首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comets in the near-Earth object population   总被引:1,自引:0,他引:1  
Francesca DeMeo 《Icarus》2008,194(2):436-449
Because the lifespan of near-Earth objects (NEOs) is shorter than the age of the Solar System, these objects originate elsewhere. Their most likely sources are the main asteroid belt and comets. Through physical observations we seek to identify potential dormant or extinct comets among “asteroids” catalogued as NEOs and thereby determine the fraction of “comet candidates” within the total NEO population. Both discovery statistics and dynamical models indicate that candidate cometary objects in near-Earth space are predominantly found among those having a jovian Tisserand parameter Tj<3. Therefore, we seek to identify comet candidates among asteroid-like NEOs using three criteria: Tj<3, spectral parameters (C, D, T, or P taxonomic types), and/or low (<0.075) albedos. We present new observations for 20 NEOs having Tj<3, consisting of visible spectra, near-infrared spectra, and/or albedo measurements obtained using the NASA Infrared Telescope Facility, the Kitt Peak National Observatory 4 m, and the Magellan Observatory 6.5-m. Four of our “asteroid” targets have been subsequently confirmed as low activity comets. Thus our sample includes spectra of the nuclei of Comets 2002 EX12 = 169P (NEAT), 2001 WF2 = 182P (LONEOS), 2003 WY25 = D/1891 W1 (Blanplain), and Halley Family Comet 2006 HR30 = P/2006 HR30 (Siding Spring). From the available literature, we tabulate physical properties for 55 NEOs having Tj<3, and after accounting for possible bias effects, we estimate that 54±10% of NEOs in Tj<3 orbits have “comet-like” spectra or albedos. Bias corrected discovery statistics [Stuart, J.S., Binzel, R.P., 2004. Icarus 170, 295-311] estimate 30±5% of the entire NEO population resides in orbits having Tj<3. Combining these two factors suggests that 16±5% of the total discovered “asteroid-like” NEO population has “comet-like” dynamical and physical properties. Outer main-belt asteroids typically have similar taxonomic and albedo properties as our “comet candidates.” Using the model of Bottke et al. [Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J.M., Levison, H., Michel, P., Metcalfe, T.S., 2002. Icarus 156, 399-433] to evaluate source region probabilities, we conclude that 8±5% of the total asteroid-like NEO population have the requisite orbital properties, physical properties, and dynamical likelihood to have originated as comets from the outer Solar System.  相似文献   

2.
C.L Dandy  A Fitzsimmons 《Icarus》2003,163(2):363-373
We present the results of BVRIZ photometry of 56 near-Earth objects (NEOs) obtained with the 1-m Jacobus Kapteyn telescope on La Palma during 2000 and 2001. Our sample includes many NEOs with particularly deep 1-μm pyroxene/olivine absorption bands, similar to Q-type asteroids. We also classify three NEOs with particularly blue colors. No D-type asteroids were found, placing an upper limit of ∼2% on the fraction of the NEO population originating in the outer main belt or the Trojan clouds. The ratio of dark to bright objects in our sample was found to be 0.40, significantly higher than current theoretical predictions. As well as classifying the NEOs, we have investigated color trends with size and orbit. We see a general trend for larger silicate objects to have shallower absorption bands but find no significant difference in the distribution of taxonomic classes at small and large sizes. Our data clearly show that different taxonomic classes tend to occupy different regions of (a, e) space. By comparing our data with current model predictions for NEO dynamical evolution we see that Q-, R-, and V-type NEOs tend to have orbits associated with “fast track” delivery from the main belt, whereas S-type NEOs tend to have orbits associated with “slow track” delivery. This outcome would be expected if space weathering occurs on time scales of >106 years.  相似文献   

