首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present paper a two-degree-of-freedom system is considered which allows the simulation of rigid blocks uplifting and sliding on frictional foundations; the monolateral constraint between block and base is schematized by means of a joint model, which allows the contact problem to be discretized. The joint model is governed by normal and shear constitutive laws, which have been derived by the phenomenological behaviour of stone blocks and rock joints, as given by rock mechanics. Furthermore, a numerical procedure has been developed in order to solve the non-linear equations governing the motion of the block-base system, and to analyse the dynamic response of this system under seismic excitation; particular attention has been paid to the influence of the vertical displacement on the slip response.  相似文献   

2.
The non-linear dynamic response of the rigid block is linearized by means of a friction model that implicitly considers block response through an experimental parameter obtained from shaking table experiments. In view of the great difficulty in carrying out shaking table experiments, in this technical note some recommendations to estimate friction model parameters are given. The selection of parameters considers the sliding response mode of the block–plane-excitation system: stick–slip or continuous sliding. Once all the friction parameters and block response mode were estimated, a methodology was proposed to compute rigid block dynamic response. The numerical results were then compared to actual experimental data for a rigid block sliding on a geotextile–wood interface, along an inclined plane subjected to base harmonic acceleration. Experiments were carried out for both the stick–slip and the continuous sliding modes. Computed and measured responses for both cases showed good agreement, thus indicating that the methodology developed in this research is adequate to capture the physics (of non-linear nature) of rigid blocks sliding on frictional interfaces subjected to complex harmonic loading. The findings encourage the extension of the linearization technique to the more general seismic loading case.  相似文献   

3.
Results obtained for rigid structures suggest that rocking can be used as seismic response modification strategy. However, actual structures are not rigid: structural elements where rocking is expected to occur are often slender and flexible. Modeling of the rocking motion and impact of flexible bodies is a challenging task. A non‐linear elastic viscously damped zero‐length spring rocking model, directly usable in conventional finite element software, is presented in this paper. The flexible rocking body is modeled using a conventional beam‐column element with distributed masses. This model is verified by comparing its pulse excitation response to the corresponding analytical solution and validated by overturning analysis of rocking blocks subjected to a recorded ground motion excitation. The rigid rocking block model provides a good approximation of the seismic response of solitary flexible columns designed to uplift when excited by pulse‐like ground motions. Guidance for development of rocking column models in ordinary finite element software is provided. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Shaking table tests were conducted to investigate the response of rectangular wooden blocks and block assemblies of various sizes and slenderness to harmonic and earthquake base excitation. The shaking tests were followed by an analytical and a numerical study of response of single blocks and block assemblies. The analytical study was aimed at establishing criteria for the initiation of rocking and of overturning in response to harmonic base motion and consisted of solving numerically the differential equations of motion of a rigid block on a rigid foundation. The numerical study, in the course of which the response of both single blocks and block assemblies was examined, was implemented by means of the Distinct Element Method (DEM). Prior to the DE simulation of actual shaking tests, preliminary analyses were conducted to confirm numerical stability and to evaluate material and damping parameters. Comparing the recorded time histories with those given by the analytical study and the DE simulation, good agreement was found. The distinct element model in use appeared to follow the highly non-linear motion of rigid body assemblies faithfully to reality. On the basis of the results, provided that the necessary parameters are carefully estimated, the employed DE model can be regarded as an appropriate tool to simulate response of rigid body assemblies to dynamic base excitation.  相似文献   

5.
模拟退火方法在三维速度模型地震波走时反演中的应用   总被引:5,自引:3,他引:2  
采用块状建模以及三角形拼接的界面描述方式,并通过立方体速度网格线性插值获得块体内部的速度分布。正演过程中采用逐段迭代射线追踪方法计算三维复杂地质模型中的射线走时,并采用模拟退火方法进行了三维模型中的地震波走时反演研究。模型测试结果表明,使用的射线追踪和走时反演算法有效。  相似文献   

