首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
J.P Emery  R.H Brown 《Icarus》2003,164(1):104-121
We present new near-infrared spectra of 20 Trojan asteroids. The spectra were recorded at the NASA Infrared Telescope Facility (IRTF) using the recently commissioned medium-resolution spectrograph SpeX and at the Multiple Mirror Telescope (MMT) using the instrument FSPEC. Spectra of all of these objects were measured in K-band (1.95-2.5 μm), 8 of these in L-band (2.8-4.0 μm), and 14 in the range 0.8-2.5 μm. These observations nearly double the number of published 0.8-2.5 μm spectra of Trojan asteroids and provide the first systematic study of the L-band region for these distant asteroids. The data show that the red spectral slope measured in the near-IR extends through the L-band, though it is not as steep here as at shorter wavelengths. A significant diversity is apparent in the near-IR spectral slopes of this sampling of objects. Most of the spectra do not contain any definitive absorption features characteristic of surface composition (e.g., H2O, organics, silicates) as seen on main-belt asteroids and several Centaur and Kuiper Belt objects. A few objects may display spectral activity, and the reliability of these possible features is discussed. While these spectra are generally compatible with silicate surfaces to explain the spectral slope mixed with some fraction of low albedo material, there is no absolute indication of silicates. The spectral slope could also be explained by the presence of hydrocarbons, but the lack of absorption features, especially in L-band where very strong fundamental absorptions from these molecules appear, constrains the character and abundance of these materials at the surface.  相似文献   

2.
M-type asteroids, as defined in the Tholen taxonomy (Tholen, D.J. [1984]. Asteroid Taxonomy from Cluster Analysis of Photometry. Ph.D. Dissertation, University of Arizona, Tucson), are medium albedo bodies supposed to have a metallic composition and to be the progenitors both of differentiated iron–nickel meteorites and enstatite chondrites. We carried out a spectroscopic survey in the visible and near infrared wavelength range (0.4–2.5 μm) of 30 asteroids chosen from the population of asteroids initially classified as Tholen M-types, aiming to investigate their surface composition. The data were obtained during several observing runs during the years 2004–2007 at the TNG, NTT, and IRTF telescopes. We computed the spectral slopes in several wavelength ranges for each observed asteroid, and we searched for diagnostic spectral features. We confirm a large variety of spectral behaviors for these objects as their spectra are extended into the near infrared, including the identification of weak absorption bands, mainly of the 0.9 μm band tentatively attributed to orthopyroxene, and of the 0.43 μm band that may be associated to chlorites and Mg-rich serpentines or pyroxene minerals such us pigeonite or augite. A comparison with previously published data indicates that the surfaces of several asteroids belonging to the M-class may vary significantly.We attempt to constrain the asteroid surface compositions of our sample by looking for meteorite spectral analogs in the RELAB database and by modeling with geographical mixtures of selected meteorites/minerals. We confirm that iron meteorites, pallasites, and enstatite chondrites are the best matches to most objects in our sample, as suggested for M-type asteroids. For 22 Kalliope, we demonstrate that a synthetic mixture obtained enriching a pallasite meteorite with small amounts (1–2%) of silicates well reproduce the spectral behavior including the observed 0.9 μm feature.The presence of subtle absorption features on several asteroids confirms that not all objects defined by the Tholen M-class have a pure metallic composition.A statistical analysis of spectral slope distribution vs. orbital parameters shows that our sample originally defined as Tholen M-types tend to be dark in albedo and red in slope for increasing value of the semi-major axis. However, we note that our sample is statistically limited by our number of objects (30) and slightly varying results are found for different subsets. If confirmed, the albedo and slope trends could be due to a difference in composition of objects belonging to the outer main belt, or alternatively to a combination of surface composition, grain size and space weathering effects.  相似文献   

