首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Two and a half years after Saturn orbit insertion (SOI) the Cassini composite infrared spectrometer (CIRS) has acquired an extensive set of thermal measurements (including physical temperature and filling factor) of Saturn's main rings for a number of different viewing geometries, most of which are not available from Earth. Thermal mapping of both the lit and unlit faces of the rings is being performed within a multidimensional observation space that includes solar phase angle, spacecraft elevation and solar elevation. Comprehensive thermal mapping is a key requirement for detailed modeling of ring thermal properties.To first order, the largest temperature changes on the lit face of the rings are driven by variations in phase angle while differences in temperature with changing spacecraft elevation are a secondary effect. Ring temperatures decrease with increasing phase angle suggesting a population of slowly rotating ring particles [Spilker, L.J., Pilorz, S.H., Wallis, B.D., Pearl, J.C., Cuzzi, J.N., Brooks, S.M., Altobelli, N., Edgington, S.G., Showalter, M., Michael Flasar, F., Ferrari, C., Leyrat, C. 2006. Cassini thermal observations of Saturn's main rings: implications for particle rotation and vertical mixing. Planet. Space Sci. 54, 1167-1176, doi: 10.1016/j.pss.2006.05.033]. Both lit A and B rings show that temperature decreases with decreasing rings solar elevation while temperature changes in the C ring and Cassini Division are more muted. Variations in the geometrical filling factor, β, are primarily driven by changes in spacecraft elevation. For the optically thinnest region of the C ring, β variations are found to be nearly exclusively determined by spacecraft elevation. Both a multilayer and a monolayer model provide an excellent fit to the data in this region. In both cases, a ring infrared emissivity >0.9 is required, together with a random and homogeneous distribution of the particles. The interparticle shadowing function required for the monolayer model is very well constrained by our data and matches experimental measurements performed by Froidevaux [1981a. Saturn's rings: infrared brightness variation with solar elevation. Icarus 46, 4-17].  相似文献   

2.
Galileo's Solid State Imaging experiment (SSI) obtained 36 visible wavelength images of Jupiter's ring system during the nominal mission (Ockert-Bell et al., 1999, Icarus 138, 188-213) and another 21 during the extended mission. The Near Infrared Mapping Spectrometer (NIMS) recorded an observation of Jupiter's main ring during orbit C3 at wavelengths from 0.7 to 5.2 μm; a second observation was attempted during orbit E4. We analyze the high phase angle NIMS and SSI observations to constrain the size distribution of the main ring's micron-sized dust population. This portion of the population is best constrained at high phase angles, as the light scattering behavior of small dust grains dominates at these geometries and contributions from larger ring particles are negligible. High phase angle images of the main ring obtained by the Voyager spacecraft covered phase angles between 173.8° and 176.9° (Showalter et al., 1987, Icarus 69, 458-498). Galileo images extend this range up to 178.6°. We model the Galileo phase curve and the ring spectra from the C3 NIMS ring observation as the combination of two power law distributions. Our analysis of the main ring phase curve and the NIMS spectra suggests the size distribution of the smallest ring particles is a power law with an index of 2.0±0.3 below a size of ∼15 μm that transitions to a power law with an index of 5.0±1.5 at larger sizes. This combined power law distribution, or “broken power law” distribution, yields a better fit to the NIMS data than do the power law distributions that have previously been fit to the Voyager imaging data (Showalter et al., 1987, Icarus 69, 458-498). The broken power law distribution reconciles the results of Showalter et al. (1987, Icarus 69, 458-498) and McMuldroch et al. (2000, Icarus 146, 1-11), who also analyzed the NIMS data, and can be considered as an obvious extension of a simple power law. This more complex size distribution could indicate that ring particle production rates and/or lifetimes vary with size and may relate to the physical processes that control their evolution. The significant near arm/far arm asymmetry reported elsewhere (see Showalter et al., 1987, Icarus 69, 458-498; Ockert-Bell et al., 1999, Icarus 138, 188-213) persists in the data even after the main ring is isolated in the SSI images. However, the sense of the asymmetry seen in Galileo images differs from that seen in Voyager images. We interpret this asymmetry as a broad-scale, azimuthal brightness variation. No consistent association with the magnetic field of Jupiter has been observed. It is possible that these longitudinal variations may be similar to the random brightness fluctuations observed in Saturn's F ring by Voyager (Smith et al., 1982, Science 215, 504-537) and during the 1995 ring plane crossings (Nicholson et al., 1996, Science 272, 509-515; Bosh and Rivkin, 1996, Science 272, 518-521; Poulet et al., 2000, Icarus 144, 135-148). Stochastic events may thus play a significant role in the evolution of the jovian main ring.  相似文献   

