首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Moroz  L. V.  Baratta  G.  Distefano  E.  Strazzulla  G.  Starukhina  L. V.  Dotto  E.  Barucci  M. A. 《Earth, Moon, and Planets》2003,92(1-4):279-289
Trans-Neptunian Objects (TNOs) and Centaurs show remarkable colour variationsin the visual and near-infrared spectral regions. Surface alteration processes such asspace weathering (e.g., bombardment with ions) and impact resurfacingmay play an important role in the colour diversity of such bodies. Ion irradiation ofhydrocarbon ices and their mixtures with water ice transforms neutral (grey) surfacecolours of ices to red and further to grey. Along with the ices, TNOs and Centaursprobably contain complex carbonaceous compounds, in particular, complexhydrocarbons. Unlike ices, such refractory organic materials have originally lowvisual albedos and red colours in the visible and near-infrared ranges. Here wepresent the first results of ion irradiation experiments on asphaltite. Asphaltite isa natural complex hydrocarbon material. The reflectance spectra of asphaltite inthe 0.4–0.8 μm range have been recorded before irradiation and after eachirradiation step. We demonstrate that irradiation of this red dark material with30 keV H+ and 15 keV N+ ions gradually transforms its colour from redto grey as a result of carbonization. A moderate increase in the visual albedo hasbeen observed. These results may imply that the surfaces of primitive red objectsoptically dominated by complex refractory organics may show a similar spaceweathering trend. Our laboratory results were compared with published coloursof TNOs and Centaurs. A broad variety of spectral colours observed for TNOs andCentaurs may be reproduced by various spectra of irradiated organics correspondingto different ion fluences. However, such objects probably also contain ices and silicatecomponents which show different space weathering trends. This fact, together with alack of information about albedos, may explain difficulties to reveal correlations between surface colours within TNO and Centaur populations and their other properties, such as absolute magnitudes and orbital parameters.  相似文献   

2.
Ion irradiation experiments have been performed on silicates (bulk samples) rich of olivine, pyroxene, and serpentine to simulate the effects of space weathering induced on asteroids by solar wind ions. We have used different ions (H+, He+, Ar+, Ar2+) having different energies (from 60 to 400 keV) to weather the samples, probed by Raman spectroscopy and UV-vis-NIR reflectance spectroscopy. All the irradiated materials have shown reddening and darkening of reflectance spectra in the 0.25-2.7 μm spectral range. We have found that the increase of the spectral slope of the continuum across the 1-μm band is strongly related with the number of displacements caused by colliding ions because of elastic collisions with the target nuclei. The spectral slopes have been compared, at increasing ion fluence, with those from irradiated Epinal meteorite. We show that formation of nuclear displacements by solar wind ion irradiation is a physical mechanism that reddens the asteroidal surfaces on a time-scale lower than 106 years.  相似文献   

3.
We present near-IR (2.2-2.4 μm) reflectance and transmittance spectra of frozen (16 and 77 K) methanol (CH3OH) and water-methanol (1:1) mixtures before and after irradiation with 30 keV He+ and 200 keV H+ ions. Spectra of other simple hydrocarbons (CH4, C2H2, C2H4, C2H6) and CO have also been obtained both to help in the identification of the new molecules formed after ion irradiation of methanol-rich ices, and to get insight into the question of the presence of simple frozen hydrocarbons on the surface of some objects in the outer Solar System. The results confirm what obtained by studies performed in different spectral ranges, namely the ion-induced formation of CO and CH4, and, for the first time, evidence a strong decrease of the intensity of the methanol band at about 2.34 μm in comparison with that at 2.27 μm. The results are discussed in view of their relevance for icy objects in the Solar System (namely comets, Centaurs, and Kuiper belt objects) where CH3OH has been observed or suggested to be present.  相似文献   

