首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
H Lammer  P Wurz  R Killen  S Massetti  A Milillo 《Icarus》2003,166(2):238-247
Mercury's close orbit around the Sun, its weak intrinsic magnetic field and the absence of an atmosphere (Psurface<1×10−8 Pa) results in a strong direct exposure of the surface to energetic ions, electrons and UV radiation. Thermal processes and particle-surface-collisions dominate the surface interaction processes leading to surface chemistry and physics, including the formation of an exosphere (N?1014 cm−2) in which gravity is the dominant force affecting the trajectories of exospheric atoms. NASA's Mariner 10 spacecraft observed the existence of H, He, and O in Mercury's exosphere. In addition, the volatile components Na, K, and Ca have been observed by ground based instrumentation in the exosphere. We study the efficiency of several particle surface release processes by calculating stopping cross-sections, sputter yields and exospheric source rates. Our study indicates surface sputter yields for Na between values of about 0.27 and 0.35 in an energy range from 500 eV up to 2 keV if Na+ ions are the sputter agents, and about 0.037 and 0.082 at an energy range between 500 eV up to 2 keV when H+ are the sputter agents and a surface binding energy of about 2 eV to 2.65 eV. The sputter yields for Ca are about 0.032 to 0.06 and for K atoms between 0.054 to 0.1 in the same energy range. We found a sputter yield for O atoms between 0.025 and 0.04 for a particle energy range between 500 eV up to 2 keV protons. By taking the average solar wind proton surface flux at the open magnetic field line area of about 4×108 cm−2 s−1 calculated by Massetti et al. (2003, Icarus, in press) the resulting average sputtering flux for O is about 0.8-1.0×107 cm−2 s−1 and for Na approximately 1.3-1.6×105 cm−2 s−1 depending on the assumed Na binding energies, regolith content, sputtering agents and solar activity. By using lunar regolith values for K we obtain a sputtering flux of about 1.0-1.4×104 cm−2 s−1. By taking an average open magnetic field line area of about 2.8×1016 cm2 modelled by Massetti et al. (2003, Icarus, in press) we derive an average surface sputter rate for Na of about 4.2×1021 s−1 and for O of about 2.5×1023 s−1. The particle sputter rate for K atoms is about 3.0×1020 s−1 assuming lunar regolith composition for K. The sputter rates depend on the particle content in the regolith and the open magnetic field line area on Mercury's surface. Further, the surface layer could be depleted in alkali. A UV model has been developed to yield the surface UV irradiance at any time and latitude over a Mercury year. Seasonal and diurnal variations are calculated, and Photon Stimulated Desorption (PSD) fluxes along Mercury's orbit are evaluated. A solar UV hotspot is created towards perihelion, with significant average PSD particle release rates and Na fluxes of about 3.0×106 cm−2 s−1. The average source rates for Na particles released by PSD are about 1×1024 s−1. By using the laboratory obtained data of Madey et al. (1998, J. Geophys. Res. 103, 5873-5887) for the calculation of the PSD flux of K atoms we get fluxes in the order of about 104 cm−2 s−1 along Mercury's orbit. However, these values may be to high since they are based on idealized smooth surface conditions in the laboratory and do not include the roughness and porosity of Mercury's regolith. Further, the lack of an ionosphere and Mercury's small, temporally and spatially highly variable magnetosphere can result in a large and rapid increase of exospheric particles, especially Na in Mercury's exosphere. Our study suggests that the average total source rates for the exosphere from solar particle and radiation induced surface processes during quiet solar conditions may be of the same order as particles produced by micrometeoroid vaporization. We also discuss the capability of in situ measurements of Mercury's highly variable particle environment by the proposed NPA-SERENA instrument package on board ESA's BepiColombo Mercury Planetary Orbiter (MPO).  相似文献   

2.
We now have four examples of planetary objects with detectable sodium (and potassium) in their atmospheres—Earth, Io, Mercury and the Moon. After a summary of the observational data, this survey discusses proposed sources and sinks. It appears that Io's surface material is rich in frozen SO2, but with around 1% of some sodium compound. The Io plasma torus contains ions of S, O and Na, also with at least one molecular ion containing Na. In turn, impact by these ions probably sustains the torus, as well as an extended neutral corona. A primary source for the Earth, Mercury and the Moon is meteoroidal bombardment; at Mercury and perhaps the Moon it may be supplemented by degassing of atoms from the regolith. Photoionization is important everywhere, although hot electrons are dominant at Io.  相似文献   