3.
Hilda asteroids and comets are similar from the compositional point of view. The D-taxonomic class prevailing among Hildas has all the characteristics found in cometary spectra. Jupiter Family Comets (JFCs) coming from the trans-neptunian region are under the gravitational control of Jupiter, making them a dynamically unstable population with a mean dynamical lifetime of 104 to 105 years. In contrast, Hilda asteroids residing in the 3:2 mean motion resonance with Jupiter are a very stable population. But once they escape from the resonance, they are dynamically controlled by Jupiter, and in this sense their behavior resembles that of JFC. We performed a numerical simulation to analyze the dynamical evolution that Hildas follow after escaping from the resonance, and their contribution to the JFC population. We found that 8% of the particles leaving the resonance end up impacting Jupiter. 98.7% of the escaped Hildas live at least 1000 years as a JFC, with a mean lifetime of 1.4×106 years. In particular, escaped Hildas stay mainly in the region of perihelion distances greater than 2.5 AU. On the other hand, the number of escaped Hildas reaching the inner Solar System (q<2.5 AU) is negligible. So, there are almost no Hilda asteroids among the NEO population. We also analyzed the possibility that the Shoemaker-Levy 9 were an escaped Hilda asteroid. In this case, it would be possible to give stronger constraints to its pre-capture orbital elements.  相似文献   

4.
The Karin cluster is one of the youngest known families of main-belt asteroids, dating back to a collisional event only 5.8±0.2 Myr ago. Using the Spitzer Space Telescope we have photometrically sampled the thermal continua (3.5-22 μm) of 17 Karin cluster asteroids of different sizes, down to the smallest members discovered so far, in order to make the first direct measurements of their sizes and albedos and study the physical properties of their surfaces. Our targets are also amongst the smallest main-belt asteroids observed to date in the mid-infrared. The derived diameters range from 17.3 km for 832 Karin to 1.5 km for 75176, with typical uncertainties of 10%. The mean albedo is pv=0.215±0.015, compared to 0.20±0.07 for 832 Karin itself (for H=11.2±0.3), consistent with the view that the Karin asteroids are closely related physically as well as dynamically. The albedo distribution (0.12?pv?0.32) is consistent with the range associated with S-type asteroids but the variation from one object to another appears to be significant. Contrary to the case for near-Earth asteroids, our data show no evidence of an albedo dependence on size. However, the mean albedo is lower than expected for young, fresh “S-type” surfaces, suggesting that space weathering can darken main-belt asteroid surfaces on very short timescales. Our data are also suggestive of a connection between surface roughness and albedo, which may reflect rejuvenation of weathered surfaces by impact gardening. While the available data allow only estimates of lower limits for thermal inertia, we find no evidence for the relatively high values of thermal inertia reported for some similarly sized near-Earth asteroids. Our results constitute the first observational confirmation of the legitimacy of assumptions made in recent modeling of the formation of the Karin cluster via a single catastrophic collision 5.8±0.2 Myr ago.  相似文献   

5.
M. Lazzarin  S. Marchi  M. Di Martino 《Icarus》2004,169(2):373-384
Near-Earth objects (NEOs) represent one of the most intriguing populations of Solar System bodies. These objects appear heterogeneous in all aspects of their physical properties, like shapes, sizes, spin rates, compositions etc. Moreover, as these objects represent also a real threat to the Earth, a good knowledge of their properties and composition is the necessary first step to evaluate mitigation techniques and to understand their origin and evolution. In the last few years we have started a long-term spectroscopic investigation in the visible and near-infrared (NIR) region of near-Earth objects. The observations have been performed with the 3.5 m NTT of the European Southern Observatory of La Silla (Chile). The data presented here are a set of 24 spectra, 14 of which are both visible and NIR. We discuss the taxonomic classification of the observed NEOs, resulting in 13 S-type objects, 1 Q-type, 2 K-types, 3 C-types, 5 Xe-types (two of these, (3103) Eger and (4660) Nereus, are already known as E-types). Moreover, we discuss their links with meteorites and the possible influences of space weathering.  相似文献   

