imaging of steep fractures and irregular voids at the resolution limit can also be expected from high‐density seismic diffraction imaging.  相似文献   

8.
Subsurface rocks (e.g. shale) may induce seismic anisotropy, such as transverse isotropy. Traveltime computation is an essential component of depth imaging and tomography in transversely isotropic media. It is natural to compute the traveltime using the wavefront marching method. However, tracking the 3D wavefront is expensive, especially in anisotropic media. Besides, the wavefront marching method usually computes the traveltime using the eikonal equation. However, the anisotropic eikonal equation is highly non‐linear and it is challenging to solve. To address these issues, we present a layer‐by‐layer wavefront marching method to compute the P‐wave traveltime in 3D transversely isotropic media. To simplify the wavefront tracking, it uses the traveltime of the previous depth as the boundary condition to compute that of the next depth based on the wavefront marching. A strategy of traveltime computation is designed to guarantee the causality of wave propagation. To avoid solving the non‐linear eikonal equation, it updates traveltime along the expanding wavefront by Fermat's principle. To compute the traveltime using Fermat's principle, an approximate group velocity with high accuracy in transversely isotropic media is adopted to describe the ray propagation. Numerical examples on 3D vertical transverse isotropy and tilted transverse isotropy models show that the proposed method computes the traveltime with high accuracy. It can find applications in modelling and depth migration.  相似文献   

9.
Surface waves in seismic data are often dominant in a land or shallow‐water environment. Separating them from primaries is of great importance either for removing them as noise for reservoir imaging and characterization or for extracting them as signal for near‐surface characterization. However, their complex properties make the surface‐wave separation significantly challenging in seismic processing. To address the challenges, we propose a method of three‐dimensional surface‐wave estimation and separation using an iterative closed‐loop approach. The closed loop contains a relatively simple forward model of surface waves and adaptive subtraction of the forward‐modelled surface waves from the observed surface waves, making it possible to evaluate the residual between them. In this approach, the surface‐wave model is parameterized by the frequency‐dependent slowness and source properties for each surface‐wave mode. The optimal parameters are estimated in such a way that the residual is minimized and, consequently, this approach solves the inverse problem. Through real data examples, we demonstrate that the proposed method successfully estimates the surface waves and separates them out from the seismic data. In addition, it is demonstrated that our method can also be applied to undersampled, irregularly sampled, and blended seismic data.  相似文献   

10.
Multi‐storey buildings made of cross‐laminated timber panels (X‐lam) are becoming a stronger and economically valid alternative in Europe compared with traditional masonry or concrete buildings. During the design process of these multi‐storey buildings, also their earthquake behaviour has to be addressed, especially in seismic‐prone areas such as Italy. However, limited knowledge on the seismic performance is available for this innovative massive timber product. On the basis of extensive testing series comprising monotonic and reversed cyclic tests on X‐lam panels, a pseudodynamic test on a one‐storey X‐lam specimen and 1D shaking table tests on a full‐scale three‐storey specimen, a full‐scale seven‐storey building was designed according to the European seismic standard Eurocode 8 and subjected to earthquake loading on a 3D shaking table. The building was designed with a preliminary action reduction factor of three that had been derived from the experimental results on the three‐storey building. The outcomes of this comprehensive research project called ‘SOFIE – Sistema Costruttivo Fiemme’ proved the suitability of multi‐storey X‐lam structures for earthquake‐prone regions. The buildings demonstrated self‐centring capabilities and high stiffness combined with sufficient ductility to avoid brittle failures. The tests provided useful information for the seismic design with force‐based methods as defined in Eurocode 8, that is, a preliminary experimentally based action reduction factor of three was confirmed. Valid, ductile joint assemblies were developed, and their importance for the energy dissipation in buildings with rigid X‐lam panels became evident. The seven‐storey building showed relatively high accelerations in the upper storeys, which could lead to secondary damage and which have to be addressed in future research. