首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Disk-integrated and disk-resolved measurements of Mercury’s surface obtained by both the Mercury Dual Imaging System (MDIS) and the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) onboard the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft were analyzed and compared with previous ground-based observations of Mercury at 11 wavelengths. The spectra show no definitive absorption features and display a red spectral slope (increasing reflectance with increasing wavelength) typical of space-weathered rocky surfaces. The MDIS spectra show evidence of phase reddening, which is not observed in the MASCS spectra. The MDIS spectra are commensurate with ground-based observations to within 10%, whereas the MASCS spectra display greater discrepancies with ground-based observations at near-infrared wavelengths. The derived photometric calibrations provide corrections within 10% for observations taken at phase angles less than ∼100°. The derived photometric properties are indicative of a more compact regolith than that of the lunar surface or of average S-type asteroids. The photometric roughness of the surface is also much smoother than the Moon’s. The calculated geometric albedo (reflectance at zero phase) is higher than lunar values. The lower reflectance of immature units on Mercury compared with immature units on the Moon, in conjunction with the higher geometric albedo, is indicative of more complicated grain structures within Mercury’s regolith.  相似文献   

2.
Long experience of ground-based and cosmic studies of the Moon has shown that space-weathering processes play a key role in the formation of the surface layers of atmosphereless bodies. Undoubtedly, the surface of Mercury, which is subjected to the same processes, is covered by a mantle of shattered rocks—the regolith. The structure of the reflecting layer determines the photometric and polarization characteristics of the surface of a planetary body. Despite the general similarity of the integral optical properties of the surfaces of Mercury and the Moon, specific characteristics of the media of these celestial bodies manifest themselves as certain differences in the details of the measured parameters. Moreover, the similarity to the Moon permits in-depth interpretation of the results of remote observations of Mercury, such as integral polarimetry and integral spectropolarimetry. The data obtained suggest that the general structure of the surface layer of the Mercurian regolith is very similar to the structure of the lunar soil, although it is somewhat smoother and probably has a greater amount of the fine-grained fraction. The soil maturity matches the content of about 80% of the secondary particles. At the same time, the exposure age of the soil, which has the same degree of maturity, is less than the age of the soil formed under lunar conditions.  相似文献   

3.
J. Warell 《Icarus》2002,156(2):303-317
Multicolor photometric observations of the “unknown” hemisphere of Mercury have been performed with the Swedish Vacuum Solar Telescope on La Palma at maximal elongations from the Sun in 1997 and 1998. A set of six interference filters with central wavelengths from 450 to 940 nm were used. Multicolor photometry of Mercury was performed on disk-resolved images of the unknown hemisphere (longitudes 160°-340°) with a highest resolution of ∼200 km (J. Warell and S. Limaye 2001, Planet. Space Sci.49, 1531-1552).Disk-integrated spectrophotometry shows that (1) the spectrum of Mercury displays a linear slope from 650 to 940 nm, indicating that the average mercurian regolith is considerably more mature than relatively immature pure anorthosite regions on the Moon; (2) there is negative evidence for the presence of the putative 1-μm absorption feature near 940 nm due to the presence of ferrous iron (Fe2+) in pyroxenes; and (3) no effect of phase reddening of the integrated disk is observed between phase angles of 63° and 84°.For the first time, disk-resolved spectrophotometry of Mercury's surface has been obtained, from which it is inferred that (4) the scattering properties of Mercury's regolith are more homogeneous than for the Moon and that there is no clear relation between reflectance and chemical properties at spatial scales of ∼300 km on the unknown hemisphere and (5) there exists an inverse relation of spectral slope with emission angle which is larger for Mercury than for the Moon, indicating that the average mercurian regolith is more backscattering and that this effect increases with wavelength.Finally, from filter ratio images of Mercury's disk it is found that (6) no color variations larger that 2% with respect to the surroundings are detected at a spatial resolution of ∼300 km.  相似文献   

4.
The results of investigations of the surface relief of Mercury with a classical photometric method are reported. A subject of the photometric method is the intensity of light reflected by the surface of the planet. The main data for the photometric study are the high-resolution images of Mercury received from the MESSENGER space station during its first flyby over Mercury. The images of the surface of Mercury were downloaded from the NASA web-site (http://messenger.jhuapl.edu) and converted to a digital form for photometric measurements. The reflectance characteristics of the surface were calculated according to the model of a three-dimensional scattering phase function (Shevchenko, 1979; 2004a; 2006). From the photometric processing of the space-borne images, the reflectance of four morphologic types of the surface structure of Mercury was determined. With the Hapke model of the bidirectional reflectance (Hapke, 2001), the structural inhomogeneity of the regions of the morphologic forms with centimeter-sized rough-ness was estimated.  相似文献   