4.
R. Brunetto  T. Pino  A.-T. Cao  G. Strazzulla 《Icarus》2009,200(1):323-3884
We use a low pressure flame to produce soot by-products as possible analogues of the carbonaceous dust present in diverse astrophysical environments, such as circumstellar shells, diffuse interstellar medium, planetary disks, as well as in our own Solar System. Several soot samples, displaying an initial chemical diversity from aromatic to aliphatic dominated material, are irradiated with 200-400 keV H+, He+, and Ar++ ions, with fluences comprised between 1014 and 1016 ions/cm2, to simulate expected radiation induced modification on extraterrestrial carbon. The evolution of the samples is monitored using Raman spectroscopy, before, during, and after irradiation. A detailed analysis of the first- and second-order Raman spectra is performed, using a fitting combination of Lorentzian and/or Gaussian-shaped bands. Upon irradiation, the samples evolve toward an amorphous carbon phase. The results suggest that the observed variations are more related to vacancy formation than ionization processes. A comparison with Raman spectra of extraterrestrial organic matter and other irradiation experiments of astrophysically relevant carbonaceous materials is presented. The results are consistent with previous experiments showing mostly amorphization of various carbonaceous materials. Irradiated soots have Raman spectra similar to those of some meteorites, IDPs, and Comet Wild 2 grains collected by the Stardust mission. Since the early-Sun expected irradiation fluxes sufficient for amorphization are compatible with accretion timescales, our results support the idea that insoluble organic matter (IOM) observed in primitive meteorites has experienced irradiation-induced amorphization prior to the accretion of the parent bodies, emphasizing the important role played by early solar nebula processing.  相似文献   

5.
O. Gomis  G. Strazzulla 《Icarus》2005,177(2):570-576
In this work we report on new experiments of ion irradiation of water ice deposited on top of solid carbonaceous materials to study the production of CO2 at the interface ice/refractory material and discuss the possibility that this mechanism accounts for the quantity of CO2 ice detected on the surfaces of the Galilean satellites. The used experimental technique has been in situ infrared spectroscopy. We have irradiated thin films of H2O frost on carbonaceous layers with 200 keV of He+ and Ar+, and 30 keV of He+ at 16 and 80 K. The used carbonaceous layers have been asphaltite, a natural bitumen, and solid organic residues obtained by irradiation of frozen benzene. In both cases the results show that CO2 is produced very efficiently after irradiation obtaining a maximum quantity of the order of . These results are, also quantitatively similar, to those recently obtained for water ice deposited on amorphous carbon films [Mennella, V., Palumbo, M.E., Baratta, G.A., 2004. Formation of CO and CO2 molecules by ion irradiation of water ice covered hydrogenated carbon grains. Astrophys. J. 615, 1073-1080]. Thus we suggest that, whatever is the carbonaceous residue, CO2 will be produced efficiently by the studied process. These results have interest in the context of the surfaces of the icy Galilean satellites in which CO2 has been detected mainly trapped in the non-ice material, not in the pure water ice. We suggest that radiolysis of mixtures of water ice and refractory carbonaceous materials is the primary formation mechanism responsible for the CO2 formation on the surfaces of the Galilean satellites.  相似文献   

6.
We performed ion irradiation of mineral samples with 50 keV He+, aimed to investigate ion irradiation effects on diagnostic spectral features. Reflectance spectra of samples in 0.375–2.5 μm are measured before and after ion irradiation. Silicates, including Luobusha olivine, plagioclase and basaltic glass, have shown reddening and darkening of reflectance spectra at the VIS–NIR range. Olivine is more sensitive to ion irradiation than plagioclase and basaltic glass. Irradiated Panzhihua ilmenite exhibits higher reflectance and stronger absorption features, which is totally different from lunar soil and analog silicate materials in other experiments. Using continuum removal and MGM fit, we extracted and compared absorption features of olivine spectra before and after irradiation. Ion irradiation can induce band strength decrease of olivine but negligible band centers shift. We estimate band centers shift caused by ion irradiation are quite limited, even less than variations due to chemical composition in silicates. It provides one possible explanation for no systematic shift in band positions in lunar soil. Irradiated Luobusha olivine spectrum matches spectra of olivine-dominated asteroids. Our results suggest space weathering should be new clues to explain the subtle difference between A-type asteroid spectra and laboratory spectra of olivine.  相似文献   