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Land surface albedo plays an important role in the radiation budget and global climate models. NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) provide 16‐day albedo product with 500‐m resolution every 8 days (MCD43A3). Some in‐situ albedo measurements were used as the true surface albedo values to validate the MCD43A3 product. As the 16‐day MODIS albedo retrievals do not include snow observations when there is ephemeral snow on the ground surface in a 16‐day period, comparisons between MCD43A3 and 16 day averages of field data do not agree well. Another reason is that the MODIS cannot detect the snow when the area is covered by clouds. The Advanced Microwave Scanning Radiometer for EOS (AMSR‐E) data are not affected by weather conditions and are a good supplement for optical remote sensing in cloudy weather. When the surface is covered by ephemeral snow, the AMSR‐E data can be used as the additional information to retrieve the snow albedo. In this study, we developed an improved method by using the MODIS products and the AMSR‐E snow water equivalent (SWE) product to improve the MCD43A3 short‐time snow‐covered albedo estimation. The MODIS daily snow products MOD10A1 and MYD10A1 both provide snow and cloud information from observations. In our study region, we updated the MODIS daily snow product by combining MOD10A1 and MYD10A1. Then, the product was combined with the AMSR‐E SWE product to generate new daily snow‐cover and SWE products at a spatial resolution of 500 m. New SWE datasets were integrated into the Noah Land Surface Model snow model to calculate the albedo above a snow surface, and these values were then utilized to improve the MODIS 16‐day albedo product. After comparison of the results with in‐situ albedo measurements, we found that the new corrected 16‐day albedo can show the albedo changes during the short snowfall season. For example, from January 25 to March 14, 2007 at the BJ site, the albedo retrieved from snow‐free observations does not indicate the albedo changes affected by snow; the improved albedo conforms well to the in‐situ measurements. The correlation coefficient of the original MODIS albedo and the in‐situ albedo is 0.42 during the ephemeral snow season, but the correlation coefficient of the improved MODIS albedo and the in‐situ albedo is 0.64. It is concluded that the new method is capable of capturing the snow information from AMSR‐E SWE to improve the short‐time snow‐covered albedo estimation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Three‐dimensional seismic survey design should provide an acquisition geometry that enables imaging and amplitude‐versus‐offset applications of target reflectors with sufficient data quality under given economical and operational constraints. However, in land or shallow‐water environments, surface waves are often dominant in the seismic data. The effectiveness of surface‐wave separation or attenuation significantly affects the quality of the final result. Therefore, the need for surface‐wave attenuation imposes additional constraints on the acquisition geometry. Recently, we have proposed a method for surface‐wave attenuation that can better deal with aliased seismic data than classic methods such as slowness/velocity‐based filtering. Here, we investigate how surface‐wave attenuation affects the selection of survey parameters and the resulting data quality. To quantify the latter, we introduce a measure that represents the estimated signal‐to‐noise ratio between the desired subsurface signal and the surface waves that are deemed to be noise. In a case study, we applied surface‐wave attenuation and signal‐to‐noise ratio estimation to several data sets with different survey parameters. The spatial sampling intervals of the basic subset are the survey parameters that affect the performance of surface‐wave attenuation methods the most. Finer spatial sampling will reduce aliasing and make surface‐wave attenuation easier, resulting in better data quality until no further improvement is obtained. We observed this behaviour as a main trend that levels off at increasingly denser sampling. With our method, this trend curve lies at a considerably higher signal‐to‐noise ratio than with a classic filtering method. This means that we can obtain a much better data quality for given survey effort or the same data quality as with a conventional method at a lower cost.  相似文献   

13.