3.
The occultation of GSC5249-01240 by Saturn's rings was observed in a spectrally resolved mode using the Faint Object Spectrograph on the Hubble Space Telescope. By combining these data with other occultation data, we have determined the inclination of the F ring to be 0.0065±0.0014 deg. Our inclined F ring orbit model explains an abrupt decrease in flux at the west ansa of the ring that was observed during the November 1995 ring-plane crossing as well as the nondetection of 1995 S5 during one set of observations in November 1995. The F ring's equivalent depth is found to have no significant dependence on wavelength between 0.27 and 0.74 μm, indicating the presence of a population of ring particles larger in size than ∼10 μm. This contrasts with the results from a previous analysis of Voyager images at various phase angles, in which the particles were determined to be predominantly submicron in size. The difference may be due to temporal or longitudinal variability within the ring.  相似文献   

4.
Icy grains and satellites orbiting in Saturn's magnetosphere are immersed in a plasma that sputters their surfaces. This limits the lifetime of the E-ring grains and ejects neutrals that orbit Saturn until they are ionized and populate its magnetosphere. Here we re-evaluate the sputtering rate of ice in Saturn's inner magnetosphere using the recent Cassini data on the plasma ion density, temperature and composition [Sittler Jr., E.C., et al., 2007a. Ion and neutral sources and sinks within Saturn's inner magnetosphere: Cassini results. Planet. Space Sci. 56, 3-18.] and a recent summary of the relevant sputtering data for ice [Famá, M., Shi, J., Baragiola, R.A., 2008. Sputtering of ice by low-energy ions. Surf. Sci. 602, 156-161.]. Although the energetic (>10 keV) ion component at Saturn is much smaller than was assumed to be the case after Voyager [Jurac, S., Johnson, R.E., Richardson, J.D., Paranicas, C., 2001a. Satellite sputtering in Saturn's magnetosphere. Planet. Space Sci. 49, 319-326; Jurac, S., Johnson, R.E., Richardson, J.D., 2001b. Saturn's E ring and production of the neutral torus. Icarus 149, 384-396.], we show that the sputtering rates are sensitive to the temperature of the thermal plasma and are still robust, so that sputtering likely determines the lifetime of the grains in Saturn's tenuous E-ring.  相似文献   

5.
Ryuji Morishima  Heikki Salo 《Icarus》2006,181(1):272-291
Previous self-gravitating simulations of dense planetary rings are extended to include particle spins. Both identical particles as well as systems with a modest range of particle sizes are examined. For a ring of identical particles, we find that mutual impact velocity is always close to the escape velocity of the particles, even if the total rms velocity dispersion of the system is much larger, due to collective motions associated to wakes induced by near-gravitational instability or by viscous overstability. As a result, the spin velocity (i.e., the product of the particle radius and the spin frequency) maintained by mutual impacts is also of the order of the escape velocity, provided that friction is significant. For the size distribution case, smaller particles have larger impact velocities and thus larger spin velocities, particularly in optically thick rings, since small particles move rather freely between wakes. Nevertheless, the maximum ratio of spin velocities between the smallest and largest particles, as well as the ratio for translational velocities, stays below about 5 regardless of the width of the size distribution. Particle spin state is one of the important factors affecting the temperature difference between the lit and unlit face of Saturn's rings. Our results suggest that, to good accuracy, the spin frequency is inversely proportional to the particle size. Therefore, the mixing ratio of fast rotators to slow rotators on the scale of the thermal relaxation time increases with the width of the particle size distribution. This will offer means to constrain the particle size distribution with the systematic thermal infrared observations carried by the Cassini probe.  相似文献   