7.
We present infrared absorption studies on the effects of 50-100 keV Ar+ and 100 keV H+ ion irradiation of water ice films at 20-120 K. The results support the view that energetic ions can produce hydrogen peroxide on the surface of icy satellites and rings in the outer Solar System, and on ice mantles on interstellar grains. The ion energies are characteristic of magnetospheric ions at Jupiter, and therefore the results support the idea that radiolysis by ion impact is the source of the H2O2 detected on Europa by the Galileo infrared spectrometer. We found that Ar+ ions, used to mimic S+ impacts, are roughly as efficient as H+ ions in producing H2O2, and that 100 keV H+ ions can produce hydrogen peroxide at 120 K. The synthesized hydrogen peroxide remained stable while warming the ice film after irradiation; the column density of the formed H2O2 is constant until the ice film begins to desorb, but the concentration of H2O2 increases with time during desorption because the water sublimes at a faster rate. Comparing the shape of the 3.5-μm absorption feature of H2O2 to the one measured on Europa shows excellent agreement in both shape and position, further indicating that the H2O2 detected on Europa is likely caused by radiolysis of water ice.  相似文献   

8.
We present results obtained for Epinal (H5), an ordinary chondrite meteorite, irradiated with 60 keV Ar++ ions, simulating solar wind heavy particle irradiation. Bidirectional reflectance spectra (0.3-2.67 μm) measured after irradiating Epinal samples with different ion fluences exhibit a progressive reddening that is similar to the spread of spectra observed for S-type near-Earth asteroids. The timescales for inducing the same effects in space as those obtained in laboratory are estimated to be 104-106 yr. These results suggest irradiation by heavy ions may be a very efficient weathering process in near-Earth space.  相似文献   

9.
We study radiation-induced amorphization of crystalline ice, analyzing the results of three decades of experiments with a variety of projectiles, irradiation energy, and ice temperature, finding a similar trend of increasing resistance of amorphization with temperature and inconsistencies in results from different laboratories. We discuss the temperature dependence of amorphization in terms of the ‘thermal spike’ model. We then discuss the common use of the 1.65 μm infrared absorption band of water as a measure of degree of crystallinity, an increasingly common procedure to analyze remote sensing data of astronomical icy bodies. The discussion is based on new, high quality near-infrared reflectance absorption spectra measured between 1.4 and 2.2 μm for amorphous and crystalline ices irradiated with 225 keV protons at 80 K. We found that, after irradiation with 1015 protons cm−2, crystalline ice films thinner than the ion range become fully amorphous, and that the infrared absorption spectra show no significant changes upon further irradiation. The complete amorphization suggests that crystalline ice observed in the outer Solar System, including trans-neptunian objects, may results from heat from internal sources or from the impact of icy meteorites or comets.  相似文献   

10.
O. Gomis  G. Strazzulla 《Icarus》2008,194(1):146-152
In this paper we present the results of new experiments of ion irradiation of water ice deposited on top of a solid sulfurous residue to study the potential formation of SO2 at the interface ice/refractory material and discuss the possibility that this mechanism accounts for the sulfur dioxide ice detected on the surfaces of the Galilean satellites. In situ infrared spectroscopy was the used experimental technique. We have irradiated a thin film of H2O frost on a sulfurous layer with 200 keV of He+ at 80 K. The used sulfurous residue was obtained by irradiation of frozen SO2 at 16 K and it is used as a template of sulfur bearing solid materials. We have not found evidences of the efficient formation of SO2 after irradiation of H2O ice on top of the sulfurous residue. An upper limit to the production yield of SO2, of interface area for each 100 eV of energy absorbed in 1 cm3 of ice-covered residue, has been estimated. These results have relevance in the context of the surfaces of the icy Galilean satellites in which SO2 was detected. Our results show that radiolysis of mixtures of water ice and refractory sulfurous materials is not the primary formation mechanism responsible for the SO2 present on the surfaces of the Galilean satellites.  相似文献   