Real‐time hybrid simulation is a viable experiment technique to evaluate the performance of structures equipped with rate‐dependent seismic devices when subject to dynamic loading. The integration algorithm used to solve the equations of motion has to be stable and accurate to achieve a successful real‐time hybrid simulation. The implicit HHT α‐algorithm is a popular integration algorithm for conducting structural dynamic time history analysis because of its desirable properties of unconditional stability for linear elastic structures and controllable numerical damping for high frequencies. The implicit form of the algorithm, however, requires iterations for nonlinear structures, which is undesirable for real‐time hybrid simulation. Consequently, the HHT α‐algorithm has been implemented for real‐time hybrid simulation using a fixed number of substep iterations. The resulting HHT α‐algorithm with a fixed number of substep iterations is believed to be unconditionally stable for linear elastic structures, but research on its stability and accuracy for nonlinear structures is quite limited. In this paper, a discrete transfer function approach is utilized to analyze the HHT α‐algorithm with a fixed number of substep iterations. The algorithm is shown to be unconditionally stable for linear elastic structures, but only conditionally stable for nonlinear softening or hardening structures. The equivalent damping of the algorithm is shown to be almost the same as that of the original HHT α‐algorithm, while the period elongation varies depending on the structural nonlinearity and the size of the integration time‐step. A modified form of the algorithm is proposed to improve its stability for use in nonlinear structures. The stability of the modified algorithm is demonstrated to be enhanced and have an accuracy that is comparable to that of the existing HHT α‐algorithm with a fixed number of substep iterations. Both numerical and real‐time hybrid simulations are conducted to verify the modified algorithm. The experimental results demonstrate the effectiveness of the modified algorithm for real‐time testing. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Although it has been increasingly acknowledged that groundwater flow pattern is complicated in the three‐dimensional (3‐D) domain, two‐dimensional (2‐D) water table‐induced flow models are still widely used to delineate basin‐scale groundwater circulation. However, the validity of 2‐D cross‐sectional flow field induced by water table has been seldom examined. Here, we derive the analytical solution of 3‐D water table‐induced hydraulic head in a Tóthian basin and then examine the validity of 2‐D cross‐sectional models by comparing the flow fields of selected cross sections calculated by the 2‐D cross‐sectional model with those by the 3‐D model, which represents the “true” cases. For cross sections in the recharge or discharge area of the 3‐D basin, even if head difference is not significant, the 2‐D cross‐sectional models result in flow patterns absolutely different from the true ones. For the cross section following the principal direction of groundwater flow, although 2‐D cross‐sectional models would overestimate the penetrating depth of local flow systems and underestimate the recharge/discharge flux, the flow pattern from the cross‐sectional model is similar to the true one and could be close enough to the true one by adjusting the decay exponent and anisotropy ratio of permeability. Consequently, to determine whether a 2‐D cross‐sectional model is applicable, a comparison of hydraulic head difference between 2‐D and 3‐D solutions is not enough. Instead, the similarity of flow pattern should be considered to determine whether a cross‐sectional model is applicable. This study improves understanding of groundwater flow induced by more natural water table undulations in the 3‐D domain and the limitations of 2‐D models accounting for cross‐sectional water table undulation only.  相似文献   

15.
16.
Structure‐from‐motion (SfM) photogrammetry is revolutionising the collection of detailed topographic data, but insight into geomorphological processes is currently restricted by our limited understanding of SfM survey uncertainties. Here, we present an approach that, for the first time, specifically accounts for the spatially variable precision inherent to photo‐based surveys, and enables confidence‐bounded quantification of 3D topographic change. The method uses novel 3D precision maps that describe the 3D photogrammetric and georeferencing uncertainty, and determines change through an adapted state‐of‐the‐art fully 3D point‐cloud comparison (M3C2), which is particularly valuable for complex topography. We introduce this method by: (1) using simulated UAV surveys, processed in photogrammetric software, to illustrate the spatial variability of precision and the relative influences of photogrammetric (e.g. image network geometry, tie point quality) and georeferencing (e.g. control measurement) considerations; (2) we then present a new Monte Carlo procedure for deriving this information using standard SfM software and integrate it into confidence‐bounded change detection; before (3) demonstrating geomorphological application in which we use benchmark TLS data for validation and then estimate sediment budgets through differencing annual SfM surveys of an eroding badland. We show how 3D precision maps enable more probable erosion patterns to be identified than existing analyses, and how a similar overall survey precision could have been achieved with direct survey georeferencing for camera position data with precision half as good as the GCPs'. Where precision is limited by weak georeferencing (e.g. camera positions with multi‐metre precision, such as from a consumer UAV), then overall survey precision can scale as n½ of the control precision (n = number of images). Our method also provides variance–covariance information for all parameters. Thus, we now open the door for SfM practitioners to use the comprehensive analyses that have underpinned rigorous photogrammetric approaches over the last half‐century. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents novel predictor–corrector time‐integration algorithms based on the Generalized‐α method to perform pseudo‐dynamic tests with substructuring. The implicit Generalized‐α algorithm was implemented in a predictor–one corrector form giving rise to the implicit IPC–ρ∞ method, able to avoid expensive iterative corrections in view of high‐speed applications. Moreover, the scheme embodies a secant stiffness formula that can closely approximate the actual stiffness of a structure. Also an explicit algorithm endowed with user‐controlled dissipation properties, the EPC–ρb method, was implemented. The resulting schemes were tested experimentally both on a two‐ and on a six‐degrees‐of‐freedom system, using substructuring. The tests indicated that the numerical strategies enhance the fidelity of the pseudo‐dynamic test results even in an environment characterized by considerable experimental errors. Moreover, the schemes were tested numerically on severe non‐linear substructured multiple‐degrees‐of‐freedom systems reproduced with the Bouc–Wen model, showing the reliability of the seismic tests under these conditions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
19.
