首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
This report arises from an ongoing program to monitor Neptune’s largest moon Triton spectroscopically in the 0.8 to 2.4 μm range using IRTF/SpeX. Our objective is to search for changes on Triton’s surface as witnessed by changes in the infrared absorption bands of its surface ices N2,CH4,H2O, CO, and CO2. We have recorded infrared spectra of Triton on 53 nights over the ten apparitions from 2000 to 2009. The data generally confirm our previously reported diurnal spectral variations of the ice absorption bands (Grundy and Young, 2004). Nitrogen ice shows a large amplitude variation, with much stronger absorption on Triton’s Neptune-facing hemisphere. We present evidence for seasonal evolution of Triton’s N2 ice: the 2.15 μm absorption band appears to be diminishing, especially on the Neptune-facing hemisphere. Although it is mostly dissolved in N2 ice, Triton’s CH4 ice shows a very different longitudinal variation from the N2 ice, challenging assumptions of how the two ices behave. Unlike Triton’s CH4 ice, the CO ice does exhibit longitudinal variation very similar to the N2 ice, implying that CO and N2 condense and sublimate together, maintaining a consistent mixing ratio. Absorptions by H2O and CO2 ices show negligible variation as Triton rotates, implying very uniform and/or high latitude spatial distributions for those two non-volatile ices.  相似文献   

2.
W.M. GrundyM.W. Buie 《Icarus》2002,157(1):128-138
We present four new near-infrared spectra of Pluto, measured separately from its satellite Charon during four HST/NICMOS observations in 1998, timed to sample four evenly spaced longitudes on Pluto. Being free of contamination by telluric absorptions or by Charon light, the new data are particularly valuable for studies of Pluto's continuum absorption. Previous studies of the major volatile species indicate the existence of at least three distinct terrains on Pluto's surface: N2-rich, CH4-rich, and volatile-depleted. The new data provide evidence that each of these three terrains has distinct near-infrared continuum absorption features. CH4-rich regions appear to show reddish continuum absorption through the near-infrared spectral range. N2-rich regions have very little continuum absorption. Visually dark, volatile-depleted regions exhibit intermediate continuum albedos with a bluish continuum slope. By analogy with Triton, we expected that careful spectral modeling would reveal strong evidence for the existence of H2O ice on Pluto's surface, but we found only very weak evidence for its existence in the volatile-depleted regions. These data require H2O ice to play a much less prominent role on Pluto's surface than it does on Triton's.  相似文献   

3.
W.M. Grundy  B. Schmitt  E. Quirico 《Icarus》2002,155(2):486-496
New infrared absorption coefficient spectra of pure methane ice I were measured at temperatures between 30 and 90 K, over wavelengths from 0.7 to 5 μm, along with spectra of methane ice II at 20 K and liquid methane at 93 K. The spectra were derived from transmission measurements through monocrystalline samples grown in a series of closed cells having interior dimensions ranging from 100 μm to 1 cm. The thicker samples permitted measurement of extremely weak absorption bands, with absorption coefficients as small as 0.003 cm−1. We report 14 new absorption bands, which we tentatively assign to specific vibrational transitions. Two of the new bands are attributed to CH3D. Measurements of the weaker CH4 bands are particularly needed for interpreting spectral observations of Pluto and Triton, where a number of weak CH4-ice absorption bands have been observed. The data presented in this paper complement studies of spectral transmission by thin films of methane ice, which are most suitable for measuring the stronger absorption bands. Temperature-dependent spectral features revealed by the new data offer the opportunity to determine CH4-ice temperatures remotely, via near-infrared reflectance spectroscopy. This approach could prove particularly valuable for future spacecraft exploration of Pluto.  相似文献   

4.
The existence of strong absorption bands of singly deuterated methane (CH3D) at wavelengths where normal methane (CH4) absorbs comparatively weakly could enable remote measurement of D/H ratios in methane ice on outer Solar System bodies. We performed laboratory transmission spectroscopy experiments, recording spectra at wavelengths from 1 to 6 μm to study CH3D bands at 2.47, 2.87, and 4.56 μm, wavelengths where ordinary methane absorption is weak. We report temperature-dependent absorption coefficients of these bands when the CH3D is diluted in CH4 ice and also when it is dissolved in N2 ice, and describe how these absorption coefficients can be combined with data from the literature to simulate arbitrary D/H ratio absorption coefficients for CH4 ice and for CH4 in N2 ice. We anticipate these results motivating new telescopic observations to measure D/H ratios in CH4 ice on Triton, Pluto, Eris, and Makemake.  相似文献   