11.
P.A. Gerakines  M.H. Moore 《Icarus》2004,170(1):202-213
Hydrogen cyanide (HCN) has been identified in the gas phase of the interstellar medium as well as in the comae of several comets. Terrestrially, HCN is a key component in the synthesis of biologically important molecules such as amino acids. In this paper, we report the results of low-temperature (18 K) ice energetic processing experiments involving pure HCN and mixtures of HCN with H2O and NH3. Ice films, 0.1 to several microns in thickness, were exposed to either ultraviolet photons (110-250 nm) or 0.8-MeV protons to simulate the effects of space environments. Observed products include HCNO (isocyanic acid), NH4+ (ammonium ion), CN (cyanide ion), OCN (cyanate ion), HCONH2 (formamide), and species spectrally similar to HCN polymers. Product formation rates and HCN destruction rates were determined where possible. Results are discussed in terms of astrophysical situations in the ISM and the Solar System where HCN would likely play an important role in prebiotic chemistry. These results imply that if HCN is present in icy mixtures representative of the ISM or in comets, it will be quickly converted into other species in energetic environments; pure HCN seems to be polymerized by incident radiation.  相似文献   

12.
We have performed a numerical simulation to analyze the energy spectra of escaping planetary O+ and O2+ ions at Mars. The simulated time-energy spectrograms were generated along orbit no. 555 (June 27, 2004) of Mars Express when its Ion Mass Analyzer (IMA)/ASPERA-3 ion instrument detected escaping planetary ions. The simulated time-energy spectrograms are in general agreement with the hypothesis that planetary O+ and O2+ ions far from Mars are accelerated by the convective electric field. The HYB-Mars hybrid model simulation also shows that O+ ions originating from the ionized hot oxygen corona result in a high-energy (E>1 keV) O+ ion population that exists very close to Mars. In addition, the simulation also results in a low-energy (E<0.1 keV) planetary ion population near the pericenter. In the analyzed orbit, IMA did not observe a clear high-energy planetary ion or a clear low-energy planetary ion population near Mars. One possible source for this discrepancy may be the Martian magnetic crustal anomalies because MEX passed over a strong crustal field region near the pericenter, but the hybrid model does not include the magnetic crustal anomalies.  相似文献   

13.
F.J. Ciesla 《Icarus》2010,208(1):455-467
Refractory objects such as Calcium, Aluminum-rich Inclusions, Amoeboid Olivine Aggregates, and crystalline silicates, are found in primitive bodies throughout our Solar System. It is believed that these objects formed in the hot, inner solar nebula and were redistributed during the mass and angular momentum transport that took place during its early evolution. The ages of these objects thus offer possible clues about the timing and duration of this transport. Here we study how the dynamics of these refractory objects in the evolving solar nebula affected the age distribution of the grains that were available to be incorporated into planetesimals throughout the Solar System. It is found that while the high temperatures and conditions needed to form these refractory objects may have persisted for millions of years, it is those objects that formed in the first 105 years that dominate (make up over 90%) those that survive throughout most of the nebula. This is due to two effects: (1) the largest numbers of refractory grains are formed at this time period, as the disk is rapidly drained of mass during subsequent evolution and (2) the initially rapid spreading of the disk due to angular momentum transport helps preserve this early generation of grains as opposed to later generations. This implies that most refractory objects found in meteorites and comets formed in the first 105 years after the nebula formed. As these objects contained live 26Al, this constrains the time when short-lived radionuclides were introduced to the Solar System to no later than 105 years after the nebula formed. Further, this implies that the t=0 as defined by meteoritic materials represents at most, the instant when the solar nebula finished accreting significant amounts of materials from its parent molecular cloud.  相似文献   

14.
Diffuse cosmic X-rays in the energy range 20–125 keV were measured in four balloon flights from Hyderabad, India during 1968–70 using almost identical X-ray telescopes mounted on oriented platforms. The results from these flights show that the spectrum of the diffuse cosmic X-rays can be represented by the form dN/dE=29E –2.1±0.3 photons/(cm2 sr s keV) in 20–125 keV interval after corrections for photoelectric absorption and Compton scattering effects in the atmosphere. The best fit spectrum of all published results in the energy interval 20–200 keV can be represented by the form dN/dE=36E –2.1±0.1 photons/(cm2 sr s keV) after similar corrections are effected, and there is no need for a change of spectral index in this energy interval. The intensity at 20 keV obtained from the above spectrum agrees well with that given by the spectral form dN/dE=10E –1.7±0.1 photons/(cm2 sr s keV) in the energy interval 1–20 keV in several rocket experiments. Therefore it is concluded that if there is a break in the spectrum, it occurs between 10 and 20 keV with a change of spectral index by about 0.5, or the index is continuously changing from 1.7±0.1 to 2.1±0.1 in 10–20 keV interval. The implications of the results are briefly discussed.  相似文献   