3.
We report recent results in an investigation of source mechanisms for the origin of Na atoms in tenuous planetary atmospheres, focusing on non-thermal processes. Experiments include photon stimulated desorption (PSD), electron stimulated desorption (ESD), and ion sputtering of Na atoms from the surface of a lunar basalt sample. Bombardment of the sodium covered surface by 3 keV Ar+ ions removes Na from the surface by sputtering into vacuum and by implantation into the sample bulk. Bombardment of the Na covered surface by ultraviolet photons or by low energy electrons (E>3 to 4 eV) causes desorption of “hot” Na atoms. These results are consistent with our previous measurements of sodium and potassium desorption from a silica surface: electron- or photon-induced charge transfer from the substrate to the ionic adsorbate causes formation of a neutral alkali atom in a repulsive configuration, from which desorption occurs. There is a strong temperature-dependence of Na ESD and PSD signals, under conditions where the Na surface coverage is constant and thermal desorption is negligible. The yield of Na (atoms/photon) increases by 10× from 100 to 470 K; an activation energy of ∼20 meV is measured. This phenomenon may be attributed to thermally-induced changes in surface bonding sites, and will affect recent modeling of the sodium atmospheres of Mercury and the Moon.  相似文献   

4.
We present a Monte Carlo model of the distribution of neutral sodium in Mercury’s exosphere and tail using data from the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft during the first two flybys of the planet in January and September 2008. We show that the dominant source mechanism for ejecting sodium from the surface is photon-stimulated desorption (PSD) and that the desorption rate is limited by the diffusion rate of sodium from the interior of grains in the regolith to the topmost few monolayers where PSD is effective. In the absence of ion precipitation, we find that the sodium source rate is limited to ∼106-107 cm−2 s−1, depending on the sticking efficiency of exospheric sodium that returns to the surface. The diffusion rate must be at least a factor of 5 higher in regions of ion precipitation to explain the MASCS observations during the second MESSENGER flyby. We estimate that impact vaporization of micrometeoroids may provide up to 15% of the total sodium source rate in the regions observed. Although sputtering by precipitating ions was found not to be a significant source of sodium during the MESSENGER flybys, ion precipitation is responsible for increasing the source rate at high latitudes through ion-enhanced diffusion.  相似文献   

5.
Despite recent progress in the modeling of alkali atmospheres like those around the Moon and Mercury, many problems still exist. It is proposed that Rydberg Matter (RM) clusters containing Na and K atoms are the main part of the alkali atmospheres of the Moon and Mercury, forming large clouds. RM clusters are studied in the laboratory with laser fragmentation and laser spectroscopy methods. Due to the very large collision cross sections of Rydberg atoms and RM clusters, the atmospheres are not collision free, as normally assumed based on the low densities of free alkali atoms. The non-escaping radial density variation for the Na atoms, observed, e.g., on the Moon, and the Maxwellian velocity distributions observed on Mercury are caused by a true atmosphere with collisional equilibration; this process is not possible in an exosphere. Fast alkali atoms are released from the RM clusters already at large heights by solar photons and charged particle impact. The kinetic temperatures derived for the atmospheres agree with the quantized energy release. The cluster model predicts that the rate of loss from the surface is much smaller than for a purely atomic model, since the transient storage is in the RM cluster form in the atmosphere and not at the surface. The conductance of the atmosphere is of the order of 100 S due to the facile collisional ionization of the RM clusters. The apparent depletion of K in the atmosphere of Mercury is explained.  相似文献   