6.
Solar phase curves between 0.3° and 6.0° and color ratios at wavelengths λ=0.336 μm and λ=0.555 μm for Saturn's rings are presented using recent Hubble Space Telescope observations. We test the hypothesis that the phase reddening of the rings is less due to collective properties of the ring particles than to the individual properties of the ring particles. We use a modified Drossart model, the Hapke model, and the Shkuratov model to model reddening by either intraparticle shadow-hiding on fractal and normal surfaces, multiple scattering, or some combination. The modified Drossart model (including only shadowing) failed to reproduce the data. The Hapke model gives fair fits, except for the color ratios. A detailed study of the opposition effect suggests that coherent backscattering is the principal cause of the opposition surge at very small phase angles. The shape of the phase curve and color ratios of each main ring regions are accurately represented by the Shkuratov model, which includes both a shadow-hiding effect and coherent backscatter enhancement. Our analysis demonstrates that in terms of particle roughness, the C ring particles are comparable to the Moon, but the Cassini division and especially the A and B ring particles are significantly rougher, suggesting lumpy particles such as often seen in models. Another conspicuous difference between ring regions is in the effective size d of regolith grains (d∼λ for the C ring particles, d∼1-10 μm for the other rings).  相似文献   

7.
Stellar occultations behind Saturn's ring A reveal sharp-edged gaps in its outer parts. Observed fluctuations in stellar brightness during one observation can be interpreted as Fresnel's diffraction zones. According to this the sharpness of the edges of the gap are estimated to be under 700 m, which also means that the thickness of ring A in that part cannot exceed a few hundred metres. A further conclusion is that particle size must be a lot less than a few hundred metres.  相似文献   

8.
As part of a long-term study of Saturn's rings, we have used the Hubble Space Telescope's (HST) Wide Field and Planetary Camera (WFPC2) to obtain several hundred high resolution images from 1996 to 2004, spanning the full range of ring tilt and solar phase angles accessible from the Earth. Using these multiwavelength observations and HST archival data, we have measured the photometric properties of spokes in the B ring, visible in a substantial number of images. We determined the spoke particle size distribution by fitting the wavelength-dependent extinction efficiency of a prominent, isolated spoke, using a Mie scattering model. Following Doyle and Grün (1990, Icarus 85, 168-190), we assumed that the spoke particles were sub-micron size spheres of pure water ice, with a Hansen-Hovenier size distribution (Hansen and Hovenier, 1974, J. Atmos. Sci. 31, 1137-1160). The WFPC2 wavelength coverage is broader than that of the Voyager data, resulting in tighter constraints on the nature of spoke particles. The effective particle size was reff=0.57±0.05 μm, and the size distribution was quite narrow with a variance of b=0.09±0.03, very similar to the results of Doyle and Grün (1990, Icarus 85, 168-190), and consistent with predictions of plasma cloud models for spoke production from meteoritic impacts (Goertz and Morfill, 1983, Icarus 53, 219-229; Goertz, 1984, Adv. Space Res. 4, 137-141). In all, we identified 36 spokes or spoke complexes, predominantly on the morning (east) ansa. The photometric contrast of the spokes is strongly dependent on effective ring opening angle, Beff. Spokes were clearly visible on the north face of the rings in 1994, just prior to the most recent ring plane crossing (RPX) epoch, and on the south face shortly after RPX. However, spokes were both less abundant and fainter as the rings opened up, and no spokes were detected after 18 October 1998 (Beff=−15.43°), when a single faint spoke was seen on the morning ansa. The high resolution and photometric quality of the WFPC2 images enabled us to set a detection limit of ?1% in fractional brightness contrast for spokes for the post-1998 observations. We compare the observed trend of spoke contrast with Beff to radiative transfer calculations based on three models of the distribution of spoke material. In the first, the spoke “haze” is uniformly mixed with macroscopic B ring particles. No variation in spoke contrast is predicted for single-scattering, in this case, and only a modest decrease in contrast with Beff is predicted when multiple scattering is taken into account. In the second model, the spoke dust occupies an extended layer that is thicker than the B ring, which gives virtually identical results to a third case, when the haze layer lies exclusively above the ring. Multiple-scattering Monte Carlo calculations for these two extended haze models match the trend of spoke contrast exceptionally well. We compute the predicted spoke contrast for a wide variety of viewing geometries, including forward- and backscattering. Based on these results, spokes should be easily detectable during the Cassini mission when the rings are viewed at relatively small (|B|?10°) ring opening angles.  相似文献   