3.
We perform an optical characterization of UV laser ablated silicates (olivine, pyroxene), starting from their reflectance spectra in the 0.3-2.5 μm spectral range. The goal is to provide useful tools to model space weathering effects on surfaces of asteroids and TNOs (trans-neptunian objects). We determine that the reddening and darkening spectral trend is compatible with the Hapke's space weathering model, using the optical constants of metallic iron in a silicate matrix. This result is supported by new magnetic susceptibility measurements on laser ablated orthopyroxene. We also investigate the potential contribution of formation of amorphous silicates in the process. Applying our results to silicate-rich surfaces in the Solar System, we investigate the possibility of a weathered olivine component on the surface of Centaur 5145 Pholus. Inclusion of this component slightly decreases the amount of complex organics and water ice from those previously estimated. Thus, the current Pholus spectrum is consistent with the presence of either unweathered or weathered olivine, or potentially both materials.  相似文献   

4.
High-resolution spectroscopic observations of asteroids Ceres and Pallas have been obtained in the 1.0- to 2.6-μm region. Combined with previous spectralmeasurements at other wavelengths, this work presents the broadband spectral reflectances of these asteroids over the 0.4 to 3.6-um region. This extended coverage permits new analyses of the surface mineralogies of these objects. Using laboratory comparison spectra of meteorites and mixtures of terrestrial minerals, the surfaces of Ceres and Pallas are consistent with mixtures of opaques and hydrated silicates, such as are found in types C1 and C2 meteorites. This research emphasizes the importance of the 3-um spectral region for studying by remote methods the relationship of carbonaceous chondrite mineralogies to asteroid surfaces.  相似文献   

5.
A.S Rivkin  R.P Binzel  S.J Bus 《Icarus》2003,165(2):349-354
Mars is the only terrestrial planet known to have co-orbiting “Trojan” asteroids. We have obtained visible and near-IR reflectance spectra of three of these objects: 5261 Eureka and 1998 VF31 in the L5 region and 1999 UJ7 in the L4 region. We also obtained JHK spectrophotometry and a visible lightcurve for 5261 Eureka. The asteroid 5261 Eureka has a visible spectrum that is classified as Sr in the Bus taxonomy, and has infrared colors consistent with the A-class asteroids. The data for 1998 VF31 have a restricted wavelength range, but are most consistent with the Sr or Sa class, though we note a marginal consistency with the D class. We can rule out a C-class classification. 1999 UJ7 has an X-class or T-class spectrum, which is unlike that of the other two Mars Trojans. The photometric data for Eureka are limited, but we can constrain the period to longer than 5 hours (likely 5.5-6 hours) and lightcurve amplitude of at least 0.15 magnitude at this viewing geometry. The spectral differences among the Mars Trojans suggests that either they did not all form at their present solar distances or that they have not always been at their present sizes.  相似文献   

6.
We present near-infrared spectra of 23 B-type asteroids obtained with the NICS camera-spectrograph at the 3.56 m Telescopio Nazionale Galileo. We also compile additional visible and near-infrared spectra of another 22 B-type asteroids from the literature. A total of 45 B-types are analyzed. No significant trends in orbital properties of our sample were detected when compared with all known B-types and all known asteroids. The reflectance spectra of the asteroids in the 0.8–2.5 μm range show a continuous shape variation, from a monotonic negative (blue) slope to a positive (red) slope. This continuous spectral trend is filling the gap between the two main groups of B-types published by Clark et al. ([2010]. J. Geophys. Res., 115, 6005–6027). We found no clear correlations between the spectral slope and the asteroids’ sizes or heliocentric distances. We apply a clustering technique to reduce the volume of data to six optimized “average spectra” or “centroids”, representative of the whole sample. These centroids are then compared against meteorite spectra from the RELAB database. We found carbonaceous chondrites as the best meteorite analogs for the six centroids. There is a progressive change in analogs that correlates with the spectral slope: from CM2 chondrites (water-rich, aqueously altered) for the reddest centroid, to CK4 chondrites (dry, heated/thermally altered) for the bluest one.  相似文献   