5.
We present results of a five-filter photometric study of Mercury's integral phase curve in the Johnson-Cousins UBVRI system, performed with the 0.90-m Westerlund Telescope in Uppsala, Sweden. CCD observations were made of the integrated disk for the phase angle range 22-152°, and the study is the first to cover the extended visible spectrum of Mercury. The observations are analyzed with Hapke's semi-empirical radiative transfer-based light-scattering model and photometric quantities are derived. A statistically significant phase reddening effect of is determined for Mercury based on color index observations, which is similar to that of the Moon. Phase coefficients fit to integral absolute magnitude data and Hapke models in combination with color index data provide a phase reddening effect of which does however not provide statistically significant evidence for its presence. Phase coefficients indicate that phase reddening may be decreasing in magnitude with wavelength. As for the case with the Moon, the value of the phase integral increases with wavelength, but at an eight times higher rate. This value is consistent with the difference in the rate of change in the spectral slope-emission angle relation for the two bodies. We attribute these differences with Mercury's redder spectral slope and an increase with wavelength of the backscattering lobe amplitude in the double Henyey-Greenstein particle phase function formulation. The normal albedo of integral Mercury at 1064 nm, pertinent to the return pulse energy of the BepiColombo laser altimeter (BELA), is estimated to 0.23±0.06 with a range of 0.13-0.33 for 99% of the surface.  相似文献   

6.
CCD observations of Mercury were obtained with the large angle spectrometric coronograph (LASCO) on the solar and heliospheric observatory spacecraft, near superior and inferior solar conjunctions. Whole disk photometry was extracted from the orange and blue filter images and transformed to V magnitudes on the UBV system. The LASCO data were combined with ground-based, V-filter photometry acquired at larger elongation angles. The resulting photometric phase function covers the greatest span of angles to date and is the first wide-range function to be obtained since the era of visual observation. We analyzed the data using a polynomial fit and a Hapke function fit, and derived the following photometric results. Mercury's fully lit brightness, adjusted to a distance of 1.0 AU from the Sun and observer, was found to be V=−0.694(±0.030), which is more luminous than previously measured. The corresponding geometric albedo is 0.142(±0.005). The phase integral is 0.478(±0.005) and resulting spherical albedo is 0.068(±0.003). The upper limit of a possible rotational brightness variation is about 0.05 magnitude. Mercury's brightness surges by more than 40% between phase angles 10 and 2°, while the illuminated fraction of the disk increases by less than 1%. A set of coefficients for Hapke's function that fit most of the phase curve includes h=0.065±0.002 indicating that Mercury and the Moon have similar regolith compaction states and particle size distributions, and θ-bar=16°±1° implying a macroscopically smoother surface than the Moon. However, we found other solutions that fit the observations nearly as well with significantly smaller and larger values of h, and with values of θ-bar around 25°. The wide range for θ-bar is due to the inability of the model to fit the photometry obtained at large phase angles.  相似文献   

7.
A procedure of an a posteriori correction of the available data on the integral photometry of the Moon is described. This procedure reduces the regular errors of the integral phase curves caused by variations of the libration parameters; the effect due to libration can reach 4%. A method allowing the integral measurements of the Moon to be compared correctly with the photometric measurements of the lunar areas or laboratory samples imitating the lunar soil has been developed. To approximate the phase curves of integral albedo in the phase-angle range from 6° to 120°, we proposed a simple empirical formula A eq(α) = m l e ?ρα + m 2 e ?0.7α, where α is the phase angle, ρ is the factor of effective roughness, and m 1 + m 2 is the surface albedo at a zero phase angle. An empirical phase dependence of the slope of the lunar spectrum in the 360–1060 nm range has been obtained. The results may be used to test various theoretical models of the light scattering by the lunar surface and to calibrate the data of ground-based and space-borne spectrophotometric observations.  相似文献   