9.
Sascha Kempf  Uwe Beckmann 《Icarus》2010,206(2):446-457
Pre-Cassini models of Saturn’s E ring [Horányi, M., Burns, J., Hamilton, D., 1992. Icarus 97, 248-259; Juhász, A., Horányi, M., 2002. J. Geophys. Res. 107, 1-10] failed to reproduce its peculiar vertical structure inferred from Earth-bound observations [de Pater, I., Martin, S.C., Showalter, M.R., 2004. Icarus 172, 446-454]. After the discovery of an active ice-volcanism of Saturn’s icy moon Enceladus the relevance of the directed injection of particles for the vertical ring structure of the E ring was swiftly recognised [Juhász, A., Horányi, M., Morfill, G.E., 2007. Geophys. Res. Lett. 34, L09104; Kempf, S., Beckmann, U., Moragas-Klostermeyer, G., Postberg, F., Srama, R., Economou, T., Schmidt, J., Spahn, F., Grün, E., 2008. Icarus 193, 420-437]. However, simple models for the delivery of particles from the plume to the ring predict a too small vertical ring thickness and overestimate the amount of the injected dust.Here we report on numerical simulations of grains leaving the plume and populating the dust torus of Enceladus. We run a large number of dynamical simulations including gravity and Lorentz force to investigate the earliest phase of the ring particle life span. The evolution of the electrostatic charge carried by the initially uncharged grains is treated selfconsistently. Freshly ejected plume particles are moving in almost circular orbits because the Enceladus orbital speed exceeds the particles’ ejection speeds by far. Only a small fraction of grains that leave the Hill sphere of Enceladus survive the next encounter with the moon. Thus, the flux and size distribution of the surviving grains, replenishing the ring particle reservoir, differs significantly from the flux and size distribution of the particles freshly ejected from the plume. Our numerical simulations reproduce the vertical ring profile measured by the Cassini Cosmic Dust Analyzer (CDA) [Kempf, S., Beckmann, U., Moragas-Klostermeyer, G., Postberg, F., Srama, R., EconoDmou, T., Smchmidt, J., Spahn, F., Grün, E., 2008. Icarus 193, 420-437]. From our simulations we calculate the deposition rates of plume particles hitting Enceladus’ surface. We find that at a distance of 100 m from a jet a 10 m sized ice boulder should be covered by plume particles in 105-106 years.  相似文献   

10.
We present results of near-infrared (2.26 μm) observations of Saturn's main rings taken with the W.M. Keck telescope during August 8-11, 1995, surrounding the time that Earth crossed Saturn's ring plane. These observations provide a unique opportunity to study the evolution of the ring brightness in detail, and by combining our data with Hubble Space Telescope (HST) results (Nicholson et al., 1996, Science 272, 453-616), we extend the 12-hour HST time span to several days around the time of ring plane crossing (RPX). In this paper, we focus on the temporal evolution of the brightness in Saturn's main rings. We examine both edge-on ring profiles and radial profiles obtained by “onion-peeling” the edge-on data. Before RPX, when the dark (unlit) face of the rings was observed, the inner C ring (including the Colombo gap), the Maxwell gap, Cassini Division and F ring region were very bright in transmitted light. After RPX, the main rings brighten rapidly, as expected. The profiles show east-west asymmetries both before and after RPX. Prior to RPX, the evolution in ring brightness of the Keck and HST data match one another quite well. The west side of the rings showed a nonlinear variation in brightness during the last hours before ring plane crossing, suggestive of clumping and longitudinal asymmetries in the F ring. Immediately after RPX, the east side of the rings brightened more rapidly than the west. A quantitative comparison of the Keck and HST data reveals that the rings were redder before RPX than after; we ascribe this difference to the enhanced multiple scattering of photons passing through to the unlit side of the rings.  相似文献   