6.
We estimate the total number and the slope of the size-frequency distribution (SFD) of dormant Jupiter family comets (JFCs) by fitting a one-parameter model to the known population. We first select 61 near-Earth objects (NEOs) that are likely to be dormant JFCs because their orbits are dynamically coupled to Jupiter [Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J., Levison, H.F., Michel, P., Metcalfe, T.S., 2002a. Icarus 156, 399-433]. Then, from the numerical simulations of Levison and Duncan [1997. Icarus 127, 13-32], we construct an orbit distribution model for JFCs in the NEO orbital element space. We assume an orbit-independent SFD for all JFCs, the slope of which is our unique free parameter. Finally, we compute observational biases for dormant JFCs using a calibrated NEO survey simulator [Jedicke, R., Morbidelli, A., Spahr, T., Petit, J., Bottke, W.F., 2003. Icarus 161, 17-33]. By fitting the biased model to the data, we estimate that there are ∼75 dormant JFCs with H<18 in the NEO region and that the slope of their cumulative SFD is −1.5±0.3. Our slope for the SFD of dormant JFCs is very close to that of active JFCs as determined by Weissman and Lowry [2003. Lunar Planet. Sci. 34. Abstract 2003]. Thus, we argue that when JFCs fade they are likely to become dormant rather than to disrupt and that the fate of faded comets is size-independent. Our results imply that the size distribution of the JFC progenitors—the scattered disk trans-neptunian population—either (i) has a similar and shallow SFD or (i) is slightly steeper and physical processes acting on the comets in a size-dependent manner creates the shallower active comet SFD. Our measured slope, typical of collisionally evolved populations with a size-dependent impact strength [Benz, W., Asphaug, E., 1999. Icarus 142, 5-20], suggests that scattered disk bodies reached collisional equilibrium inside the protoplanetary disk prior to their removal from the planetary region.  相似文献   

7.
The Canada-France-Hawaii Telescope Legacy Survey, specifically the Very Wide segment of data, is used to search for possible main-belt comets. In the first data set, 952 separate objects with asteroidal orbits within the main-belt are examined using a three-level technique. First, the full-width-half-maximum of each object is compared to stars of similar magnitude, to look for evidence of a coma. Second, the brightness profiles of each object are compared with three stars of the same magnitude, which are nearby on the image to ensure any extended profile is not due to imaging variations. Finally, the star profiles are subtracted from the asteroid profile and the residuals are compared with the background using an unpaired T-test. No objects in this survey show evidence of cometary activity. The second survey includes 11438 objects in the main-belt, which are examined visually. One object, an unknown comet, is found to show cometary activity. Its motion is consistent with being a main-belt asteroid, but the observed arc is too short for a definitive orbit calculation. No other body in this survey shows evidence of cometary activity. Upper limits of the number of weakly and strongly active main-belt comets are derived to be 630±77 and 87±28, respectively. These limits are consistent with those expected from asteroid collisions. In addition, data extracted from the Canada-France-Hawaii Telescope image archive of main-belt Comet 176P/LINEAR is presented.  相似文献   

8.
The space weathering process and its implications for the relationships between S- and Q-type asteroids and ordinary chondrite meteorites is an often debated topic in asteroid science. Q-type asteroids have been shown to display the best spectral match to ordinary chondrites (McFadden, L.A., Gaffey, M.J., McCord, T.B. [1985]. Science 229, 160–163). While the Q-types and ordinary chondrites share some spectral features with S-type asteroids, the S-types have significantly redder spectral slopes than the Q-types in visible and near-infrared wavelengths. This reddening of spectral slope is attributed to the effects of space weathering on the observed surface composition. The analysis by Binzel et al. (Binzel, R.P., Rivkin, A.S., Stuart, J.S., Harris, A.W., Bus, S.J., Burbine, T.H. [2004]. Icarus 170, 259–294) provided a missing link between the Q- and S-type bodies in near-Earth space by showing a reddening of spectral slope in objects from 0.1 to 5 km that corresponded to a transition from Q-type to S-type asteroid spectra, implying that size, and therefore surface age, is related to the relationship between S- and Q-types. The existence of Q-type asteroids in the main-belt was not confirmed until Mothé-Diniz and Nesvorny (Mothé-Diniz, T., Nesvorny, D. [2008]. Astron. Astrophys. 486, L9–L12) found them in young S-type clusters. The young age of these families suggest that the unweathered surface could date to the formation of the family. This leads to the question of whether older S-type main-belt families can contain Q-type objects and display evidence of a transition from Q- to S-type. To answer this question we have carried out a photometric survey of the Koronis family using the Kitt Peak 2.1 m telescope. This provides a unique opportunity to compare the effects of the space weathering process on potentially ordinary chondrite-like bodies within a population of identical initial conditions. We find a trend in spectral slope for objects 1–5 km that shows the transition from Q- to S-type in the main-belt. This data set will prove crucial to our understanding of the space weathering process and its relevant timescales.  相似文献   