8.
The disk-resolved flyby images of the nucleus of Comet 81P/Wild 2 collected by Stardust are used to perform a detailed study of the photometric properties of this cometary nucleus. A disk-integrated phase function from phase angle 11° to about 100° is measured and modeled. A phase slope of 0.0513 ± 0.0002 mag/deg is found, with a V-band absolute magnitude of 16.29 ± 0.02. Hapke’s photometric model yields a single-scattering albedo of 0.034, an asymmetry factor of phase function −0.53, a geometric albedo 0.059, and a V-band absolute magnitude of 16.03 ± 0.07. Disk-resolved photometric modeling from both the Hapke model and the Minnaert model results in 11% model RMS, indicating small photometric variations. The roughness parameter is modeled to be 27 ± 5° from limb-darkening profile. The modeled single-scattering albedo and asymmetry factor of the phase function are 0.038 ± 0.004 and −0.52 ± 0.04, respectively, consistent with those from disk-integrated phase function. The bulk photometric properties of the nucleus of Wild 2 are comparable with those of other cometary nuclei. The photometric variations on the surface of the nucleus of Wild 2 are at a level of or smaller than 15%, much smaller than those on the nucleus of Comet 19P/Borrelly and comparable or smaller than those on the nucleus of Comet 9P/Tempel 1. The similar photometric parameters of the nuclei of Wild 2, Tempel 1, and the non-source areas of fan jets on Borrelly may reflect the typical photometric properties of the weakly active surfaces on cometary nuclei.  相似文献   

9.
Polarimetric measurements were collected at different areas of the surface of Mercury, and for the whole disk in six wavelengths. The curves of polarization are compared with telescopic observations of the Moon and laboratory studies of minerals and returned lunar samples. The negative branch of polarization proves that Mercury's surface is almost everywhere covered by a regolith layer of fines of the lunar type, also made of dark and adsorbing material, and most probably of the same impact generated origin. The polarization maximum of Mercury is reproduced by lunar samples of fines of intermediate albedo corresponding to the lightest regolith found in the Apollo explored maria.The albedo of Mercury at phase angle 5° deduced from telescopic photometry is to be corrected by a factor of 1.20 and the best “polarimetric” values of albedos are 0.130 at λ = 0.585μm, 0.119 at λ = 0.520 μm, 0.093 at λ = 0.379μm and 0.087 at λ = 0.354μm. The contrast between light and dark-lined regions at the surface of Mercury is most probably much fainter than between the maria and continents on the Moon.The molecular atmosphere of Mercury, if any, has a surface pressure probably smaller than 2 × 10?4 bars.  相似文献   

10.
The Hapke (Hapke, B. [1981]. J. Geophys. Res. 86, 3039-3054) photometric model and its modifications are widely used to characterize telescopic, spacecraft, and laboratory observations of the bidirectional reflectance of particulate surfaces. Following work and methods laid out in a companion paper (Helfenstein, P., Shepard, M.K. [2011]. Icarus, in press), we deconstruct the Hapke model and, separating all empirical and ad hoc parameters (opposition surge, particle phase function, surface roughness), combine them into a single parameter called the surface phase function, F(α). We illustrate how to extract this function from scattering data sets acquired with the Bloomsburg University Goniometer (BUG). We show how this method can be used to rapidly and accurately characterize bidirectional reflectance data sets from laboratory and spacecraft measurements, often giving better fits to the data. We examine samples with strong color contrasts in different wavelengths. This allows us to examine the exact same surface, changing only the albedo to investigate how the amplitude and the detailed shape of the surface phase function might systematically depend on wavelength and albedo. We also examine the changes in scattering behavior that result when samples are compacted and find the surface phase function and single scattering albedo to be significantly changed. We suggest that these observations support the hypothesis that much of the scattering behavior attributed to the single particle phase function is instead cause by the surface micro-structure.  相似文献   

11.
Dawn spacecraft orbited Vesta for more than one year and collected a huge volume of multispectral, high-resolution data in the visible wavelengths with the Framing Camera. We present a detailed disk-integrated and disk-resolved photometric analysis using the Framing Camera images with the Minnaert model and the Hapke model, and report our results about the global photometric properties of Vesta. The photometric properties of Vesta show weak or no dependence on wavelengths, except for the albedo. At 554 nm, the global average geometric albedo of Vesta is 0.38 ± 0.04, and the Bond albedo range is 0.20 ± 0.02. The bolometric Bond albedo is 0.18 ± 0.01. The phase function of Vesta is similar to those of S-type asteroids. Vesta’s surface shows a single-peaked albedo distribution with a full-width-half-max ∼17% relative to the global average. This width is much smaller than the full range of albedos (from ∼0.55× to >2× global average) in localized bright and dark areas of a few tens of km in sizes, and is probably a consequence of significant regolith mixing on the global scale. Rheasilvia basin is ∼10% brighter than the global average. The phase reddening of Vesta measured from Dawn Framing Camera images is comparable or slightly stronger than that of Eros as measured by the Near Earth Asteroid Rendezvous mission, but weaker than previous measurements based on ground-based observations of Vesta and laboratory measurements of HED meteorites. The photometric behaviors of Vesta are best described by the Hapke model and the Akimov disk-function, when compared with the Minnaert model, Lommel–Seeliger model, and Lommel–Seeliger–Lambertian model. The traditional approach for photometric correction is validated for Vesta for >99% of its surface where reflectance is within ±30% of global average.  相似文献   