6.
We have used observations of sodium emission obtained with the McMath-Pierce solar telescope and MESSENGER’s Mercury Atmospheric and Surface Composition Spectrometer (MASCS) to constrain models of Mercury’s sodium exosphere. The distribution of sodium in Mercury’s exosphere during the period January 12-15, 2008, was mapped using the McMath-Pierce solar telescope with the 5″ × 5″ image slicer to observe the D-line emission. On January 14, 2008, the Ultraviolet and Visible Spectrometer (UVVS) channel on MASCS sampled the sodium in Mercury’s anti-sunward tail region. We find that the bound exosphere has an equivalent temperature of 900-1200 K, and that this temperature can be achieved if the sodium is ejected either by photon-stimulated desorption (PSD) with a 1200 K Maxwellian velocity distribution, or by thermal accommodation of a hotter source. We were not able to discriminate between the two assumed velocity distributions of the ejected particles for the PSD, but the velocity distributions require different values of the thermal accommodation coefficient and result in different upper limits on impact vaporization. We were able to place a strong constraint on the impact vaporization rate that results in the release of neutral Na atoms with an upper limit of 2.1 × 106 cm−2 s−1. The variability of the week-long ground-based observations can be explained by variations in the sources, including both PSD and ion-enhanced PSD, as well as possible temporal enhancements in meteoroid vaporization. Knowledge of both dayside and anti-sunward tail morphologies and radiances are necessary to correctly deduce the exospheric source rates, processes, velocity distribution, and surface interaction.  相似文献   

7.
F. Leblanc  R.E. Johnson 《Icarus》2003,164(2):261-281
Mercury's neutral sodium exosphere is simulated using a comprehensive 3D Monte Carlo model following sodium atoms ejected from Mercury's surface by thermal desorption, photon stimulated desorption, micro-meteoroid vaporization and solar wind sputtering. The evolution of the sodium surface density with respect to Mercury's rotation and its motion around the Sun is taken into account by considering enrichment processes due to surface trapping of neutrals and ions and depletion of the sodium available for ejection from the surfaces of grains. The change in the sodium exosphere is calculated during one Mercury year taking into account the variations in the solar radiation pressure, the photo-ionization frequency, the solar wind density, the photon and meteoroid flux intensities, and the surface temperature. Line-of-sight column densities at different phase angles, the supply rate of new sodium, average neutral and ion losses over a Mercury year, surface density distribution and the importance of the different processes of ejection are discussed in this paper. The sodium surface density distribution is found to become significantly nonuniform from day to night sides, from low to high latitudes and from morning to afternoon because of rapid depletion of sodium atoms in the surfaces of grains mainly driven by thermal depletion. The shape of the exosphere, as it would be seen from the Earth, changes drastically with respect to Mercury's heliocentric position. High latitude column density maxima are related to maxima in the sodium surface concentration at high latitudes in Mercury's surface and are not necessarily due to solar wind sputtering. The ratio between the sodium column density on the morning side of Mercury's exosphere and the sodium column density on the afternoon side is consistent with the conclusions of Sprague et al. (1997, Icarus 129, 506-527). The model, which has no fitting parameters, shows surprisingly good agreement with recent observations of Potter et al. (2002, Meteor. Planet. Sci. 8, 3357-3374) successfully explaining their velocity and column density profiles vs. heliocentric distance. Comparison with this data allows us to constrain the supply rate of new sodium atoms to the surface. We also discuss the possible origins of the strong high latitude emissions (Potter and Morgan, 1990, Science 248, 835-838; 1997a, Adv. Space Res. 19, 1571-1576; 1997b, Planet. Space Sci. 45, 95-100; Sprague et al., 1998, Icarus 135, 60-68) and the strong variations of the total content of the sodium exosphere on short (Potter et al., 1999, Planet. Space Sci. 47, 1441-1449) and long time scales (Sprague et al., 1997, Icarus 129, 506-527).  相似文献   

8.
Mercury has a surface-bounded exosphere (SBE) similar to that of the Moon. One of the atmospheric species, sodium, was found by ground-based observations to be the most prominent component. Mercury's sodium SBE is known to be non-uniform with respect to local time (LT) in low-latitude regions: the sodium column density in the dawn-side region is larger than that in the dusk-side region, and the sodium abundance is the largest in the morning-noon region. To reveal the production processes for the exosphere near Mercury's surface, the LT dependence of the exosphere was investigated through a numerical simulation. Three data sets of sodium column densities observed for the dawn-side hemisphere, observed by Sprague et al. [1997. Distribution and abundance of sodium in Mercury's atmosphere, 1985-1988. Icarus 12, 506-527], were compared with results simulated by a 3D Monte Carlo method, and the source rates and density of sodium of the planetary surface were estimated. In the simulation, the photon-stimulated desorption (PSD) and thermal desorption (TD) processes were assumed as the release mechanisms. The sodium source rates for the three data sets, at respective heliocentric distances of about 0.33, 0.42, and 0.44 AU, were estimated as 1-4×108 Na/cm2/s with weak LT dependence. In contrast, the expected sodium surface density showed clear dependence on LT and the heliocentric distance. The sodium surface density decreases from early morning to noon by a few orders, and, particularly for large heliocentric distances, the surface is in a condition of sodium excess and depletion with respect to the surface sodium density assumed by Killen et al. [2004. Source rates and ion recycling rates for Na and K in Mercury's atmosphere. Icarus 171, 1-19] in the early morning and morning-noon regions, respectively. This study implies that the decrease in sodium surface density from the early morning to noon regions might produce the characteristic LT dependence in the low-latitude dawn-side region.  相似文献   