11.
Saturn's F ring has been the subject of study due to its peculiar structure and the proximity to two satellites, named Prometheus (interior) and Pandora (exterior to the ring), which cause perturbations to the ring particles. Early results from Voyager data have proposed that the ring is populated with centimetre- and micrometre-sized particles. The Cassini spacecraft also detected a less dense part in the ring with width of 700 km. Small particles suffer the effects of solar radiation. Burns et al. showed that due to effects of one component of the solar radiation, the Poynting–Robertson drag, a ring particle will decay in the direction of the planet in a time much shorter than the age of the Solar system. In this work, we have analysed a sample of dust particles (1, 3, 5 and 10 μm) under the effects of solar radiation, the Poynting–Robertson drag and the radiation pressure components and the gravitational effects of the satellites Prometheus and Pandora. In this case, the high increase of the eccentricity of the particles leads almost all of them to collide with the outer edge of the A ring. The inclusion of the oblateness of Saturn in this system significantly changes the outcome, since the large variation of the eccentricity is reduced by the oblateness effect. As a result, there is an increase in the lifetime of the particle in the envelope region. Our results show that even the small dust particles, which are very sensitive to the effects of solar radiation, have an orbital evolution similar to larger particles located in the F ring. The fate of all particles is a collision with Prometheus or Pandora in less than 30 years. On the other hand, collisions of these particles with moonlets/clumps present in the F ring could change this scenario.  相似文献   

12.
We present results from a large suite of simulations of Saturn’s dense A and B rings using a new model of particle sticking in local simulations (Perrine, R.P., Richardson, D.C., Scheeres, D.J. [2011]. Icarus 212, 719–735). In this model, colliding particles can be incorporated into or help fragment rigid aggregations on the basis of certain user-specified parameters that can represent van der Waals forces or interlocking surface frost layers.Our investigation is motivated by laboratory results that show that interpenetration of surface layers can allow impacting frost-covered ice spheres to stick together. In these experiments, cohesion only occurs below specific impact speeds, which happen to be characteristic of impact speeds in Saturn’s rings. Our goal is to determine if weak bonding is consistent with ring observations, to constrain cohesion parameters in light of existing ring observations, to make predictions about particle populations throughout the rings, and to discover other diagnostics that may constrain bonding parameters.We considered the effects of five parameters on the equilibrium characteristics of our ring simulations: speed-based merge and fragmentation limits, bond strength, ring surface density, and patch orbital distance (i.e., the A or B ring), some with both monodisperse and polydisperse comparison cases. In total, we present data from 95 simulations.We find that weak cohesion is consistent with observations of the A and B rings (e.g., French, R.G., Nicholson, P.D. [2000]. Icarus 145, 502–523), and we present a range of simulation parameters that reproduce the observed size distribution and maximum particle size. It turns out that the parameters that match observations differ between the A and B rings, and we discuss the potential implications of this result. We also comment on other observable consequences of cohesion for the rings, such as optical depth and scale height effects, and discuss whether very large objects (e.g., “propeller” source objects) are grown bottom-up from cohesion of smaller ring particles.  相似文献   