12.
In conjunction with a companion paper (Shepard, M.K., Helfenstein, P. [2011]. Icarus, submitted for publication), we derive, test, and apply a detailed approach for visualizing the phase angle dependence of light scattering in particulate soils from both whole-disk and disk-resolved observations. To reduce the number of model parameters and provide stronger constraints on model fits, we combine Hapke’s (Hapke, B. [2008]. Icarus 195, 918-926) recent correction for effects of porosity with his (Hapke, B. [1986]. Icarus 67, 264-280) model of the shadow hiding opposition effect. We further develop our method as a tool for least-squares fitting of Hapke’s model to photometric data. Finally, we present an improved method for estimating uncertainties in retrieved values of Hapke model parameters. We perform a preliminary test of the model on spectrogoniometric measurements from three selected laboratory samples from Shepard and Helfenstein (Shepard, M.K., Helfenstein, P. [2007]. J. Geophys. Res. 112 (E03001), 17). Our preliminary suite of test samples is too small and selective to permit the drawing of general conclusions. However, our results suggest that Hapke’s porosity correction improves the fidelity of fits to samples composed of low- and moderate-albedo particles and may allow for more reliable retrieval of porosity estimates in these materials. However, we find preliminary evidence that in high-albedo surfaces, the effects of porosity may be difficult to detect.  相似文献   

13.
The four colour photometric observations of 15 regions of the lunar surface are reported in this paper. They all confirm the reddening with increasing phase. Observed regions at wide range of phase show an appreciable colour opposition effect. Reddening factors obtained, are larger near full Moon, and smaller at larger phase angles.  相似文献   

14.
At small phase angles the light scattered by the Moon reveals a negative polarization branch whose average amplitude is 1%. We present results of polarimetric mappings of the Moon in Pmin at a phase angle near 11°. The observations were carried out with the Kharkov 50-cm telescope at the Maidanak Observatory (Middle Asia) using a polarizing filter. A thorough calibration of the camera array allows for the reliable detection of significant variations of |Pmin| over the lunar surface, from 0.2 to 1.6%, at a wavelength of 0.52 μm. The smallest |Pmin| are characteristic of young bright craters, while the |Pmin| are the highest for the lunar highland and bright mare areas. The horse-shoe shape of the correlation dependence Pmin (albedo) is treated with data of our laboratory measurements of powdered surfaces and computer modeling of light scattering by small particles with the DDA (discrete dipole approximation) technique.  相似文献   

15.
We present near-infrared spectrometer (NIS) observations (0.8 to 2.4 μm) of the S-type asteroid 433 Eros obtained by the NEAR Shoemaker spacecraft and report results of our Hapke photometric model analysis of data obtained at phase angles ranging from 1.2° to 111.0° and at spatial resolutions of 1.25×2.5 to 2.75×5.5 km/spectrum. Our Hapke model fits successfully to the NEAR spectroscopic data for systematic color variations that accompany changing viewing and illumination geometry. Model parameters imply a geometric albedo at 0.946 μm of 0.27±0.04, which corresponds to a geometric albedo at 0.550 μm of 0.25±0.05. We find that Eros exhibits phase reddening of up to 10% across the phase angle range of 0-100°. We observe a 10% increase in the 1-μm band depth at high phase angles. In contrast, we observe only a 5% increase in continuum slope from 1.486 to 2.363 μm and essentially no difference in the 2-μm band depth at higher phase angles. These contrasting phase effects imply that there are phase-dependent differences in the parametric measurements of 1- and 2-μm band areas, and in their ratio. The Hapke model fits suggest that Eros exhibits a weaker opposition surge than either 951 Gaspra or 243 Ida (the only other S-type asteroids for which we possess disk-resolved photometric observations). On average, we find that Eros at 0.946 μm has a higher geometric albedo and a higher single-scatter albedo than Gaspra or Ida at 0.56 μm; however, Eros's single-particle phase function asymmetry and average surface macroscopic roughness parameters are intermediate between Gaspra and Ida. Only two of the five Hapke model parameters exhibit a notable wavelength dependence: (1) The single-scatter albedo mimics the spectrum of Eros, and (2) there is a decrease in angular width of the opposition surge with increasing wavelength from 0.8 to 1.7 μm. Such opposition surge behavior is not adequately modeled with our shadow-hiding Hapke model, consistent with coherent backscattering phenomena near zero phase.  相似文献   