6.
三维复杂山谷地形SV波垂直输入地震反应分析   总被引:3,自引:0,他引:3       下载免费PDF全文
本文基于显式有限元法研究了地震波垂直入射时三维复杂山谷地形对地震地面运动的影响,在数值分析中应用了三维化二维的解法和黏弹性人工边界的处理方法,实现了地震波垂直输入下三维复杂场地地震动数值模拟,并验证了该方法的合理性.以四川桃坪地区一山谷地形作为研究对象,基于地表高程数据分别建立了二维和三维场地模型,对比研究表明:在复杂地形情况下考虑二、三维模型时具有明显差异,三维模型能更真实地反映地形变化对地震动的影响,复杂地形条件下有必要考虑三维实际场地模型.本文对边界自由场的处理方法也可用于处理三维复杂场地地震动斜入射问题,为三维复杂地形场地地震效应研究提供参考.  相似文献   

7.
To improve the seismic performance of masonry structures, confined masonry that improves the seismic resistance of masonry structures by the confining effect of surrounding bond beams and tie columns is constructed. This study investigated the earthquake resisting behaviour of confined masonry structures that are being studied and constructed in China. The structural system consists of unreinforced block masonry walls with surrounding reinforced concrete bond beams and tie columns. The characteristics of the structure include: (1) damage to blocks is reduced and brittle failure is avoided by the comparatively lower strength of the joint mortar than that of the blocks, (2) the masonry walls and surrounding reinforced concrete bond beams and tie columns are securely jointed by the shear keys of the tie columns. In this study, wall specimens made of concrete blocks were tested under a cyclic lateral load and simulated by a rigid body spring model that models non‐linear behaviour by rigid bodies and boundary springs. The results of studies outline the resisting mechanism, indicating that a rigid body spring model is considered appropriate for analysing this type of structure. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
渡口河大桥为在建宜万线上的一座高墩大跨度连续刚构桥,为了研究其地震响应特性,分别按桩土连续梁模式、桩土空间刚架模式来模拟桩土共同作用,建立了相应的空间有限元模型,采用数值模拟方法合成了桥址处地震动时程。研究比较了这两种模型和不考虑桩土作用模型按反应谱输入方式下结构的地震响应,并对地震竖向分量的影响、不同波速的行波效应进行了探讨。通过分析计算,得出了一些对实际工程有意义的结论。  相似文献   

9.
本实验用超声地震模型实验模拟观测,滇西地震实验场地质构造格架对地震波波速的影响。模型为1米量级。模型与原型地质的比为1∶470000。实验模型有两块,一块为均匀无构造模型,另一块为有滇西实验场主要地质构造格架模型。实验对两种模型的P波速进行了比较,给出了以模型中心为观测点以及以昆明、中甸、下关和渡口为观测点,模拟震中距为50公里、100公里、150公里和200公里圈上P波波速变化的背景场。这一实验是用物理模型模拟研究复杂地质构造格架对地震波波速影响的首次方法探讨。  相似文献   

10.
The seismic response of rocking frames that consist of a rigid beam freely supported on rigid freestanding rectangular piers has received recent attention in the literature. Past studies have investigated the special case where, upon planar rocking motion, the beam maintains contact with the piers at their extreme edges. However, in many real scenarios, the beam‐to‐pier contact lies closer to the center of the pier, affecting the overall stability of the system. This paper investigates the seismic response of rocking frames under the more general case which allows the contact edge to reside anywhere in‐between the center of the pier and its extreme edge. The study introduces a rocking block model that is dynamically equivalent to a rocking frame with vertically symmetric piers of any geometry. The impact of top eccentricity (ie, the distance of the contact edge from the pier's vertical axis of symmetry) on the seismic response of rocking frames is investigated under pulse excitations and earthquake records. It is concluded that the stability of a top‐heavy rocking frame is highly influenced by the top eccentricity. For instance, a rocking frame with contacts at the extreme edges of the piers can be more seismically stable than a solitary block that is identical to one of the frame's piers, while a rocking frame with contacts closer to the centers of the piers can be less stable. The concept of critical eccentricity is introduced, beyond which the coefficient of restitution contributes to a greater reduction in the response of a frame than of a solitary pier.  相似文献   