9.
Ronald A. Fevig  Uwe Fink 《Icarus》2007,188(1):175-188
Results of our visible to near-infrared spectrophotometric observations of 41 near-Earth asteroids (NEAs) are reported. These moderate-resolution spectra, along with 14 previously published spectra from our earlier survey [Hicks, M.D., Fink, U., Grundy, W.M., 1998. Icarus 133, 69-78] show a preponderance of spectra consistent with ordinary chondrites (23 NEAs with this type of spectrum, along with 19 S-types and 13 in other taxonomic groups). There exists statistically significant evidence for orbit-dependent trends in our data. While S-type NEAs from our survey reside primarily in (1) Amor orbits or (2) Aten or Apollo orbits which do not cross the asteroid main-belt, the majority of objects with spectra consistent with ordinary chondrites in our survey are in highly eccentric Apollo orbits which enter the asteroid main-belt. This trend toward fresh, relatively unweathered NEAs with ordinary chondrite type spectra in highly eccentric Apollo orbits is attributed to one or a combination of three possible causes: (1) the chaotic nature of NEA orbits can easily result in high eccentricity orbits/large aphelion distances so that they can enter the collisionally enhanced environment in the main-belt, exposing fresh surfaces, (2) they have recently been injected into such orbits after a collision in the main-belt, or (3) such objects cross the orbits of several terrestrial planets, causing tidal disruption events that expose fresh surfaces.  相似文献   

10.
Thermal inertia determines the temperature distribution over the surface of an asteroid and therefore governs the magnitude the Yarkovsky effect. The latter causes gradual drifting of the orbits of km-sized asteroids and plays an important role in the delivery of near-Earth asteroids (NEAs) from the main belt and in the dynamical spreading of asteroid families. At present, very little is known about the thermal inertia of asteroids in the km size range. Here we show that the average thermal inertia of a sample of NEAs in the km-size range is . Furthermore, we identify a trend of increasing thermal inertia with decreasing asteroid diameter, D. This indicates that the dependence of the drift rate of the orbital semimajor axis on the size of asteroids due to the Yarkovsky effect is a more complex function than the generally adopted D−1 dependence, and that the size distribution of objects injected by Yarkovsky-driven orbital mobility into the NEA source regions is less skewed to smaller sizes than generally assumed. We discuss how this fact may help to explain the small difference in the slope of the size distribution of km-sized NEAs and main-belt asteroids.  相似文献   

11.
F. Marchis  M. Kaasalainen 《Icarus》2006,185(1):39-63
This paper presents results from a high spatial resolution survey of 33 main-belt asteroids with diameters >40 km using the Keck II Adaptive Optics (AO) facility. Five of these (45 Eugenia, 87 Sylvia, 107 Camilla, 121 Hermione, 130 Elektra) were confirmed to have satellite. Assuming the same albedo as the primary, these moonlets are relatively small (∼5% of the primary size) suggesting that they are fragments captured after a disruptive collision of a parent body or captured ejecta due to an impact. For each asteroid, we have estimated the minimum size of a moonlet that can positively detected within the Hill sphere of the system by estimating and modeling a 2-σ detection profile: in average on the data set, a moonlet located at 2/100×RHill (1/4×RHill) with a diameter larger than 6 km (4 km) would have been unambiguously seen. The apparent size and shape of each asteroid was estimated after deconvolution using a new algorithm called AIDA. The mean diameter for the majority of asteroids is in good agreement with IRAS radiometric measurements, though for asteroids with a D<200 km, it is underestimated on average by 6-8%. Most asteroids had a size ratio that was very close to those determined by lightcurve measurements. One observation of 104 Klymene suggests it has a bifurcated shape. The bi-lobed shape of 121 Hermione described in Marchis et al. [Marchis, F., Hestroffer, D., Descamps, P., Berthier, J., Laver, C., de Pater, I., 2005c. Icarus 178, 450-464] was confirmed after deconvolution. The ratio of contact binaries in our survey, which is limited to asteroids larger than 40 km, is surprisingly high (∼6%), suggesting that a non-single configuration is common in the main-belt. Several asteroids have been analyzed with lightcurve inversions. We compared lightcurve inversion models for plane-of-sky predictions with the observed images (9 Metis, 52 Europa, 87 Sylvia, 130 Elektra, 192 Nausikaa, and 423 Diotima, 511 Davida). The AO images allowed us to determine a unique photometric mirror pole solution, which is normally ambiguous for asteroids moving close to the plane of the ecliptic (e.g., 192 Nausikaa and 52 Europa). The photometric inversion models agree well with the AO images, thus confirming the validity of both the lightcurve inversion method and the AO image reduction technique.  相似文献   