5.
W.M Grundy  L.A Young  E.F Young 《Icarus》2003,162(1):222-229
New 0.8- to 2.4-μm spectral observations of the leading and trailing hemispheres of the uranian satellite Ariel were obtained at IRTF/SpeX during 2002 July 16 and 17 UT. The new spectra reveal contrasts between Ariel’s leading and trailing hemispheres, with the leading hemisphere presenting deeper H2O ice absorption bands. The observed dichotomy is comparable to leading-trailing spectral asymmetries observed among jovian and saturnian icy satellites. More remarkably, the trailing hemisphere spectrum exhibits three narrow CO2 ice absorption bands near 2 μm. This discovery of CO2 ice on one hemisphere of Ariel is its first reported detection in the uranian system.  相似文献   

6.
We present 0.8-2.4 μm spectral observations of uranian satellites, obtained at IRTF/SpeX on 17 nights during 2001-2005. The spectra reveal for the first time the presence of CO2 ice on the surfaces of Umbriel and Titania, by means of 3 narrow absorption bands near 2 μm. Several additional, weaker CO2 ice absorptions have also been detected. No CO2 absorption is seen in Oberon spectra, and the strengths of the CO2 ice bands decline with planetocentric distance from Ariel through Titania. We use the CO2 absorptions to map the longitudinal distribution of CO2 ice on Ariel, Umbriel, and Titania, showing that it is most abundant on their trailing hemispheres. We also examine H2O ice absorptions in the spectra, finding deeper H2O bands on the leading hemispheres of Ariel, Umbriel, and Titania, but the opposite pattern on Oberon. Potential mechanisms to produce the observed longitudinal and planetocentric distributions of the two ices are considered.  相似文献   

7.
We present spectra of Saturn's icy satellites Mimas, Enceladus, Tethys, Dione, Rhea, and Hyperion, 1.0-2.5 μm, with data extending to shorter (Mimas and Enceladus) and longer (Rhea and Dione) wavelengths for certain objects. The spectral resolution (R=λλ) of the data shown here is in the range 800-1000, depending on the specific instrument and configuration used; this is higher than the resolution (R=225 at 3 μm) afforded by the Visual-Infrared Mapping Spectrometer on the Cassini spacecraft. All of the spectra are dominated by water ice absorption bands and no other features are clearly identified. Spectra of all of these satellites show the characteristic signature of hexagonal H2O ice at 1.65 μm. We model the leading hemisphere of Rhea in the wavelength range 0.3-3.6 μm with the Hapke and the Shkuratov radiative transfer codes and discuss the relative merits of the two approaches to fitting the spectrum. In calculations with both codes, the only components used are H2O ice, which is the dominant constituent, and a small amount of tholin (Ice Tholin II). Tholin in small quantities (few percent, depending on the mixing mechanism) appears to be an essential component to give the basic red color of the satellite in the region 0.3-1.0 μm. The quantity and mode of mixing of tholin that can produce the intense coloration of Rhea and other icy satellites has bearing on its likely presence in many other icy bodies of the outer Solar System, both of high and low geometric albedos. Using the modeling codes, we also establish detection limits for the ices of CO2 (a few weight percent, depending on particle size and mixing), CH4 (same), and NH4OH (0.5 weight percent) in our globally averaged spectra of Rhea's leading hemisphere. New laboratory spectral data for NH4OH are presented for the purpose of detection on icy bodies. These limits for CO2, CH4, and NH4OH on Rhea are also applicable to the other icy satellites for which spectra are presented here. The reflectance spectrum of Hyperion shows evidence for a broad, unidentified absorption band centered at 1.75 μm.  相似文献   

8.
The reflectance spectrum of Jupiter's sixth satellite, Himalia, is featureless in the wavelength region 1.95-2.50 μm as seen at a spectral resolution of 0.005 μm, with no absorptions deeper than a few percent. From model calculations we establish an upper limit of 10% by weight of H2O (30-μm grains) mixed intimately in the soil of Himalia, or alternatively 0.3% of the surface covered by exposures of H2O ice spatially segregated from the darker soil. For CH4 and CO2 ices the upper limits in spatially segregated models are both 0.3%.  相似文献   