11.
A new seismic isolation foundation called the periodic foundation is proposed, which can be described as a three-dimensional typical cell consisting of a high density core, a soft coating and a concrete matrix. Utilizing the attenuation zones (AZs) resulted by the periodicity of the foundation, the mechanism of this new seismic isolation system is different from the traditional ones. The seismic waves with the frequencies in the AZs cannot propagate across the foundation. Thus, the seismic responses on the top surface of the periodic foundation can be reduced significantly. In this paper, the dispersion curves of the three-dimensional three-component (3D–3C) periodic foundations are analyzed by the finite element method (FEM). The influencing factors such as physical and geometrical parameters of the typical cell are investigated. In order to verify its feasibility, a three-dimensional (3D) soil-foundation finite element model is analyzed, and the frequency zones of seismic attenuations are consistent with the AZs. The periodic foundation can greatly reduce the seismic response, which implies that the periodic foundation has a great potential application on seismic isolation.  相似文献   

12.
In order to use rocking as a seismic response modification strategy along both directions of seismic excitation, a three‐dimensional (3D) rocking model should be developed. Since stepping or rolling rocking structural members out of their initial position is not a desirable performance, a rocking design should not involve these modes of motion. To this end, a model that takes the aforementioned constraint into account needs to be developed. This paper examines the 3D motion of a bounded rigid cylinder that is allowed to uplift and sustain rocking and wobbling (unsteady rolling) motion without sliding or rolling out of its initial position (i.e., a 3D inverted pendulum). Thus, the cylinder is constrained to zero residual displacement at the end of its 3D motion. This 3D dynamic model of the rocking rigid cylinder has two DOFs (three when damping is included), making it the simplest 3D extension of Housner's classical two‐dimensional (2D) rocking model. The development of models with and without damping is presented first. They are simple enough to perform extensive parametric analyses. Modes of motion of the cylinder are identified and presented. Then, 3D rocking and wobbling earthquake response spectra are constructed and compared with the classical 2D rocking earthquake response spectra. The 3D bounded rocking earthquake response spectra for the ground motions considered seem to have a very simple linear form. Finally, it is shown that the use of a 2D rocking model may lead to unacceptably unconservative estimates of the 3D rocking and wobbling seismic response. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
This paper deals with a procedure of a joint analysis of seismic data from earthquakes and those obtained by DSS. The DSS data are used as a first approximation to construct a two-dimensional model of the medium made up of individual blocks. These models serve as a basis when constructing specific three-dimensional travel-time curves. These travel-time curves are further used for the calculation of hypocenter parameters in a laterally inhomogeneous block medium.The hypocenter field and the travel times obtained are input data for the computation of three-dimensional fields of velocities in earthquake focal zones. Results of applying the proposed procedure to the Caucasus region are presented.  相似文献   

14.
Conventional seismic analysis of gravity dams assumes that the behaviour of the dam–water–soil system can be represented using a 2‐D model since dam vertical contraction joints between blocks allow them to vibrate independently from each other. The 2‐D model assumes the reservoir to be infinite and of constant width, which is not true for certain types of reservoirs. In this paper, a boundary element method (BEM) model in the frequency domain is used to investigate the influence of the reservoir geometry on the hydrodynamic dam response. Important conceptual conclusions about the dam–reservoir system behaviour are obtained using this model. The results show that the reservoir shape influences the seismic response of the dam, making it necessary to account for 3‐D effects in order to obtain accurate results. In particular, the 3‐D pressure and displacement responses can be substantially larger than those computed with the 2‐D model. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
三维复杂介质的块状建模和试射射线追踪   总被引:33,自引:9,他引:24       下载免费PDF全文
为了解决三维复杂介质的射线追踪,本文改变了传统的三维层状地层的建模描述方式,提出了块状结构的建模描述方法,结合三角形面片来描述地质界面,可以构造非常复杂的三维地质模型.为了满足射线追踪的需要,本文对模型界面内的法向量进行光滑处理,光滑后的法向量在界面内是连续变化的.在块状模型的基础上,本文运用三角形的面积坐标,提出了几种试射角度的修正方法:细分三角形法、分割三角形法和子三角形法,计算表明子三角形法最好.文中给出了三维块状模型和射线追踪实例.  相似文献   