7.
R. Gil-Hutton  A. Brunini 《Icarus》2008,193(2):567-571
In this paper we search for photometric data of asteroids in the Hilda region in the Moving Object Catalogue of the Sloan Digital Sky Survey to find the spectral characteristics of small members of this group. We found that the correlation between size and spectral slope previously suggested for Hilda asteroids is correct only for large objects (H<12) but it is not supported by data obtained for the small ones. The best possibility to explain this behavior is that a space weathering process affecting the surface properties of these primitive objects is operating, modulated by a collisional resurfacing process affected by the lack of small projectiles in the population. Despite the intrinsic limitations of the few band photometry of the Sloan Digital Sky Survey, the analysis presented is based mainly in the detection of spectral slopes providing enough good indication about the taxonomic type of these asteroids and making us confident about our conclusions.  相似文献   

8.
Most ion irradiation experiments relevant to primitive outer Solar System objects have been performed on ice and silicate targets. Here we present the first ion irradiation experiments performed on natural complex hydrocarbons (asphaltite and kerite). These materials are very dark in the visible and have red-sloped spectra in the visible and near-infrared. They may be comparable in composition and structure to refractory organic solids on the surfaces of primitive outer Solar System objects. We irradiated the samples with 15-400 keV H+, N+, Ar++, and He+ ions and measured their reflectance spectra in the range of 0.3-2.5 μm before ion implantation and after each irradiation step. The results show that irradiation-induced carbonization gradually neutralizes the spectral slopes of these red organic solids. This implies a similar space weathering trend for the surfaces of airless bodies optically dominated by spectrally red organic components. The reduction of spectral slope was observed in all experiments. Irradiation with 30 keV protons, which transfers energy to the target mostly via electronic (inelastic) collisions, showed lower efficiency than the heavier ions. We found that spectral alteration in our experiments increased with increasing contribution of nuclear versus electronic energy loss. This implies that nuclear (elastic) energy deposition plays an important role in changing the optical properties of irradiated refractory complex hydrocarbon materials. Finally, our results indicated that temperature variations from 40 K to room temperature did not influence the spectral properties of these complex hydrocarbon solids.  相似文献   

9.
Abstract— Spectra of asteroid 4 Vesta and 21 small (estimated diameters less than 10 km) asteroids with Vesta‐like spectral properties (Vestoids) were measured at visible and near‐infrared wavelengths (~0.44 to ~1.65 μm). All of the measured small asteroids (except for 2579 Spartacus) have reflectance spectra consistent with surface compositions similar to eucrites and howardites and consistent with all being derived from Vesta. None of the observed asteroids have spectra similar to diogenites. We find no spectral distinction between the 15 objects tabulated as members of the Vesta dynamical family and 6 of the 7 sampled “non‐family” members that reside just outside the semi‐major axis (a), eccentricity (e), and inclination (i) region of the family. The spectral consistency and close orbital (a‐e‐i) match of these “non‐family” objects to Vesta and the Vesta family imply that the true bounds of the family extend beyond the subjective cut‐off for membership. Asteroid 2579 Spartacus has a spectrum consistent with a mixture of eucritic material and olivine. Spartacus could contain olivine‐rich material from Vesta's mantle or may be unrelated to Vesta altogether. Laboratory measurements of the spectra of eucrites show that samples having nearly identical compositions can display a wide range of spectral slopes. Finer particle sizes lead to an increase in the slope, which is usually referred to as reddening. This range of spectral variation for the best‐known meteoritic analogs to the Vestoids, regardless of whether they are actually related to each other, suggests that the extremely red spectral slopes for some Vestoids can be explained by very fine‐grained eucritic material on their surfaces.  相似文献   