13.
Saturn's C ring thermal emission has been observed in mid-infrared wavelengths, at three different epochs and solar phase angles, using ground based instruments (CFHT in 1999 and VLT/ESO in 2005) and the Infrared Radiometer Instrument Spectrometer (IRIS) onboard the Voyager 1 spacecraft in 1980. Azimuthal variations of temperature in the C ring's inner region, observed at several phase angles, have been analyzed using our new standard thermal model [Ferrari, C., Leyrat, C., 2006. Astron. Astrophys. 447, 745-760]. This model provides predicted ring temperatures for a monolayer ring composed of spinning icy spherical particles. We confirm the very low thermal inertia (on the order of 10 ) found previously by Ferrari et al. [Ferrari, C., Galdemard, P., Lagage, P.O., Pantin E., Quoirin, C., 2005. Astron. Astrophys. 441, 379-389] that reveals the very porous regolith at the surface of ring particles. We are able to explain both azimuthal variations of temperature and the strong asymmetry of the emission function between low and high phase angles. We show that large particles spinning almost synchronously might be present in the C ring to explain differences of temperature observed between low and high phase angle. Their cross section might represent about 45% of the total cross section. However, their numerical fraction is estimated to only ∼0.1% of all particles. Thermal behavior of other particles can be modeled as isothermal behavior. This work provides an indirect estimation of the particle's rotation rate in Saturn's rings from observations.  相似文献   

14.
15.
Images of the dusty rings obtained by the Cassini spacecraft in late 2006 and early 2007 reveal unusual structures composed of alternating canted bright and dark streaks in the outer G ring (∼170,000 km from Saturn center), the inner Roche Division (∼138,000 km) and the middle D ring (70,000-73,000 km). The morphology, locations and pattern speeds of these features indicate that they are generated by Lindblad resonances. The structure in the G ring appears to be generated by the 8:7 Inner Lindblad Resonance with Mimas. Based in part on the morphology of the G ring structure, we develop a phenomenological model of Lindblad-resonance-induced structures in faint rings, where the observed variations in the rings' optical depth and brightness are due to alignments and trends in the particles' orbital parameters with semi-major axis. To reproduce the canted character of these structures, this model requires a term in the equations of motion that damps eccentricities. Using this model to interpret the structures in the D ring and Roche Division, we find that the D-ring patterns mimic those predicted at 2:1 Inner Lindblad Resonances and the Roche Division patterns look like those expected at 3:4 Outer Lindblad Resonances. As in the G ring, the effective eccentricity-damping timescale is of order 10-100 days, suggesting that free eccentricities are strongly damped by some mechanism that operates throughout all these regions. However, unlike in the G ring, perturbation forces with multiple periods are required to explain the observed patterns in the D ring and Roche Division. The strongest perturbation periods occur at 10.53, 10.56 and 10.74 hours (only detectable in the D ring) and 10.82 hours (detectable in both the D ring and Roche division). These periods are comparable to the rotation periods of Saturn's atmosphere and magnetosphere. The inferred strength of the perturbation forces required to produce these patterns (and the absence of evidence for other resonances driven by these periods in the main rings) suggests that non-gravitational forces are responsible for generating these features in the D ring and Roche Division. If this interpretation is correct, then some of these structures may have some connection with periodic signals observed in Saturn's magnetic field and radio-wave emissions, and accordingly could help clarify the nature and origin(s) of these magnetospheric asymmetries.  相似文献   

16.
The origin of Saturn's massive ring system is still unknown. Two popular scenarios—the tidal splitting of passing comets and the collisional destruction of a satellite—rely on a high cometary flux in the past. In the present paper we attempt to quantify the cometary flux during the Late Heavy Bombardment (LHB) to assess the likelihood of both scenarios. Our analysis relies on the so-called “Nice model” of the origin of the LHB [Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F., 2005. Nature 435, 459-461; Morbidelli, A., Levison, H.H., Tsiganis, K., Gomes, R., 2005. Nature 435, 462-465; Gomes, R., Levison, H.F., Tsiganis, K., Morbidelli, A., 2005. Nature 435, 466-469] and on the size distribution of the primordial trans-neptunian planetesimals constrained in [Charnoz, S., Morbidelli, A., 2007. Icarus 188, 468-480]. We find that the cometary flux on Saturn during the LHB was so high that both scenarios for the formation of Saturn rings are viable in principle. However, a more detailed study shows that the comet tidal disruption scenario implies that all four giant planets should have comparable ring systems whereas the destroyed satellite scenario would work only for Saturn, and perhaps Jupiter. This is because in Saturn's system, the synchronous orbit is interior to the Roche Limit, which is a necessary condition for maintaining a satellite in the Roche Zone up to the time of the LHB. We also discuss the apparent elimination of silicates from the ring parent body implied by the purity of the ice in Saturn's rings. The LHB has also strong implications for the survival of the saturnian satellites: all satellites smaller than Mimas would have been destroyed during the LHB, whereas Enceladus would have had from 40% to 70% chance of survival depending on the disruption model. In conclusion, these results suggest that the LHB is the “sweet moment” for the formation of a massive ring system around Saturn.  相似文献   