12.
We present the results of thermal-infrared observations of 20 near-Earth asteroids (NEAs) obtained in the period March 2000-February 2002 with the 10-m Keck-I telescope on Mauna Kea, Hawaii. The measured fluxes have been fitted with thermal-model emission continua to determine sizes and albedos. This work increases the number of NEAs having measured albedos by 35%. The spread of albedos derived is very large (pv=0.02−0.55); the mean value is 0.25, which is much higher than that of observed main-belt asteroids. In most cases the albedos are in the ranges expected for the spectral types, although some exceptions are evident. Our results are consistent with a trend of increasing albedo with decreasing size for S-type asteroids with diameters below 20 km. A number of objects are found to have unexpectedly low apparent color temperatures, which may reflect unusual thermal properties. However, the results from our limited sample suggest that high thermal-inertia, regolith-free objects may be uncommon, even amongst NEAs with diameters of less than 1 km. We discuss the significance of our results in the light of information on these NEAs taken from the literature and the uncertainties inherent in applying thermal models to near-Earth asteroids.  相似文献   

13.
We investigate the flux of main-belt asteroid fragments into resonant orbits converting them into near-Earth asteroids (NEAs), and the variability of this flux due to chance interasteroidal collisions. A numerical model is used, based on collisional physics consistent with the results of laboratory impact experiments. The assumed main-belt asteroid size distribution is derived from that of known asteroids extrapolated down to sizes of 40 cm, modified in such a way to yield a quasi-stationary fragment production rate over times 100 Myr. The results show that the asteroid belt can supply a few hundred km-sized NEAs per year, well enough to sustain the current population of such bodies. On the other hand, if our collisional physics is correct, the number of existing 10-km objects implies that these objects either have very long-lived orbits, or must come from a different source (i.e., comets). Our model predicts that the fragments supplied from the asteroid belt have initially a power-law size distribution somewhat steeper than the observed one, suggesting preferential removal of small objects. The component of the NEA population with dynamical lifetimes shorter than or of the order of 1 Myr can vary by a factor reaching up to a few tens, due to single large-scale collisions in the main belt; these fluctuations are enhanced for smaller bodies and faster evolutionary time scales. As a consequence, the Earth's cratering rate can also change by about an order of magnitude over the 0.1 to 1 Myr time scales. Despite these sporadic spikes, when averaged over times of 10 Myr or longer the fluctuations are unlikely to exceed a factor two.  相似文献   

14.
Anita L Cochran  Faith Vilas 《Icarus》2004,167(2):360-368
We present spectral observations of Minor Planet 4 Vesta, of five V-type asteroids which are physically near Vesta, and of two V-type NEAs. We use these spectra to determine the presence or absence of a weak feature at 506.5 nm which is indicative of the presence of spin-forbidden Fe2+ in sixfold coordination. As with our earlier observations [Cochran and Vilas, Icarus 134 (1998) 207-212], we find this feature at all observed rotational phases of Vesta and again see the trend that spectra at longitudes between 240° and 360° have a smaller 506.5 nm feature equivalent width than spectra obtained at other longitudes. Additionally, we searched for this feature in V-class main-belt and NEA asteroids and positively detected the feature in main-belt Asteroid 2579 Spartacus and possibly in 3376 Armandhammer. The other objects lacked the feature. Our results are compared with previous observations of this feature by Vilas et al. [Icarus 147 (2000) 119-128]. The spatial distribution of the bodies as a function of the presence of this feature was investigated. We discuss the implication of the presence of this feature and the depth of the 0.9 μm pyroxene band for the scenario that pieces of Vesta were transported, via the 3:1 and ν6 resonances, to the NEAs, and thence to inclusion in our meteorite collections as HED meteorites.  相似文献   

15.
R. Gil-Hutton  A. Brunini 《Icarus》2008,193(2):567-571
In this paper we search for photometric data of asteroids in the Hilda region in the Moving Object Catalogue of the Sloan Digital Sky Survey to find the spectral characteristics of small members of this group. We found that the correlation between size and spectral slope previously suggested for Hilda asteroids is correct only for large objects (H<12) but it is not supported by data obtained for the small ones. The best possibility to explain this behavior is that a space weathering process affecting the surface properties of these primitive objects is operating, modulated by a collisional resurfacing process affected by the lack of small projectiles in the population. Despite the intrinsic limitations of the few band photometry of the Sloan Digital Sky Survey, the analysis presented is based mainly in the detection of spectral slopes providing enough good indication about the taxonomic type of these asteroids and making us confident about our conclusions.  相似文献   