9.
From observations of the metallic species sodium (Na), potassium (K), and magnesium (Mg) in Mercury’s exosphere, we derive implications for source and loss processes. All metallic species observed exhibit a distribution and/or line width characteristic of high to extreme temperature - tens of thousands of degrees K. The temperatures of refractory species, including magnesium and calcium, indicate that the source process for the atoms observed in the tail and near-planet exosphere are consistent with ion sputtering and/or impact vaporization of a molecule with subsequent dissociation into the atomic form. The extended Mg tail is consistent with a surface abundance of 5-8% Mg by number, if 30% of impact-vaporized Mg remains as MgO and half of the impact vapor condenses. Globally, ion sputtering is not a major source of Mg, but locally the sputtered source can be larger than the impact vapor source. We conclude that the Na and K in Mercury’s exosphere can be derived from a regolith composition similar to that of Luna 16 soil (or Apollo 17 orange glass), in which the abundance by number is 0.0027 (0.0028) for Na and 0.0006 (0.0045) for K.  相似文献   

10.
The sputtering and decomposition of the surface of Europa by fast ions and electrons lead to the production of an atomosphere containing sodium and potassium atoms. Here time-of-flight energy distributions are measured for Na and K sputtered from a vapor-deposited ice by 200-eV electrons. These data are then used in a Monte Carlo simulation for alkalis in Europa's atmosphere. Na/K ratios versus distance from Europa are calculated and compared to the recent observations in the range 6 to 18 Europan radii from the surface. Normalizing to the observations, the Na/K ratio for the loss rates is ∼27 and the ratio for the average surface source rates is ∼20. These ratios are very different from the Na/K ratio at Io and are larger than the Na/K ratio suggested for Europa's putative subsurface ocean, consistent with fractionation on freezing and upwelling of ocean material.  相似文献   

11.
A 1-D collisional Monte Carlo model of Europa's atmosphere is described in which the sublimation and sputtering sources of H2O molecules and their molecular fragments are accounted for as well as the radiolytically produced O2. Dissociation and ionization of H2O and O2 by magnetospheric electron, solar UV-photon and photo-electron impact, and collisional ejection from the atmosphere by the low-energy plasma are taken into account. Reactions with the surface are discussed, but only adsorption and atomic oxygen recombination are included in this model. The size of the surface-bounded oxygen atmosphere of Europa is primarily determined by a balance between atmospheric sources from irradiation of the satellite's icy surface by the high-energy magnetospheric charged particles and atmospheric losses from collisional ejection by the low-energy plasma, photo- and electron-impact dissociation, and ionization and pick-up from the surface-bounded atmosphere. A range of sources rates for O2 to H2O are used with a larger oxygen-to-water ratio than suggested by laboratory measurements in order to account for differences in adsorption onto grains in the regolith. These calculations show that the atmospheric composition is determined by both the water and oxygen photochemistry in the near-surface region, escape of suprathermal oxygen and water into the jovian system, and the exchange of radiolytic water products with the porous regolith. For the electron impact ionization rates used, pick-up ionization is the dominant oxygen loss process, whereas photo-dissociation and atmospheric sputtering are the dominant sources of neutral oxygen for Europa's neutral torus. Including desorption and loss of water enhances the supply of oxygen species to the neutral torus, but hydrogen produced by radiolysis is the dominant source of neutrals for Europa's torus in these models.  相似文献   