15.
High-resolution (∼0.22 Å) spectra of the north jovian aurora were obtained in the 905-1180 Å window with the Far Ultraviolet Spectroscopic Explorer (FUSE) on October 28, 2000. The FUSE instrument resolves the rotational structure of the H2 spectra and the spectral range allows the study of self-absorption. Below 1100 Å, transitions connecting to the v?2 levels of the H2 ground state are partially or totally absorbed by the overlying H2 molecules. The FUSE spectra provide information on the overlying H2 column and on the vibrational distribution of H2. Transitions from high-energy H2 Rydberg states and treatment of self-absorption are considered in our synthetic spectral generator. We show comparisons between synthetic and observed spectra in the 920-970, 1030-1080, and 1090-1180 Å spectral windows. In a first approach (single-layer model ), the synthetic spectra are generated in a thin emitting layer and the emerging photons are absorbed by a layer located above the source. It is found that the parameters of the single-layer model best fitting the three spectral windows are 850, 800, and 800 K respectively for the H2 gas temperature and 1.3×1018, 1.5×1020, and 1.3×1020 cm−2 for the H2 self-absorbing vertical column respectively. Comparison between the H2 column and a 1-D atmospheric model indicates that the short-wavelength FUV auroral emission originates from just above the homopause. This is confirmed by the high H2 rovibrational temperatures, close to those deduced from spectral analyses of H+3 auroral emission. In a second approach, the synthetic spectral generator is coupled with a vertically distributed energy degradation model, where the only input is the energy distribution of incoming electrons (multi-layer model ). The model that best fits globally the three FUSE spectra is a sum of Maxwellian functions, with characteristic energies ranging from 1 to 100 keV, giving rise to an emission peak located at 5 μbar, that is ∼100 km below the methane homopause. This multi-layer model is also applied to a re-analysis of the Hopkins Ultraviolet Telescope (HUT) auroral spectrum and accounts for the H2 self-absorption as well as the methane absorption. It is found that no additional discrete soft electron precipitation is necessary to fit either the FUSE or the HUT observations.  相似文献   

16.
The Reuven Ramaty High Energy Spectroscopic Imager (RHESSI) X-ray data base (February 2002 – May 2006) has been searched to find solar flares with weak thermal components and flat photon spectra. Using a regularized inversion technique, we determine the mean electron flux distribution from count spectra for a selection of events with flat photon spectra in the 15 – 20 keV energy range. Such spectral behavior is expected for photon spectra either affected by photospheric albedo or produced by electron spectra with an absence of electrons in a given energy range (e.g., a low-energy cutoff in the mean electron spectra of nonthemal particles). We have found 18 cases that exhibit a statistically significant local minimum (a dip) in the range of 13 – 19 keV. The positions and spectral indices of events with low-energy cutoff indicate that such features are likely to be the result of photospheric albedo. It is shown that if the isotropic albedo correction is applied, all low-energy cutoffs in the mean electron spectrum are removed, and hence the low-energy cutoffs in the mean electron spectrum of solar flares above ∼ 12 keV cannot be viewed as real features. If low-energy cutoffs exist in the mean electron spectra, their energies should be less than ∼ 12 keV.  相似文献   

17.
A model is presented to describe the energization of charged particles in planetary magnetospheres. The model is based on the stochastic acceleration produced by a random electric field that is induced by the magnetic field fluctuations measured within the magnetospheres. The stochastic behavior of the electric field is simulated through a Monte Carlo method. We solve the equation of motion for a single charged particle—which comprises the stochastic acceleration due to the stochastic electric field, the Lorentz acceleration (containing the local magnetic field and the corotational electric field) and the gravitational planetary acceleration of the particle—under several initial conditions. The initial conditions include the ion species and the velocity distribution of the particles which depends on the sources they come from (solar wind, ionospheres, rings and satellites). We applied this model to Saturn’s inner magnetosphere using a sample of particles (H+, H2O+, N+, O+ and OH+) initially located on Saturn’s north pole, above the C-Ring, on the south pole of Enceladus, in the north pole of Dione and above the E-Ring. The results show that the particles tend to increase the value of their energy with time reaching several eV in a few seconds and the large energization is observed far from the planet. We can distinguish three main energization regions within Saturn’s inner magnetosphere: minimum (Saturn’s ionosphere), intermediate (Dione) and high-energy (Enceladus and the E-ring). The resulting energy spectrum follows a power-law distribution (>1 keV), a logistic, an exponential decay or an asymmetric sigmoidal (<1 keV).  相似文献   