16.
The locations of the fully despun, double synchronous end states of tidal evolution, where the rotation rates of both the primary and secondary components in a binary system synchronize with the mean motion about the center of mass, are derived for spherical components. For a given amount of scaled angular momentum J/J′, the tidal end states are over-plotted on a tidal evolution diagram in terms of mass ratio of the system and the component separation (semimajor axis in units of primary radii). Fully synchronous orbits may not exist for every combination of mass ratio and angular momentum; for example, equal-mass binary systems require J/J′ > 0.44. When fully synchronous orbits exist for prograde systems, tidal evolution naturally expands the orbit to the stable outer synchronous solution. The location of the unstable inner synchronous orbit is typically within two primary radii and often within the radius of the primary itself. With the exception of nearly equal-mass binaries, binary asteroid systems are in the midst of lengthy tidal evolutions, far from their fully synchronous tidal end states. Of those systems with unequal-mass components, few have even reached the stability limit that splits the fully synchronous orbit curves into unstable inner and stable outer solutions.Calculations of material strength based on limiting the tidal evolution time to the age of the Solar System indicate that binary asteroids in the main belt with 100-km-scale primary components are consistent with being made of monolithic or fractured rock as expected for binaries likely formed from sub-catastrophic impacts in the early Solar System. To tidally evolve in their dynamical lifetime, near-Earth binaries with km-scale primaries or smaller created via a spin-up mechanism must be much weaker mechanically than their main-belt counterparts even if formed in the main belt prior to injection into the near-Earth region. Small main-belt binaries, those having primary components less than 10 km in diameter, could bridge the gap between the large main-belt binaries and the near-Earth binaries, as, depending on the age of the systems, small main-belt binaries could either be as strong as the large main-belt binaries or as weak as the near-Earth binaries. The inherent uncertainty in the age of a binary system is the leading source of error in calculation of material properties, capable of affecting the product of rigidity μ and tidal dissipation function Q by orders of magnitude. Several other issues affecting the calculation of μQ are considered, though these typically affect the calculation by no more than a factor of two. We also find indirect evidence within all three groups of binary asteroids that the semimajor axis of the mutual orbit in a binary system may evolve via another mechanism (or mechanisms) in addition to tides with the binary YORP effect being a likely candidate.  相似文献   

17.
F. Roig  D. Nesvorný  R. Gil-Hutton 《Icarus》2008,194(1):125-136
V-type asteroids are bodies whose surfaces are constituted of basalt. In the Main Asteroid Belt, most of these asteroids are assumed to come from the basaltic crust of Asteroid (4) Vesta. This idea is mainly supported by (i) the fact that almost all the known V-type asteroids are in the same region of the belt as (4) Vesta, i.e., the inner belt (semi-major axis 2.1<a<2.5 AU), (ii) the existence of a dynamical asteroid family associated to (4) Vesta, and (iii) the observational evidence of at least one large craterization event on Vesta's surface. One V-type asteroid that is difficult to fit in this scenario is (1459) Magnya, located in the outer asteroid belt, i.e., too far away from (4) Vesta as to have a real possibility of coming from it. The recent discovery of the first V-type asteroid in the middle belt (2.5<a<2.8 AU), (21238) 1995WV7 [Binzel, R.P., Masi, G., Foglia, S., 2006. Bull. Am. Astron. Soc. 38, 627; Hammergren, M., Gyuk, G., Puckett, A., 2006. ArXiv e-print, astro-ph/0609420], located at ∼2.54 AU, raises the question of whether it came from (4) Vesta or not. In this paper, we present spectroscopic observations indicating the existence of another V-type asteroid at ∼2.53 AU, (40521) 1999RL95, and we investigate the possibility that these two asteroids evolved from the Vesta family to their present orbits by a semi-major axis drift due to the Yarkovsky effect. The main problem with this scenario is that the asteroids need to cross the 3/1 mean motion resonance with Jupiter, which is highly unstable. Combining N-body numerical simulations of the orbital evolution, that include the Yarkovsky effect, with Monte Carlo models, we compute the probability that an asteroid of a given diameter D evolves from the Vesta family and crosses over the 3/1 resonance, reaching a stable orbit in the middle belt. Our results indicate that an asteroid like (21238) 1995WV7 has a low probability (∼1%) of having evolved through this mechanism due to its large size (D∼5 km), because the Yarkovsky effect is not sufficiently efficient for such large asteroids. However, the mechanism might explain the orbits of smaller bodies like (40521) 1999RL95 (D∼3 km) with ∼70-100% probability, provided that we assume that the Vesta family formed ?3.5 Gy ago. We estimate the debiased population of V-type asteroids that might exist in the same region as (21238) and (40521) (2.5<a?2.62 AU) and conclude that about 10 to 30% of the V-type bodies with D>1 km may come from the Vesta family by crossing over the 3/1 resonance. The remaining 70-90% must have a different origin.  相似文献   