12.
A tenuous calcium atmosphere at Mercury, principally seen in the polar regions, was first observed in July, 1998, using the High Resolution Echelle Spectrograph (HIRES) at the W.M. Keck I telescope (Bida et al., Nature 404, 159, 2000). We report four years of observations of the calcium exosphere of Mercury, confirming the initial findings of a very tenuous atmosphere. These observations show a persistent but spatially variable blue shift, indicating an excess velocity toward the observer of up to 3 km s−1, with an average excess velocity of 2.2 km s−1 above the south pole. In addition, the line profiles reveal a hot corona at the equivalent of 12,000-20,000 K in a thermalized atmosphere, indicating a large range of motion with respect to the observer. The calcium is not confined to the polar-regions: rare and low Ca abundance is seen in the equatorial regions. Strong emission was seen anti-sunward on 3 May 2002. Apparent weak emission on the sunward hemisphere may be due to scattered light from the surface, or may indicate a high latitude source. We show that the likely source of the calcium is either impact vaporization in the form of CaO and clusters, which are subsequently photo-dissociated, or ion-sputtering of atoms, molecules and ions. The column abundance is somewhat, but not strongly, correlated with solar activity. We predict a very hot (probably escaping) oxygen component to the hermean exosphere.  相似文献   

13.
Observations of the equatorial lunar sodium emission are examined to quantify the effect of precipitating ions on source rates for the Moon’s exospheric volatile species. Using a model of exospheric sodium transport under lunar gravity forces, the measured emission intensity is normalized to a constant lunar phase angle to minimize the effect of different viewing geometries. Daily averages of the solar Lyman α flux and ion flux are used as the input variables for photon-stimulated desorption (PSD) and ion sputtering, respectively, while impact vaporization due to the micrometeoritic influx is assumed constant. Additionally, a proxy term proportional to both the Lyman α and to the ion flux is introduced to assess the importance of ion-enhanced diffusion and/or chemical sputtering. The combination of particle transport and constrained regression models demonstrates that, assuming sputtering yields that are typical of protons incident on lunar soils, the primary effect of ion impact on the surface of the Moon is not direct sputtering but rather an enhancement of the PSD efficiency. It is inferred that the ion-induced effects must double the PSD efficiency for flux typical of the solar wind at 1 AU. The enhancement in relative efficiency of PSD due to the bombardment of the lunar surface by the plasma sheet ions during passages through the Earth’s magnetotail is shown to be approximately two times higher than when it is due to solar wind ions. This leads to the conclusion that the priming of the surface is more efficiently carried out by the energetic plasma sheet ions.  相似文献   

14.
Polarimetric measurements were collected at different areas of the surface of Mercury, and for the whole disk in six wavelengths. The curves of polarization are compared with telescopic observations of the Moon and laboratory studies of minerals and returned lunar samples. The negative branch of polarization proves that Mercury's surface is almost everywhere covered by a regolith layer of fines of the lunar type, also made of dark and adsorbing material, and most probably of the same impact generated origin. The polarization maximum of Mercury is reproduced by lunar samples of fines of intermediate albedo corresponding to the lightest regolith found in the Apollo explored maria.The albedo of Mercury at phase angle 5° deduced from telescopic photometry is to be corrected by a factor of 1.20 and the best “polarimetric” values of albedos are 0.130 at λ = 0.585μm, 0.119 at λ = 0.520 μm, 0.093 at λ = 0.379μm and 0.087 at λ = 0.354μm. The contrast between light and dark-lined regions at the surface of Mercury is most probably much fainter than between the maria and continents on the Moon.The molecular atmosphere of Mercury, if any, has a surface pressure probably smaller than 2 × 10?4 bars.  相似文献   