16.
Bruce Hapke 《Icarus》1984,59(1):41-59
A mathematically rigorous formalism is derived by which an arbitrary photometric function for the bidirectional reflectance of a smooth surface may be corrected to include effects of general macroscopic roughness. The correction involves only one arbitrary parameter, the mean slope angle θ, and is applicable to surfaces of any albedo. Using physically reasonable assumptions and mathematical approximations the correction expressions are evaluated analytically to second order in θ. The correction is applied to the bidirectional reflectance function of B. Hapke (1981, J. Geophys. Res.86, 3039–3054). Expressions for both the differential and integral brightnesses are obtained. Photometric profiles on hypothetical smooth and rough planets of low and high albedo are shown to illustrate the effects of macroscopic roughness. The theory is applied to observations of Mercury and predicts the integral phase function, the apparent polar darkening, and the lack of limb brightness surge on the planet. The roughness-corrected bidirectional reflectance function is sufficiently simple that it can be conveniently evaluated on a programmable hand-held calculator.  相似文献   

17.
Measurements of the disk-integrated reflectance spectrum of Mercury and the Moon have been obtained by the MESSENGER spacecraft. A comparison of spectra from the two bodies, spanning the wavelength range 220-1450 nm, shows that the absolute reflectance of Mercury is lower than that of the nearside waxing Moon at the same phase angle with a spectral slope that is less steep at visible and near-infrared wavelengths. We interpret these results and the lack of an absorption feature at a wavelength near 1000 nm as evidence for a Mercury surface composition that is low in ferrous iron within silicates but is higher in the globally averaged abundance of spectrally neutral opaque minerals than the Moon. Similar conclusions have been reached by recent investigations based on observations from both MESSENGER and Mariner 10. There is weak evidence for a phase-reddening effect in Mercury that is slightly larger in magnitude than for the lunar nearside. An apparent absorption in the middle-ultraviolet wavelength range of the Mercury spectrum detected from the first MESSENGER flyby of Mercury is found to persist in subsequent observations from the second flyby. The current model of space weathering on the Moon, which also presumably applies to Mercury, does not provide an explanation for the presence of this ultraviolet absorption.  相似文献   

18.
Hubble Space Telescope (HST) Wide-Field Planetary Camera (WFPC2) observations at phase angles in the range α=0.26°-6.4° obtained at every opposition and near quadrature between October 1996 and December 2002 reveal the opposition effect of Enceladus. We present a photometric analysis of nearly 200 images obtained through the five broadband UVBRI filters (F336W, F439W, F555W, F675W, and F814W) and the F785LP and F1042M filters from which we generate mutually consistent solar and rotational phase curves. Our solar phase curves reveal a dramatic, sharp increase in the albedo (from 0.11 mag in the F675W filter to 0.17 mag in the F785LP filter) as phase angles decrease from 2° to 0.26°. A slight opposition effect is evident in data from the F1042M filter (λeff=1022 nm); however, the smallest phase angle currently available for observations from this filter is α=0.58°. With the addition of data from the F255W filter we demonstrate the wavelength dependence of the albedo of the trailing hemisphere from 275 to 1022 nm. Our rotation curves show that the trailing hemisphere is ∼0.06 mag brighter than the leading when observed at wavelengths between 338 and 868 nm and 0.11 mag brighter than the leading at 1022 nm. We have supplemented the phase curve from the F439W filter (λeff=434 nm) with Voyager clear filter (λeff=480 nm) observations made at larger phase angles (α=13°-43°) to produce a phase curve with the most extensive phase angle coverage possible to date. This newly expanded range of phase angles enhances the ability of the Hapke photometric model (Hapke B., 2002, Icarus 157, 523-534) to relate physical characteristics of the surface of Enceladus to the manner in which incident light is reflected from it. We present Hapke 2002 model fits to solar phase curves from each UVBRI filter as well as from the F785LP and F1042M filters. Geometric albedos derived from these model fits range from p=0.92±0.01 at 1022 nm to p=1.41±0.03 at 549 nm, necessitating an increase of about 20% from previously derived values. Our Hapke fits demonstrate that the opposition surge of Enceladus is best described by a model which combines both moderate shadow-hiding and narrow coherent backscattering components.  相似文献   