17.
We have undertaken an analysis of the Voyager photopolarimeter (PPS) stellar occultation data of Saturn's A ring. The Voyager PPS observed the bright star δ Scorpii as it was occulted by Saturn's main rings during the spacecraft flyby of the Saturn system in 1981. The occultation measurement produced a ring profile with radial resolution of approximately 100 m, and radial structure is evident in the profile down to the resolution limit. We have applied an autoregressive technique to the data for estimating the power spectrum as a function of radius, which has allowed us to identify 40 spiral density waves in Saturn's A ring, associated with the strongest torques due to forcing from the moons. The majority of the detected waves are observed to disperse linearly in regions beginning a few kilometers from the resonance location. We have used the dispersion behavior for those waves to calculate local surface mass densities in the vicinity of each wave. We find that the inner three-quarters of the A ring (up to the beginning of the Encke gap) has an average surface mass density of , while the outer region has an average surface mass density of . The two regions have different mean surface mass densities with a significance of approximately 0.999993, as estimated with a T-statistic, which corresponds to about 4.5σ. While the mean optical depth of the A ring increases slightly with increasing distance from Saturn, we find that it is not significantly correlated with the surface mass density; the two quantities having a linear Pearson's correlation coefficient of rcorr≈−0.03. The variation of mass density, independent of PPS optical depth, is consistent with previous conjectures that the particle size distribution and composition are not constant across the entire A ring, particularly in the very outer portion. We estimate the mass of Saturn's A ring from our surface mass density estimates as 4.9×1021 gm, or 8.61×10−9 of the mass of Saturn, roughly equivalent to the mass of a 110-km diameter icy satellite. This mass is almost 25% smaller than estimates from previous studies, but is well within the expected errors of the derived mass densities. We also identified three previously unstudied features which exhibit linear dispersion. The strongest of these features is tentatively identified as the Janus 13:11 density wave. The other two features do not fall near any known satellite resonances and may represent density waves created by previously undetected satellites.  相似文献   

18.
Keiji Ohtsuki 《Icarus》2006,183(2):384-395
We examine rotation rates of gravitating particles in low optical depth rings, on the basis of the evolution equation of particle rotational energy derived by Ohtsuki [Ohtsuki, K., 2006. Rotation rate and velocity dispersion of planetary ring particles with size distribution. I. Formulation and analytic calculation. Icarus 183, 373-383]. We obtain the rates of evolution of particle rotation rate and velocity dispersion, using three-body orbital integration that takes into account distribution of random velocities and rotation rates. The obtained stirring and friction rates are used to calculate the evolution of velocity dispersion and rotation rate for particles in one- and two-size component rings as well as those with a narrow size distribution, and agreement with N-body simulation is confirmed. Then, we perform calculations to examine equilibrium rotation rates and velocity dispersion of gravitating ring particles with a broad size distribution, from 1 cm up to 10 m. We find that small particles spin rapidly with 〈ω21/2/Ω?102-103, where ω and Ω are the particle rotation rate and its orbital angular frequency, respectively, while the largest particles spin slowly, with 〈ω21/2/Ω?1. The vertical scale height of rapidly rotating small particles is much larger than that of slowly rotating large particles. Thus, rotational states of ring particles have vertical heterogeneity, which should be taken into account in modeling thermal infrared emission from Saturn's rings.  相似文献   