18.
Henry B. Throop 《Icarus》2011,212(2):885-895
The origin of complex organic molecules such as amino acids and their precursors found in meteorites and comets is unknown. Previous studies have accounted for the complex organic inventory of the Solar System by aqueous chemistry on warm meteoritic parent bodies, or by accretion of organics formed in the interstellar medium. This paper proposes a third possibility: that complex organics were created in situ by ultraviolet light from nearby O/B stars irradiating ices already in the Sun’s protoplanetary disk. If the Sun was born in a dense cluster near UV-bright stars, the flux hitting the disk from external stars could be many orders of magnitude higher than that from the Sun alone. Such photolysis of ices in the laboratory can rapidly produce amino acid precursors and other complex organic molecules. I present a simple model coupling grain growth and UV exposure in a young circumstellar disk. It is shown that the production may be sufficient to create the Solar System’s entire complex organic inventory within 106 yr. Subsequent aqueous alteration on meteoritic parent bodies is not ruled out.  相似文献   

19.
During the inbound segment of the Ulysses flyby of Jupiter, there were multiple incursions into the dawnside low-latitude boundary layer, as identified by Bame et al. (Science257, 1539–1542, 1992) using plasma electron data. In the present study, ion composition and spectral measurements provide independent collaborative evidence for the existence of distinct boundary layer regions. Measurements are taken in the energy-per-charge range of 0.6–60 keV/e and involve mass as well as mass-per-charge identification by the Ulysses/SWICS experiment. Ion species of Jovian magnetospheric origin (including O+, O2+, S2+, S3+) and sheath origin (including He2+ and high charge state CNO) have been directly identified for the first time in the Jovian magnetospheric boundary layer. Protons of probably mixed origin and He+ of possibly sheath (ultimately interstellar pickup) origin were also observed in the boundary layer. Sheath-like ions are observed throughout the boundary layer; however, the Jovian ions are depleted or absent for portions of two boundary layer cases studied. Ions of solar wind origin are observed within the outer magnetosphere. and ions of magnetospheric origin are found within the sheath, indicating that transport across the magnetopause boundary can work both ways, at least under some conditions. Although their source cannot be uniquely identified, the proton energy spectrum in the boundary layer suggests a sheath origin for the lower energy protons.  相似文献   

20.
《Planetary and Space Science》2006,54(13-14):1457-1471
Observations of oxygen pickup ions by the plasma analyzer on the Pioneer Venus Orbiter (PVO) Mission arguably launched broad interest in solar wind erosion of unmagnetized planet atmospheres, and its potential evolutionary effects. Oxygen pickup ions may play key roles in the removal of the oxygen excess left behind from the photodissociation of water vapor by enabling direct escape, additional sputtering of oxygen when they impact the exobase, and escape as energetic neutrals produced in charge exchange reactions with the ambient exospheric oxygen and hydrogen. Although the PVO observations were compromised by an ∼8 keV energy limit for O+ detection, a lack of ion composition capability, and the limited sampling and data rate of the plasma analyzer which was designed for solar wind monitoring, these measurements provide our best information about the extended O+ exosphere and wake at Venus. Here we show the full picture of the spatial distribution and energies of the O+ ion observations collected by the plasma analyzer during PVO's ∼5000 orbit tour. A model of O+ test particles launched in the circum-Venus fields described by an MHD simulation of the solar wind interaction is used to help interpret the PVO observations and to anticipate the expanded view of Venus O+ escape that will be provided by the ASPERA-4 experiment on Venus Express.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号