15.
Energetic ions from the solar wind, local pick-up ions or magnetospheric plasma ions impact the atmospheres and surfaces of a number of solar system bodies. These energetic incident ions deposit energy in the gas or solid. This can lead to the ejection of atoms and molecules, a process referred to as sputtering. In this paper we first describe the physics and chemistry of atmospheric and surface sputtering. We then apply this to the production of a thin atmosphere on Europa by magnetospheric ion bombardment of Europa's surface and show that Europa loses more Na atoms than it receives from the Jupiter magnetosphere. The loss of atmosphere from Mars in earlier epochs by pick-up ion sputtering of that atmosphere is also calculated. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Two new missions to Mercury are planned in the next few years (according to the NASA Messenger project in 2004 and the ESA BepiColomboproject in 2009). Many aspects of the study of Mercury concerning the origin of the planet, its interior structure, the formation and composition of the regolith, the surface cratering processes, the magnetosphere, the very tenuous atmosphere (exosphere) of Mercury, the orbital and rotational dynamics, and the thermal history of the planet's surface and interior are intensely developing at present. The presence of rocks on Mercury's surface, such as anorthosites (consisting mainly of calcium plagioclase) and feldspars, was reliably established in the course of such investigations. There are obvious signatures of old lava outflows and the heterogeneous composition of the crust depleted in FeO (less than 3%) and enriched with feldspar, with the possible presence of low-iron pyroxenes and alkali basalts. The sole spectral feature in the near infrared, observed at some longitudes, is a possible pyroxene absorption band at 0.95 m, which can be used to investigate the abundance and distribution of FeO in the regolith. Mercury represents a geologically intriguing planetary object. Its exosphere contains Na and K, the origin of which is undoubtedly related to the nature of Mercury's surface. The physical properties of Mercury's regolith, its structure, the grain sizes, the refractive index, and even the characteristic sizes of block material, lend themselves, in principle, to investigation by remote sensing methods. It is possible that deposits of buried water ice and/or elemental sulfur are present in the polar regions of the planet. The results of the study of the structure, physical properties, and composition of Mercury's regolith can be used to single out fundamental features in the origin of Mercury's surface. Thermal infrared spectra are also indicative of the presence of feldspars, pyroxenes, and igneous nepheline-bearing alkali syenites. The wavelengths of the thermal emissivity maxima indicate intermediate or slightly mafic rocks with a pronounced heterogeneous composition. The iron absorption bands give evidence for the presence of FeO in the Hermean crust and mantle. To some extent, the physical properties of the crustal layers may be associated with the odd magnetic field of the planet. The resulting Hermean magnetic field may be produced, at least partly, by randomly oriented paleomagnetic fields of individual large magnetized blocks of the planet's crust.  相似文献   

17.
We find the lunar darkening process could be due neither to simple addition of impact-melted glass nor to addition of devitrified glass to crushed lunar rock. There is evidence that lunar soil grains have thin, very light-absorbing coatings that mask absorption bands, seen in the reflection spectra of freshly crushed lunar rock, in the same manner as they are masked in the spectra of lunar soils. We believe the processes that produce these coatings are (1) deposition of atoms sputtered from lunar soil grains by solar wind particles and (2) deposition of vapor species vaporized from lunar soil grains by micrometeorite impacts. Coatings produced in laboratory simulations of these processes owe their strong light-absorbing properties in large part to the presence of abundant metallic Fe grains smaller than 100 Å in diameter. Another process, which depends on implantation of solar wind protons in lunar soil grains and their later mobilization during micrometeorite impacts to produce metallic Fe in the impact glass, also seems reasonable but has not yet been demonstrated experimentally. As a result of impact vaporization the Moon would preferentially lose minor amounts of light elements, principally monatomic oxygen, and this would result in oxygen depletion in the vapor condensate. This type of fraction would be more extreme on airless bodies with lower escape velocities. Sputtering occurs at higher effective temperatures and this would cause loss of all common rock-forming elements in approximately equal amounts. There would be some bias in this process toward retention of very heavy trace elements— a characteristic that has been observed in the lunar soil. This bias would be less important for smaller airless bodies. We describe an apparent new type of fractionation that occurs during deposition of sputtered atoms. This fractionation favors retention of higher mass atoms over lower mass atoms, and appears to be a linear function of mass. This may explain observed isotopic fractionations in lunar soil, in which the heavier isotope always appears to be enriched relative to the lighter one. This “first bounce fractionation” process should operate on all airless bodies. Na and K apparently do not conform to this fractionation process and have a much greater tendency to escape. This may help explain the presence of high Na concentrations around Io.  相似文献   