19.
Galileo was the first artificial satellite to orbit Jupiter. During its late orbital mission the spacecraft made two passages through the giant planet’s gossamer ring system. The impact-ionization dust detector on board successfully recorded dust impacts during both ring passages and provided the first in-situ measurements from a dusty planetary ring. During the first passage—on 5 November 2002 while Galileo was approaching Jupiter—dust measurements were collected until a spacecraft anomaly at 2.33RJ (Jupiter radii) just 16 min after a close flyby of Amalthea put the spacecraft into a safing mode. The second ring passage on 21 September 2003 provided ring dust measurements down to about 2.5RJ and the Galileo spacecraft was destroyed shortly thereafter in a planned impact with Jupiter. In all, a few thousand dust impacts were counted with the instrument accumulators during both ring passages, but only a total of 110 complete data sets of dust impacts were transmitted to Earth. Detected particle sizes range from about 0.2 to 5 μm, extending the known size distribution by an order of magnitude towards smaller particles than previously derived from optical imaging [Showalter, M.R., de Pater, I., Verbanac, G., Hamilton, D.P., Burns, J.A., 2008. Icarus 195, 361-377; de Pater, I., Showalter, M.R., Macintosh, B., 2008. Icarus 195, 348-360]. The grain size distribution increases towards smaller particles and shows an excess of these tiny motes in the Amalthea gossamer ring compared to the Thebe ring. The size distribution for the Amalthea ring derived from our in-situ measurements for the small grains agrees very well with the one obtained from images for large grains. Our analysis shows that particles contributing most to the optical cross-section are about 5 μm in radius, in agreement with imaging results. The measurements indicate a large drop in particle flux immediately interior to Thebe’s orbit and some detected particles seem to be on highly-tilted orbits with inclinations up to 20°. Finally, the faint Thebe ring extension was detected out to at least 5RJ, indicating that grains attain higher eccentricities than previously thought. The drop interior to Thebe, the excess of submicron grains at Amalthea, and the faint ring extension indicate that grain dynamics is strongly influenced by electromagnetic forces. These findings can all be explained by a shadow resonance as detailed by Hamilton and Krüger [Hamilton, D.P., Krüger, H., 2008. Nature 453, 72-75].  相似文献   

20.
Recent 3-mm observations of Saturn at low ring inclinations are combined with previous observations of E. E. Epstein, M. A. Janssen, J. N. Cuzzi, W. G. Fogarty, and J. Mottmann (Icarus41, 103–118) to determine a much more precise brightness temperature for Saturn's rings. Allowing for uncertainties in the optical depth and uniformity of the A and B rings and for ambiguities due to the C ring, but assuming the ring brightness to remain approximately constant with inclination, a mean brightness temperature for the A and B rings of 17 ± 4°K was determined. The portion of this brightness attributed to ring particle thermal emission is 11 ± 5°K. The disk temperature of Saturn without the rings would be 156 ± 6°K, relative to B. L. Ulich, J. H. Davis, P. J. Rhodes, and J. M. Hollis' (1980, IEEE Trans. Antennas Propag.AP-28, 367–376) absolutely calibrated disk temperature for Jupiter. Assuming that the ring particles are pure water ice, a simple slab emission model leads to an estimate of typical particle sizes of ≈0.3 m. A multiple-scattering model gives a ring particle effective isotropic single-scattering albedo of 0.85 ± 0.05. This albedo has been compared with theoretical Mie calculations of average albedo for various combinations of particle size distribution and refractive indices. If the maximum particle radius (≈5 m) deduced from Voyager bistatic radar observations (E. A. Marouf, G. L. Tyler, H. A. Zebker, V. R. Eshleman, 1983, Icarus54, 189–211) is correct, our results indicate either (a) a particle distribution between 1 cm and several meters radius of the form r?s with 3.3 ? s ? 3.6, or (b) a material absorption coefficient between 3 and 10 times lower than that of pure water ice Ih at 85°K, or both. Merely decreasing the density of the ice Ih particles by increasing their porosity will not produce the observed particle albedo. The low ring brightness temperature allows an upper limit on the ring particle silicate content of ≈10% by mass if the rocky material is uniformly distributed; however, there could be considerably more silicate material if it is segregated from the icy material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号