9.
We present high signal precision optical reflectance spectra of 2005 FY9 taken with the Red Channel Spectrograph and the 6.5-m MMT telescope on 2006 March 4 UT (5000-9500 Å; 6.33 Å pixel−1) and 2007 February 12 UT (6600-8500 Å; 1.93 Å pixel−1). From cross-correlation experiments between the 2006 March 4 spectrum and a pure CH4-ice Hapke model, we find the CH4-ice bands in the MMT spectrum are blueshifted by 3 ± 4 Å relative to bands in the pure CH4-ice Hapke spectrum. The higher resolution MMT spectrum of 2007 February 12 UT enabled us to measure shifts of individual CH4-ice bands. We find the 7296, 7862, and 7993 Å CH4-ice bands are blueshifted by 4 ± 2, 4 ± 4, and 6 ± 5 Å. From four measurements we report here and one of our previously published measurements, we find the CH4-ice bands are shifted by 4 ± 1 Å. This small shift is important because it suggest the presence of another ice component on the surface of 2005 FY9. Laboratory experiments show that CH4-ice bands in spectra of CH4 mixed with other ices are blueshifted relative to bands in spectra of pure CH4-ice. A likely candidate for the other component is N2-ice because its weak 2.15 μm band and blueshifted CH4 bands are seen in spectra of Triton and Pluto. Assuming the shift is due to the presence of N2, spectra taken on two consecutive nights show no difference in CH4/N2. In addition, we find no measurable difference in CH4/N2 at different depths into the surface of 2005 FY9.  相似文献   

10.
A suite of sulfate minerals were characterized spectrally, compositionally, and structurally in order to develop spectral reflectance-compositional-structural relations for this group of minerals. Sulfates exhibit diverse spectral properties, and absorption-band assignments have been developed for the 0.3-26 μm range. Sulfate absorption features can be related to the presence of transition elements, OH, H2O, and SO4 groups. The number, wavelength position, and intensity of these bands are a function of both composition and structure. Cation substitutions can affect the wavelength positions of all major absorption bands. Hydroxo-bridged Fe3+ results in absorption bands in the 0.43, 0.5, and 0.9 μm regions, while the presence of Fe2+ results in absorption features in the 0.9-1.2 μm interval. Fundamental SO bending and stretching vibration absorption bands occur in the 8-10, 13-18, and 19-24 μm regions (1000-1250, 550-770, and 420-530 cm−1). The most intense combinations and overtones of these fundamentals are found in the 4-5 μm (2000-2500 cm−1) region. Absorption features seen in the 1.7-1.85 μm interval are attributable to HOH/OH bending and translation/rotation combinations, while bands in the 2.1-2.7 μm regions can be attributed to H2O- and OH-combinations as well as overtones of SO bending fundamentals. OH- and H2O-bearing sulfate spectra are fundamentally different from each other at wavelengths below ∼6 μm. Changes in H2O/OH content can shift SO band positions due to change in bond lengths and structural rearrangement. Differences in absorption band wavelength positions enable discrimination of all the sulfate minerals used in this study in a number of wavelength intervals. Of the major absorption band regions, the 4-5 μm region seems best for identifying and discriminating sulfates in the presence of other major rock-forming minerals.  相似文献   

11.
A number of mineral species were exposed to martian surface conditions of atmospheric pressure and composition, temperature, and UV light regime, and their evolution was monitored using reflectance spectroscopy. The stabilities for different groups varied widely. Phyllosilicate spectra all showed measurable losses of interlayer H2O, with some structural groups showing more rapid H2O loss than others. Loss of OH from the phyllosilicates is not always accompanied by a change in metal-OH overtone absorption bands. OH-bearing sulfates, such as jarosite and alunite, show no measurable change in spectral properties, suggesting that they should be spectrally detectable on Mars on the basis of diagnostic absorption bands in the 0.4-2.5 μm region. Fe3+- and H2O-bearing sulfates all showed changes in the appearance and/or reduction in depths of hydroxo-bridged Fe3+ absorption bands, particularly at 0.43 μm. The spectral changes were often accompanied by visible color changes, suggesting that subsurface sulfates exposed to the martian surface environment may undergo measurable changes in reflectance spectra and color over short periods of time (days to weeks). Organic-bearing geological materials showed no measurable change in CH related absorption bands, while carbonates and hydroxides also showed no systematic changes in spectral properties. The addition of ultraviolet irradiation did not seem to affect mineral stability or rate of spectral change, with one exception (hexahydrite). In some cases, spectral changes could be related to the formation of specific new phases. The data also suggest that hydrated minerals detected on Mars to date retain their diagnostic spectral properties that allow their unique identification.  相似文献   