19.
J. Warell  D.T. Blewett 《Icarus》2004,168(2):257-276
We present new optical (0.4-0.65 μm) spectra of Mercury and lunar pure anorthosite locations, obtained quasi-simultaneously with the Nordic Optical Telescope (NOT) in 2002. A comparative study is performed with the model of Lucey et al. (2000, J. Geophys. Res. 105, 20297-20305, and references therein) between iron-poor, mature, pure anorthosite (>90% plagioclase feldspar) Clementine spectra from the lunar farside and a combined 0.4-1.0 μm mercurian spectrum, obtained with the NOT, calculated for standard photometric geometry. Mercury is located at more extreme locations in the Lucey ratio-reflectance diagrams than any known lunar soil, specifically with respect to the extremely iron-poor mature anorthosites. Though quantitative prediction of FeO and TiO2 abundances cannot be made without a more generally applicable model, we find qualitatively that the abundances of both these oxides must be near zero for Mercury. We utilize the theory of Hapke (2002, Icarus 157, 523-534, and references therein), with realistic photometric parameters, to model laboratory spectra of matured mineral powders and lunar soils, and remotely sensed spectra of lunar anorthosites and Mercury. An important difference between fabricated and natural powders is the high value for the internal scattering parameter necessary to interpret the spectra for the former, and the requirement of rough and non-isotropically scattering surfaces in the modelling of the latter. The mature lunar anorthosite spectra were well modelled with binary mixtures of calcic feldspars and olivines, grain sizes of 25-30 μm and a concentration of submicroscopic metallic iron (SMFe) of 0.12-0.15% in grain coatings. The mercurian spectrum is not possible to interpret from terrestrial mineral powder spectra without introducing an average particle scattering function for the bulk soil that increases in backscattering efficiency with wavelength. The observed spectrum is somewhat better predicted with binary mixture models of feldspars and pyroxenes, than with single-component regoliths consisting of either albite or diopside. Correct spectral reflectance values were predicted with a concentration of 0.1 wt% SMFe in coatings of 15-30 μm sized grains. Since reasonable cosmogonical formation scenarios for Mercury, or meteoritic infall, predict iron concentrations at least this high, we draw the conclusion that the average grain size of Mercury is about a factor of two smaller than for average returned lunar soil samples. The 0.6-2.5 μm spectrum of McCord and Clark (1979, J. Geophys. Res. 178, 745-747) is used to further limit the possible range of mineralogical composition of Mercury. It is found that an intimately mixed and matured 3:1 labradorite-to-enstatite regolith composition best matches both the optical and near-infrared spectra, yielding an abundance of ∼1.2 wt% FeO and ∼0 wt% TiO2.  相似文献   

20.
The effects of various types of topography on the shadow-hiding effect and multiple scattering in particulate surfaces are studied. Two bounding cases were examined: (1) the characteristic scale of the topography is much larger than the surface particle size, and (2) the characteristic scale of the topography is comparable to the surface particle size. A Monte Carlo ray-tracing method (i.e., geometric optics approximation) was used to simulate light scattering. The computer modeling shows that rocky topographies generated by randomly distributed stones over a flat surface reveal much steeper phase curves than surface with random topography generated from Gaussian statistics of heights and slopes. This is because rocks may have surface slopes greater than 90°. Consideration of rocky topography is important for interpreting rover observations. We show the roughness parameter in the Hapke model to be slightly underestimated for bright planetary surfaces, as the model neglects multiple scattering on large-scale topographies. The multiple scattering effect also explains the weak spectral dependences of the roughness parameter in Hapke's model found by some authors. Multiple scattering between different parts of a rough surface suppresses the effect of shadowing, thus the effects produced by increases in albedo on the photometric behavior of a surface can be compensated for with the proper decreases in surface roughness. This defines an effective (photometric) roughness for a surface. The interchangeability of albedo and roughness is shown to be possible with fairly high accuracy for large-scale random topography. For planetary surfaces that have a hierarchically arranged large-scale random topography, predictions made with the Hapke model can significantly differ from real values of roughness. Particulate media with surface borders complicated by Gaussian or clumpy random topographies with characteristic scale comparable to the particle size reveal different photometric behaviors in comparison with particulate surfaces that are flat or the scale of their topographies is much larger than the particle size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号