A modified version of the MODFLOW/MT3DMS‐based reactive transport model PHT3D was developed to extend current reactive transport capabilities to the variably‐saturated component of the subsurface system and incorporate diffusive reactive transport of gaseous species. Referred to as PHT3D‐UZF, this code incorporates flux terms calculated by MODFLOW's unsaturated‐zone flow (UZF1) package. A volume‐averaged approach similar to the method used in UZF‐MT3DMS was adopted. The PHREEQC‐based computation of chemical processes within PHT3D‐UZF in combination with the analytical solution method of UZF1 allows for comprehensive reactive transport investigations (i.e., biogeochemical transformations) that jointly involve saturated and unsaturated zone processes. Intended for regional‐scale applications, UZF1 simulates downward‐only flux within the unsaturated zone. The model was tested by comparing simulation results with those of existing numerical models. The comparison was performed for several benchmark problems that cover a range of important hydrological and reactive transport processes. A 2D simulation scenario was defined to illustrate the geochemical evolution following dewatering in a sandy acid sulfate soil environment. Other potential applications include the simulation of biogeochemical processes in variably‐saturated systems that track the transport and fate of agricultural pollutants, nutrients, natural and xenobiotic organic compounds and micropollutants such as pharmaceuticals, as well as the evolution of isotope patterns.  相似文献   

20.
Pro‐glacial landscapes are some of the most active on Earth. Previous studies of pro‐glacial landscape change have often been restricted to considering either sedimentological, geomorphological or topographic parameters in isolation and are often mono‐dimensional. This study utilized field surveys and digital elevation model (DEM) analyses to quantify planform, elevation and volumetric pro‐glacial landscape change at Sólheimajökull in southern Iceland for multiple time periods spanning from 1960 to 2010. As expected, the most intense geomorphological changes persistently occurred in the ice‐proximal area. During 1960 to 1996 the pro‐glacial river was relatively stable. However, after 2001 braiding intensity was higher, channel slope shallower and there was a shift from overall incision to aggradation. Attributing these pro‐glacial river channel changes to the 1999 jökulhlaup is ambiguous because it coincided with a switch from a period of glacier advance to that of glacier retreat. Furthermore, glacier retreat (of ~40 m yr?1) coincided with ice‐marginal lake development and these two factors have both altered the pro‐glacial river channel head elevation. From 2001 to 2010 progressive increase in channel braiding and progressive downstream incision occurred; these together probably reflecting stream power due to increased glacier ablation and reduced sediment supply due to trapping of sediment by the developing ice‐marginal lake. Overall, this study highlights rapid spatiotemporal pro‐glacial landscape reactions to changes in glacial meltwater runoff regimes, glacier terminus position, sediment supply and episodic events such as jökuhlaups. Recognizing the interplay of these controlling factors on pro‐glacial landscapes will be important for understanding the geological record and for landscape stability assessments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号