10.
The Eurybates family is a compact core inside the Menelaus clan, located in the L4 swarm of Jupiter Trojans. Fornasier et al. (Fornasier, S., Dotto, E., Hainaut, O., Marzari, F., Boehnhardt, H., De Luise, F., Barucci, M.A. [2007]. Icarus 190, 622-642) found that this family exhibits a peculiar abundance of spectrally flat objects, similar to Chiron-like Centaurs and C-type main belt asteroids. On the basis of the visible spectra available in literature, Eurybates family’s members seemed to be good candidates for having on their surfaces water/water ice or aqueous altered materials.To improve our knowledge of the surface composition of this peculiar family, we carried out an observational campaign at the Telescopio Nazionale Galileo (TNG), obtaining near-infrared spectra of 7 members. Our data show a surprisingly absence of any spectral feature referable to the presence of water, ices or aqueous altered materials on the surface of the observed objects. Models of the surface composition are attempted, evidencing that amorphous carbon seems to dominate the surface composition of the observed bodies and some amount of silicates (olivine) could be present.  相似文献   

11.
We report the results of the Cornell Mid-IR Asteroid Spectroscopy (MIDAS) survey, a program of ground-based observations designed to characterize the 8-13 μm spectral properties of a statistically significant sample of asteroids from a wide variety of visible to near-IR spectral classes. MIDAS is conducted at Palomar Observatory using the Spectrocam-10 (SC-10) spectrograph on the 200-in Hale telescope. We have measured the mid-infrared spectra of twenty-nine asteroids and have derived temperature estimates from our data that are largely consistent with the predictions of the standard thermal model. We have also generated relative emissivity spectra for the target asteroids. On only one asteroid, 1 Ceres, have we found emissivity features with spectral contrast greater than 5%. Our spectrum of 4 Vesta suggests emissivity variation at the 2-3% level. Published spectra of several of the small number of asteroids observed with ISO (six of which are also included in our survey), which appeared to exhibit much stronger emissivity features, are difficult to reconcile with our measurements. Laboratory work on mineral and meteorite samples has shown that the contrast of mid-IR spectral features is greatly reduced at fine grain sizes. Moreover, the NEAR mission found that 433 Eros is covered by a relatively thick fine-grained regolith. If small bodies in general possess such regoliths, their mid-IR spectral features may be quite subtle. This may explain the evident absence of strong emissivity variation in the majority of the MIDAS spectra.  相似文献   

12.
By studying color variations between young and old asteroid families we find evidence for processes that modify colors of asteroids over time. We show that colors of aging surfaces of S-type asteroids become increasingly ‘redder’ and measure the rate of these spectral changes. We estimate that the mean spectral slope between 0.35 and 0.9 μm increases with time t (given in My) as ≈0.01 μm−1×log10t. This empirical fit is valid only for 2.5?t?3000 My (the time interval where we have data) and for the mean spectral slope determined from wide-wavelength filter photometry obtained by the Sloan Digital Sky Survey. We also find that Gy-old terrains of S-type asteroids reflect about 15% more light at ∼1-μm wavelengths than an ∼5-My-old S-type asteroid surface when the flux is normalized by the reflected light at 0.55 μm. We attribute these effects to space weathering. This result has important implications for asteroid geology and the origin of meteorites that reach the Earth. Our results also suggest that surfaces of C-type asteroids exhibit color alterations opposite to those of the S-type asteroids.  相似文献   

13.
R. Gil-Hutton  J. Licandro 《Icarus》2010,206(2):729-734
In this paper we search for photometric data of asteroids in the outer region of the Hecuba gap in the Moving Object Catalogue of the Sloan Digital Sky Survey to find the spectrophotometric characteristics of small members of this group. We found that the correlation between size and spectral slope previously identified for Cybele asteroids is correct only for large objects (HV<12) but it is not supported by data obtained for the small ones. This result argues against the scenario suggesting that D-type objects are more fragile than P-types, favoring disruptive collisions of precursors of the first type and resulting in a larger fraction of the smaller body population being collisional fragments from a few large D-type precursors. A statistical comparison of the spectral slope histograms of Cybeles and Hildas showed that it is not possible to reject the hypothesis that both samples were obtained from the same population at a confident limit of 90%. This result could be indicative of certain homogeneity in the taxonomic distributions of the outer belt populations due to a similar original composition and/or a similar resurfacing processes of these distant bodies. Despite the intrinsic limitations of the five band photometry of the Sloan Digital Sky Survey, the analysis presented is based mainly in the detection of spectral slopes thus providing sufficient indication of the taxonomic type of these asteroids and making us confident about our conclusions.  相似文献   