12.
We present individual spectra 0.8-2.5 μm of the leading and trailing hemispheres of Enceladus obtained with the CorMASS spectrograph on the 1.8 m Vatican Advanced Technology Telescope (VATT) at the Mount Graham International Observatory. While the absorption bands of water ice dominate the spectrum of both hemispheres, most of these bands are stronger on the leading hemisphere than the trailing hemisphere. In addition, longward of 1 μm, the continuum slope is greater on the leading hemisphere than the trailing hemisphere. These differences could be produced by the presence of particles on the trailing side that are smaller and/or microstructurally more complex than those on the leading side, consistent with the preferential erosion or structural degradation of regolith particle grains on the trailing side by magnetospheric sweeping. We also explore compositional differences between the two hemispheres by applying Hapke spectrophotometric mixture models to the spectra whose components include water ice and ammonia hydrate (1% NH3⋅H2O). We find that spectral models which include as much as 25% by weight ammonia hydrate intimately mixed with water ice and covering 80% of the illuminated area of the satellite fit the observed spectrum of both the leading and trailing hemispheres. Areal (checkerboard) mixing models of ammonia hydrate and water ice fit the leading hemisphere with 15% of the surface comprised of ammonia hydrate and the trailing hemisphere with 10% ammonia hydrate. Therefore, while these spectral data do not contain an unambiguous detection of ammonia hydrate on Enceladus, our spectral models do not preclude the presence of a modest amount of 1% NH3⋅H2O on both hemispheres. We examine spectral differences and similarities between both hemispheres and the tenuous E ring within which Enceladus orbits. The spectral resolution (R=λλ) of these CorMASS data (R∼300) is comparable to but nevertheless higher than that of the Visual-Infrared Mapping Spectrometer (VIMS) (R=225) onboard the Cassini spacecraft.  相似文献   

13.
We present near-IR spectra of solid CO2 in H2O and CH3OH, and find they are significantly different from that of pure solid CO2. Peaks not present in either pure H2O or pure CO2 spectra become evident when the two are mixed. First, the putative theoretically forbidden CO2 (2ν3) overtone near 2.134 μm (4685 cm−1), that is absent from our spectrum of pure solid CO2, is prominent in the spectra of H2O/CO2=5 and 25 mixtures. Second, a 2.74-μm (3650 cm−1) dangling OH feature of H2O (and a potentially related peak at 1.89 μm) appear in the spectra of CO2-H2O ice mixtures, but are probably not diagnostic of the presence of CO2. Other CO2 peaks display shifts in position and increased width because of intermolecular interactions with H2O. Warming causes some peak positions and profiles in the spectrum of a H2O/CO2=5 mixture to take on the appearance of pure CO2. Absolute strengths for absorptions of CO2 in solid H2O are estimated. Similar results are observed for CO2 in solid CH3OH. Since the CO2 (2ν3) overtone near 2.134 μm (4685 cm−1) is not present in pure CO2 but prominent in mixtures, it may be a good observational (spectral) indicator of whether solid CO2 is a pure material or intimately mixed with other molecules. These observations may be applicable to Mars polar caps as well as outer Solar System bodies.  相似文献   

14.
The Cassini Visual and Infrared Mapping Spectrometer (VIMS) is an imaging spectrometer covering the wavelength range 0.3-5.2 μm in 352 spectral channels, with a nominal instantaneous field of view of 0.5 mrad. The Cassini flyby of Jupiter represented a unique opportunity to accomplish two important goals: scientific observations of the jovian system and functional tests of the VIMS instrument under conditions similar to those expected to obtain during Cassini's 4-year tour of the saturnian system. Results acquired over a complete range of visual to near-infrared wavelengths from 0.3 to 5.2 μm are presented. First detections include methane fluorescence on Jupiter, a surprisingly high opposition surge on Europa, the first visual-near-IR spectra of Himalia and Jupiter's optically-thin ring system, and the first near-infrared observations of the rings over an extensive range of phase angles (0-120°). Similarities in the center-to-limb profiles of H+3 and CH4 emissions indicate that the H+3 ionospheric density is solar-controlled outside of the auroral regions. The existence of jovian NH3 absorption at 0.93 μm is confirmed. Himalia has a slightly reddish spectrum, an apparent absorption near 3 μm, and a geometric albedo of 0.06±0.01 at 2.2 μm (assuming an 85-km radius). If the 3-μm feature in Himalia's spectrum is eventually confirmed, it would be suggestive of the presence of water in some form, either free, bound, or incorporated in layer-lattice silicates. Finally, a mean ring-particle radius of 10 μm is found to be consistent with Mie-scattering models fit to VIMS near-infrared observations acquired over 0-120° phase angle.  相似文献   