18.
The spin rate distribution of main belt/Mars crossing (MB/MC) asteroids with diameters 3-15 km is uniform in the range from f=1 to 9.5 d−1, and there is an excess of slow rotators with f<1 d−1. The observed distribution appears to be controlled by the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect. The magnitude of the excess of slow rotators is related to the residence time of slowed down asteroids in the excess and the rate of spin rate change outside the excess. We estimated a median YORP spin rate change of ≈0.022 d−1/Myr for asteroids in our sample (i.e., a median time in which the spin rate changes by 1 d−1 is ≈45 Myr), thus the residence time of slowed down asteroids in the excess is ≈110 Myr. The spin rate distribution of near-Earth asteroids (NEAs) with sizes in the range 0.2-3 km (∼5 times smaller in median diameter than the MB/MC asteroids sample) shows a similar excess of slow rotators, but there is also a concentration of NEAs at fast spin rates with f=9-10 d−1. The concentration at fast spin rates is correlated with a narrower distribution of spin rates of primaries of binary systems among NEAs; the difference may be due to the apparently more evolved population of binaries among MB/MC asteroids.  相似文献   

19.
This study continues our previous works on searching for the main source of the nuclei of Jupiter family comets (JFCs). Angular orbit element distributions are analyzed for comets and asteroids of different groups. The distributions of JFCs by argument of perihelion ω and longitude of perihelion π are studied. The distributions are shown not to have been formed during the evolution of JFCs in their current orbits. Similar distributions N(ω) and N(π) are not observed in bodies that have come into the JFC orbits from external sources. At the same time, the distributions of JFCs by all angular orbit elements are very similar to those of the Trojans. It is concluded that the latter are likely to be the main source of the JFC nuclei.  相似文献   

20.
For absolute magnitudes greater than the current completeness limit of H-magnitude ∼15 the main asteroid belt's size distribution is imperfectly known. We have acquired good-quality orbital and absolute H-magnitude determinations for a sample of small main-belt asteroids in order to study the orbital and size distribution beyond H=15, down to sub-kilometer sizes (H>18). Based on six observing nights over a 11-night baseline we have detected, measured photometry for, and linked observations of 1087 asteroids which have one-week time baselines or more. The linkages allow the computation of full heliocentric orbits (as opposed to statistical distances determined by some past surveys). Judged by known asteroids in the field the typical uncertainty in the (a/e/i) orbital elements is less than 0.03 AU/0.03/0.5°. The distances to the objects are sufficiently well known that photometric uncertainties (of 0.3 magnitudes or better) dominate the error budget of their derived H-magnitudes. The detected asteroids range from HR=12-22 and provide a set of objects down to sizes below 1 km in diameter. We find an on-sky surface density of 210 asteroids per square degree in the ecliptic with opposition magnitudes brighter than mR=23, with the cumulative number of asteroids increasing by a factor of 100.27/mag from mR=18 down to the mR?23.5 limit of our survey. In terms of absolute H magnitudes, we find that beyond H=15 the belt exhibits a constant power-law slope with the number increasing proportional to 100.30H from H?15 to 18, after which incompleteness begins in the survey. Examining only the subset of detections inside 2.5 AU, we find weak evidence for a mildly shallower slope for H=15-19.5. We provide the information necessary such that anyone wishing to model the main asteroid belt can compare a detailed model to our detected sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号