18.
Chemical processes associated with meteoroid bombardment of Mercury are considered. Meteoroid impacts lead to production of metal atoms as well as metal oxides and hydroxides in the planetary exosphere. By using quenching theory, the abundances of the main Na-, K-, Ca-, Fe-, Al-, Mg-, Si-, and Ti-containing species delivered to the exosphere during meteoroid impacts were estimated. Based on a correlation between the solar photo rates and the molecular constants of atmospheric diatomic molecules, photolysis lifetimes of metal oxides and SiO are estimated. Meteoroid impacts lead to the formation of hot metal atoms (0.2-0.4 eV) produced directly during impacts and of very hot metal atoms (1-2 eV) produced by the subsequent photolysis of oxides and hydroxides in the exosphere of Mercury. The concentrations of impact-produced atoms of the main elements in the exosphere are estimated relative to the observed concentrations of Ca, assumed to be produced mostly by ion sputtering. Condensation of dust grains can significantly reduce the concentrations of impact-produced atoms in the exosphere. Na, K, and Fe atoms are delivered to the exosphere directly by impacts while Ca, Al, Mg, Si, and Ti atoms are produced by the photolysis of their oxides and hydroxides. The chemistry of volatile elements such as H, S, C, and N during meteoroid bombardment is also considered. Our conclusions about the temperature and the concentrations of impact-produced atoms in the exosphere of Mercury may be checked by the Messenger spacecraft in the near future and by BepiColombo spacecraft some years later.  相似文献   

19.
Several versions of a Mercury surface element, part of the ESA BepiColombo Mercury Cornerstone mission to be launched in 2009, have been studied. The major constraint on system design has been the need to maximise the useful system mass on the surface of Mercury. The absence of atmosphere on the planet forces the adoption of a purely propulsive descent and landing system. The need to maintain the shock level at landing below limits which are acceptable to the payload imposes the adoption of a precise guidance, navigation & control system, which allows a drastic reduction of the landing speed, and therefore the adoption of an airbag landing system. Surface mobility is an obvious requirement for the purpose of geochemical exploration, since selected rocks have a much higher scientific yield than the average regolith. Geophysical investigations require that thermal, accelerometric, and densitometric probes be brought in contact with subsurface regions, to a depth of several metres. Magnetometric measurements may need deployment of sensors to some distance from the bulk of the lander body. The thermal environment on the surface of Mercury is extreme, even in the polar regions that will be targeted by the BepiColombo lander, while the solar flux rises seasonally to 10 times the one experienced in Earth orbit. The need to provide a low-temperature heat sink to sensors is particularly critical, if these are installed on a small-size, small-mass mobile deployment device. A consequence of the landing in a polar region will be the extremely variable lighting conditions, with extended portions of the surface shrouded in darkness by any small surface obstacle. Limitations on communications between Earth and the deployed payload will be caused by the low available data rate and by visibility windows (contact may be restricted to as little as <10 min every 9.5 h). This will impose a high degree of autonomy to be built into the payload systems.  相似文献   

20.
We have studied the impact of multiply charged solar wind O7+ and Fe9+ ions on the surfaces of Mercury, the Moon and on a Ceres-size asteroid using a quasi-neutral hybrid model.The simulations showed that heavy O7+ and Fe9+ ions impact on the surface of Mercury non-homogenously, the highest flux being near the magnetic cusps—much as in the case of impacting solar wind protons. However, in contrast to protons, the analyzed heavy ions do not create high ion impact flux regions near the open-closed magnetic field line boundary. Dawn-dusk asymmetry and the total ion impact flux were each found to increase with respect to the increasing mass per charge ratio for ions, suggesting that the Hermean magnetic field acts as a mass spectrometer for solar wind ions. The Moon, in contrast, does not have a global intrinsic magnetic field and, therefore, solar wind ions can freely impact on its surface when this body is in the solar wind. The same is true for a, non-magnetized, Ceres-size asteroid.The impact of multiply charged ions on a solid surface results in a large variety of physical processes, of often intimately inter-related atomic reactions, e.g. electron exchange between solid and approaching projectile, inelastic scattering of projectile, electronic excitation in the projectile and/or the solid, ejection of electrons, photons, neutral and iodized surface particles, and eventual slowing down and stopping of the projectile in the solid. The electron transfer process between impacting heavy ions and surface constituents can result in soft X-ray (E<1 keV) and extreme ultraviolet (EUV) photon emissions. These processes will eventually damage the target surface. Analysis of the hybrid Mercury model (HYB-Mercury) suggests that, at this planet the damaging processes result in non-homogenous ageing of the surface that is controlled by the intrinsic magnetic field of the planet and by the direction of the interplanetary magnetic field. In the corresponding Lunar model (HYB-Moon) and in the non-magnetized asteroid model (HYB-Ceres), surface ageing is demonstrated to take place on that side of the body that faces toward the flow of the solar wind.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号