15.
Radiation synthesis has been proposed as a mechanism for changing the nature of the outer few meters of ice in a comet stored 4.6 billion years in the Oort cloud and may explain some of the differences observed between new and more evolved comets. Cometary-type ice mixtures were studied in a laboratory experiment designed to approximately simulate the expected temperature, pressure, and radiation environment of the interstellar Oort cloud region. The 2.5- to 15-μm infrared absorption features of thin ice films were analyzed near 20°K before and after 1 MeV proton irradiation. Various ice mixtures included the molecules H2O, NH3, CH4, N2, C3H8, CO, and CO2. All experiments confirm the synthesis of new molecular species in solid phase mixtures at 20°K. The synthesized molecules, identified by their infrared signatures, are C2H6, CO2, CO, N2O, NO, and CH4 (weak). Synthesized molecules, identified by gas chromatographic (GC) analysis of the volatile fraction of the warmed irradiated ice mixture, are C2H4 or C2H6, and C3H8. When CH4 is present in the irradiated ice mixture, long-chained volatile hydrocarbons and CO2 are synthesized along with high-molecular-weight carbon compounds present in the room temperature residue. Irradiated mixtures containing CO and H2O synthesize CO2 and those CO2 and H2O synthesize CO. Due to radiation synthesis, ~1% of the ice was converted into a nonvolatile residue containing complicated carbon compounds not present in blank samples. These results suggest that irrespective of the composition of newly accreted comets, initial molecular abundances can be altered and new species created as a result of radiation synthesis. Irradiated mixtures exhibited thermoluminescence and pressure enhancements during warming; these phenomena suggest irradiation synthesis of reactive species. Ourbursts in new comets resulting from similar radiation induced exothermic activity would be expected to occur beginning at distances of the order of 100 AU.  相似文献   

16.
The infrared AOTF spectrometer is a part of the SPICAM experiment onboard the Mars-Express ESA mission. The instrument has a capability of solar occultations and operates in the spectral range of 1-1.7 μm with a spectral resolution of ∼3.5 cm−1. We report results from 24 orbits obtained during MY28 at Ls 130°-160°, and the latitude range of 40°-55° N. For these orbits the atmospheric density from 1.43 μm CO2 band, water vapor mixing ratio based on 1.38 μm absorption, and aerosol opacities were retrieved simultaneously. The vertical resolution of measurements is better than 3.5 km. Aerosol vertical extinction profiles were obtained at 10 wavelengths in the altitude range from 10 to 60 km. The interpretation using Mie scattering theory with adopted refraction indices of dust and H2O ice allows to retrieve particle size (reff∼0.5-1 μm) and number density (∼1 cm−3 at 15-30 km) profiles. The haze top is generally below 40 km, except the longitude range of 320°-50° E, where high-altitude clouds at 50-60 km were detected. Optical properties of these clouds are compatible with ice particles (effective radius reff=0.1-0.3 μm, number density N∼10 cm−3) distributed with variance νeff=0.1-0.2 μm. The vertical optical depth of the clouds is below 0.001 at 1 μm. The atmospheric density profiles are retrieved from CO2 band in the altitude range of 10-90 km, and H2O mixing ratio is determined at 15-50 km. Unless a supersaturation of the water vapor occurs in the martian atmosphere, the H2O mixing ratio indicates ∼5 K warmer atmosphere at 25-45 km than predicted by models.  相似文献   

17.
Infrared radiation spectra of Mars which can be measured by an orbiting Planetary Fourier Spectrometer (PFS) have been simulated in the spectral region from 1 to 50 μm. The radiative transfer simulation technique considers absorption, emission and multiple scattering by molecular (CO2, H2O, CO) and particulate (palagonite) species. It is shown that the contribution from atmospheric dust extinction and surface reflectance can be separated in the region of the CO2 bands at 2.0 and 2.7 μm. Quantitative results of simultaneous surface pressure, reflectance and aerosol optical depth retrievals are discussed.  相似文献   