14.
The space weathering process and its implications for the relationships between S- and Q-type asteroids and ordinary chondrite meteorites is an often debated topic in asteroid science. Q-type asteroids have been shown to display the best spectral match to ordinary chondrites (McFadden, L.A., Gaffey, M.J., McCord, T.B. [1985]. Science 229, 160–163). While the Q-types and ordinary chondrites share some spectral features with S-type asteroids, the S-types have significantly redder spectral slopes than the Q-types in visible and near-infrared wavelengths. This reddening of spectral slope is attributed to the effects of space weathering on the observed surface composition. The analysis by Binzel et al. (Binzel, R.P., Rivkin, A.S., Stuart, J.S., Harris, A.W., Bus, S.J., Burbine, T.H. [2004]. Icarus 170, 259–294) provided a missing link between the Q- and S-type bodies in near-Earth space by showing a reddening of spectral slope in objects from 0.1 to 5 km that corresponded to a transition from Q-type to S-type asteroid spectra, implying that size, and therefore surface age, is related to the relationship between S- and Q-types. The existence of Q-type asteroids in the main-belt was not confirmed until Mothé-Diniz and Nesvorny (Mothé-Diniz, T., Nesvorny, D. [2008]. Astron. Astrophys. 486, L9–L12) found them in young S-type clusters. The young age of these families suggest that the unweathered surface could date to the formation of the family. This leads to the question of whether older S-type main-belt families can contain Q-type objects and display evidence of a transition from Q- to S-type. To answer this question we have carried out a photometric survey of the Koronis family using the Kitt Peak 2.1 m telescope. This provides a unique opportunity to compare the effects of the space weathering process on potentially ordinary chondrite-like bodies within a population of identical initial conditions. We find a trend in spectral slope for objects 1–5 km that shows the transition from Q- to S-type in the main-belt. This data set will prove crucial to our understanding of the space weathering process and its relevant timescales.  相似文献   

15.
We present reflectance spectra of 19 V-type asteroids obtained at the 3.6 m Telescopio Nazionale Galileo covering 0.8 to 2.5 μm. For 8 of these asteroids we obtained also visible spectra in the same observational run. The range from 0.8 to 2.5 μm, encompassing the 1 and 2 μm pyroxene features, allows a precise mineralogical characterization of these asteroids. The obtained data suggests the possible coexistence of distinct mineralogical groups among the V-type asteroids, either probing different layers of (4) Vesta or coming from different bodies. No clear correlation was found between mineralogies and the objects being, or not, member of the Vesta dynamical family.  相似文献   

16.
M.D. Melita  G. Strazzulla 《Icarus》2009,203(1):134-139
The Trojan asteroids orbit about the Lagrangian points of Jupiter and the residence times about their present location are very long for most of them. If these bodies originated in the outer Solar System, they should be mainly composed of water ice, but, in contrast with comets, all the volatiles close to the surface would have been lost long ago. Irrespective of the rotation period, and hence the surface temperature and ice sublimation rate, a dust layer exists always on the surface. We show that the timescale for resurfacing the entire surface of the Trojan asteroids is similar to that of the flattening of the red spectrum of the new dust by solar-proton irradiation. This, if the cut-off radius of the size distribution of the impacting objects is between 1 mm and 1 m and its slope is −3, for the entire size range. Therefore, the surfaces of most Trojan asteroids should be composed mainly of unirradiated dust.  相似文献   