16.
Seismic traveltime tomographic inversion has played an important role in detecting the internal structure of the solid earth. We use a set of blocks to approximate geologically complex media that cannot be well described by layered models or cells. The geological body is described as an aggregate of arbitrarily shaped blocks, which are separated by triangulated interfaces. We can describe the media as homogenous or heterogeneous in each block. We define the velocities at the given rectangle grid points for each block, and the heterogeneous velocities in each block can be calculated by a linear interpolation algorithm. The parameters of the velocity grid positions are independent of the model parameterization, which is advantageous in the joint inversion of the velocities and the node depths of an interface. We implement a segmentally iterative ray tracer to calculate traveltimes in the 3D heterogeneous block models. The damped least squares method is employed in seismic traveltime inversion, which includes the partial derivatives of traveltime with respect to the depths of nodes in the triangulated interfaces and velocities defined in rectangular grids. The numerical tests indicate that the node depths of a triangulated interface and homogeneous velocity distributions can be well inverted in a stratified model.  相似文献   

17.
Ancient Tethyan vestige extends from Alps, Kaebaiqn Mountain and eastward through Turkey, IranAfghanistan, and the middle and north of Tibetan Plateau, then turns to western Yunnan and Sichuan, andfinally ends at Zhongnan Peninsula. The PaleoTethyan is supposed as one eastward opened Oceanand superposed by tectonic deformation in the latestage of the late Mesozoic to Paleocene of Cenozoicand covered by Mesozoic and Cenozoic deposits. The Sanjiang region in southwestern China is in the…  相似文献   

18.
In this paper the boundary element algorithm which uses the time-convoluted traction kernels is applied to a numerical parametric study on the seismic behavior of three-dimensional Gaussian-shaped hills subjected to vertically propagating incident waves. All calculations were executed in the time-domain and the medium was assumed to have a linear elastic constitutive behavior. Results are discussed in both time and frequency domain with respect to the dimensionless parameters. It was shown that wave length and site geometry, including shape and dimension ratios and, to some extent, wave type are the key independent parameters governing hill amplification behavior. Comparing two- and three-dimensional hills with similar shape ratios, two-dimensional hill had greater characteristic periods, where the three-dimensional hill had greater maximum amplification potential. Three-dimensionality has a strong effect on the seismic responses of the hill; however the rate of seismic response variation with the three-dimensionality factor depends on the shape ratio. It was shown that two-dimensional behavior was dominant in low height three-dimensional hills, however, as the shape ratio increased, three-dimensionality effects appeared and the seismic response of the hill tends toward the axisymmetric three-dimensional hill.  相似文献   

19.
在混凝土空心砌块的空腔中填入橡胶砂形成的组合砌块(RSMCB)可作为简易隔震层应用于村镇建筑防震减灾。建立RSMCB的三维数值分析模型,进行循环剪切试验以及隔震分析,研究不同橡胶砂配比、竖向压应力、盖板尺寸和盖板埋深对隔震砌块动刚度和阻尼比的影响,分析不同的上部配重、输入地震波、橡胶砂配比、盖板尺寸和铺设方式对RSMCB垫层隔震效果的影响。结果表明:(1)橡胶砂芯组合砌块应变软化现象明显。(2)RSMCB的水平动刚度随橡胶砂配比增大而减小,随盖板埋深、盖板尺寸以及竖向压应力的增大而增大。(3)阻尼比随橡胶砂配比、竖向压应力、盖板尺寸和埋深的增大而减小,橡胶砂芯组合砌块隔震消能效果显著。在隔震数值模拟中,输入加速度在经过橡胶砂芯组合砌块垫层过滤后均有不同程度的降低,且被过滤掉大部分高频波。隔震效应随着盖板尺寸的增大而减小,上部结构配重越大,隔震效应越明显,橡胶砂配比为30%时RSMCB垫层隔震效应更好。橡胶砂芯组合砌块符合在村镇欠发达地区低成本隔震的要求,表现出广阔的应用前景。  相似文献   

20.
本文在借鉴徐深气田以往地质建模成功经验基础上,针对徐深气田B区块火山体规模小、横向变化快、开发井少、认识程度较低的实际,密切结合火山岩成因特点,探索性地提出体控地质建模的新思路,即以地震反射特征和地震属性特征为依据,结合钻井、测井资料,井震结合从三维空间上精细识别和刻画火山岩体,通过利用神经网络算法建立多种地震属性与测...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号