18.
A radiative–conductive model for the vertical thermal structure of Pluto's atmosphere is developed with a non-LTE treatment of solar heating in the CH43.3 μm and 2.3 μm bands, non-LTE radiative exchange and cooling in the CH47.6 μm band, and LTE cooling by CO rotational line emission. The model includes the effects of opacity and vibrational energy transfer in the CH4molecule. Partial thermalization of absorbed solar radiation in the CH43.3 and 2.3 μm bands by rapid vibrational energy transfer from the stretch modes to the bending modes generates high altitude heating at sub-microbar pressures. Heating in the 2.3 μm bands exceeds heating in 3.3 μm bands by approximately a factor of 6 and occurs predominantly at microbar pressures to generate steep temperature gradients ∼10–20 K km−1forp> 2 μbar when the surface or tropopause pressure is ∼3 μbar and the CH4mixing ratio is a constant 3%. This calculated structure may account for the “knee” in the stellar occultation lightcurve. The vertical temperature structure in the first 100 km above the surface is similar for atmospheres with Ar, CO, and N2individually as the major constituent. If a steep temperature gradient ∼20 K km−1is required near the surface or above the tropopause, then the preferred major constituent is Ar with 3% CH4mixing ratio to attain a calculated ratio ofT/(= 3.5 K amu−1) in agreement with inferred values from stellar occultation data. However, pure Ar and N2ices at the same temperature yield an Ar vapor pressure of only ∼0.04 times the N2vapor pressure. Alternative scenarios are discussed that may yield acceptable fits with N2as the dominant constituent. One possibility is a 3 μbar N2atmosphere with 0.3% CH4that has 106 K isothermal region (T/= 3.8 K amu−1) and ∼8 K km−1surface/tropopause temperature gradient. Another possibility would be a higher surface pressure ∼10 μbar with a scattering haze forp> 2 μbar. Our model with appropriate adjustments in the CH4density profile to Triton's inferred profile yields a temperature profile consistent with the UVS solar occultation data (Krasnopolsky, V. A., B. R. Sandel, and F. Herbert 1992.J. Geophys. Res.98, 3065–3078.) and ground-based stellar occultation data (Elliot, J. L., E. W. Dunham, and C. B. Olkin 1993.Bull. Am. Astron. Soc.25, 1106.).  相似文献   

19.
Infrared spectrophotometric measurements of Neptune's satellite Triton obtained between 1980 and 1982 in the spectral range 0.8–2.5 μm show six individual absorption bands attributable to methane. An additional band in the Triton data is not methane. The Triton spectral data conform more closely to a laboratory spectrum of frozen methane than to a synthetic spectrum of methane gas computed for conditions of low temperature expected at the satellite. Additionally, the strength of the bands vary with Triton's orbital position. The data thus suggest that methane in the ice phase is mostly responsible for the bands in Triton's spectrum, and that the ice is distributed nonuniformly around the satellite's surface.  相似文献   

20.
We report observation and analysis of a high-resolution 2.87-3.54 μm spectrum of the southern temperate region of Saturn obtained with NIRSPEC at Keck II. The spectrum reveals absorption and emission lines of five molecular species as well as spectral features of haze particles. The ν2+ν3 band of CH3D is detected in absorption between 2.87 and 2.92 μm; and we derived from it a mixing ratio approximately consistent with the Infrared Space Observatory result. The ν3 band of C2H2 also is detected in absorption between 2.95 and 3.05 μm; analysis indicates a sudden drop in the C2H2 mixing ratio at 15 mbar (130 km above the 1 bar level), probably due to condensation in the low stratosphere. The presence of the ν3+ν9+ν11 band of C2H6 near 3.07 μm, first reported by Bjoraker et al. [Bjoraker, G.L., Larson, H.P., Fink, U., 1981. Astrophys. J. 248, 856-862], is confirmed, and a C2H6 condensation altitude of 10 mbar (140 km) in the low stratosphere is determined. We assign weak emission lines within the 3.3 μm band of CH4 to the ν7 band of C2H6, and derive a mixing ratio of 9±4×10−6 for this species. Most of the C2H6 3.3 μm line emission arises in the altitude range 460-620 km (at ∼μbar pressure levels), much higher than the 160-370 km range where the 12 μm thermal molecular line emission of this species arises. At 2.87-2.90 μm the major absorber is tropospheric PH3. The cloud level determined here and at 3.22-3.54 is 390-460 mbar (∼30 km), somewhat higher than found by Kim and Geballe [Kim, S.J., Geballe, T.R., 2005. Icarus 179, 449-458] from analysis of a low resolution spectrum. A broad absorption feature at 2.96 μm, which might be due to NH3 ice particles in saturnian clouds, is also present. The effect of a haze layer at about 125 km (∼12 mbar level) on the 3.20-3.54 μm spectrum, which was not apparent in the low resolution spectrum, is clearly evident in the high resolution data, and the spectral properties of the haze particles suggest that they are composed of hydrocarbons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号