17.
18.
We have conducted a radar-driven observational campaign of main-belt asteroids (MBAs) focused on X/M class asteroids using the Arecibo radar and NASA Infrared Telescope Facilities (IRTF). M-type asteroids have been identified as metallic, enstatite chondrites and/or heavily altered carbonaceous chondrites [Bell, J.F., Davis, D., Hartmann, W.K., Gaffey, M.J., 1989. In: Binzel, R.P., Gehrels, T., Matthews, M.S. (Eds.), Asteroids II. Univ. of Arizona Press, Tucson, pp. 921-948; Gaffey, M.J., McCord, T.B., 1979. In: Gehrels, T., Matthews, M.S. (Eds.), Asteroids. Univ. of Arizona Press, Tucson, pp. 688-723; Vilas, F., 1994. Icarus 111, 456-467]. Radar wavelength observations can determine whether an asteroid is metallic and provide information about the porosity and regolith depth. Near-infrared observations can help determine the grain size, porosity and composition of an object. Concurrent observations with these tools can give us a wealth of information about an object. Our objectives for this observation program were to (a) determine if there are any consistent relationships between spectra in the near-infrared wavelengths and radar signatures and (b) look for rotationally resolved relationships between asteroid radar properties and near-infrared spectral properties. This paper describes preliminary results of an ongoing survey of near-infrared observations of M-type asteroids and is a companion paper to radar observations reported by Shepard [Shepard, M.K., and 19 colleagues, 2008a. Icarus 195, 184-205]. In the analysis of 16 asteroid near-infrared spectra and nine radar measurements, we find a trend indicating a correlation between continuum slope from 1.7 to 2.45 μm and radar albedo—an asteroid with a steep continuum slope also has a bright radar albedo, which suggests a significant metal content. This may provide a means to use near-IR observations to predict the most likely metallic candidates for radar studies.  相似文献   

19.
We present the results of a campaign of spectroscopic observations of Jupiter Trojan asteroids. Thirty-four objects were observed during three runs in July and November 1998, and March 2002 using the Danish 1.54-m telescope at ESO. The covered spectral range was between 5000 and 9000 Å. Our observations include objects belonging both L4 to L5 clouds. According to analyses of previous investigations of Trojans, the spectra of different taxonomic classes can be separated on the basis of the slope of the reflectance spectrum. The large majority of the objects of our sample have been found to belong to the D taxonomic class, but we found also objects of P- and C-type. In two cases, we found also evidence of blueish spectral trends. Our data are important, since they allow us to substantially enlarge the whole data set of available Trojan spectra.  相似文献   

20.
Anita L Cochran  Faith Vilas 《Icarus》2004,167(2):360-368
We present spectral observations of Minor Planet 4 Vesta, of five V-type asteroids which are physically near Vesta, and of two V-type NEAs. We use these spectra to determine the presence or absence of a weak feature at 506.5 nm which is indicative of the presence of spin-forbidden Fe2+ in sixfold coordination. As with our earlier observations [Cochran and Vilas, Icarus 134 (1998) 207-212], we find this feature at all observed rotational phases of Vesta and again see the trend that spectra at longitudes between 240° and 360° have a smaller 506.5 nm feature equivalent width than spectra obtained at other longitudes. Additionally, we searched for this feature in V-class main-belt and NEA asteroids and positively detected the feature in main-belt Asteroid 2579 Spartacus and possibly in 3376 Armandhammer. The other objects lacked the feature. Our results are compared with previous observations of this feature by Vilas et al. [Icarus 147 (2000) 119-128]. The spatial distribution of the bodies as a function of the presence of this feature was investigated. We discuss the implication of the presence of this feature and the depth of the 0.9 μm pyroxene band for the scenario that pieces of Vesta were transported, via the 3:1 and ν6 resonances, to the NEAs, and thence to inclusion in our meteorite collections as HED meteorites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号