首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bewsher  D.  Parnell  C.E.  Pike  C.D.  Harrison  R.A. 《Solar physics》2003,215(2):217-237
The relative Doppler and non-thermal velocities of quiet-Sun and active-region blinkers identified in Ov with CDS are calculated. Relative velocities for the corresponding chromospheric plasma below are also determined using the Hei line. Ov blinkers and the chromosphere directly below, have a preference to be more red-shifted than the normal transition region and chromospheric plasma. The ranges of these enhanced velocities, however, are no larger than the typical spread of Doppler velocities in these regions. The anticipated ranges of Doppler velocities of blinkers are 10–15 km s–1 in the quiet Sun (10–20 km s–1 in active regions) for Hei and 25–30 km s–1 in the quiet Sun (20–40 km s–1 in active regions) for Ov. Blinkers and the chromosphere below also have preferentially larger non-thermal velocities than the typical background chromosphere and transition region. Again the increase in magnitude of these non-thermal velocities is no greater than the typical ranges of non-thermal velocities. The ranges of non-thermal velocities of blinkers in both the quiet Sun and active regions are estimated to be 15–25 km s–1 in Hei and 30–45 km s–1 in Ov. There are more blinkers with larger Doppler and non-thermal velocities than would be expected in the whole of the chromosphere and transition region. The recently suggested mechanisms for blinkers are revisited and discussed further in light of the new results.  相似文献   

2.
Brekke  P.  Kjeldseth-Moe  O.  Brynildsen  N.  Maltby  P.  Haugan  S. V. H.  Harrison  R. A.  Thompson  W. T.  Pike  C. D. 《Solar physics》1997,170(1):163-177
EUV spectra obtained with the Coronal Diagnostic Spectrometer (CDS) on the Solar and Heliospheric Observatory (SOHO) show significant flows of plasma in active region loops, both at coronal and transition region temperatures. Wavelength shifts in the coronal lines Mgix 368 Å and Mgx 624 Å corresponding to upflows in the plasma reaching velocities of 50 km s-1 have been observed in an active region. Smaller velocities are detected in the coronal lines Fexvi 360 Å and Sixii 520 Å. Flows reaching 100 km s-1 are observed in spectral lines formed at transition region temperatures, i.e., Ov 629 Å and Oiii 599 Å, demonstrating that both the transition region and the corona are clearly dynamic in nature. Some high velocity events show even higher velocities with line profiles corresponding to a velocity dispersion of 300–400 km s-1. Even in the quiet Sun there are velocity fluctuations of 20 km s-1 in transition region lines. Velocities of the magnitude presented in this paper have never previously been observed in coronal lines except in explosive events and flares. Thus, the preliminary results from the CDS spectrometer promise to put constraints on existing models of the flows and energy balance in the solar atmosphere. The present results are compared to previous attempts to observe flows in the corona.  相似文献   

3.
During operations on the Spacelab-2 Shuttle mission, the NRL High Resolution Telescope and Spectrograph (HRTS) recorded spectra of a variety of solar features in the 1200–1700 Å wavelength region which contains spectral lines and continua well suited for investigating the temperature minimum, the chromosphere and transition zone. These data show that, at the highest spatial resolution, the transition zone spectra are broken up from a continuous intensity distribution along the slit into discrete emission elements. The average dimensions of these discrete transition zone structures is 2400 km along the slit, but an analysis of their emission measures and densities shows that the dimensions of the actual emitting volume is conciderably less. If these structures are modelled as an ensemble of subresolution filaments, we find that these filaments have typical radii of from 3 to 30 km and that the cross-sectional fill factor is in the range from 10–5 to 10–2. The transport of mass and energy through these transition zone structures is reduced by this same factor of 10–5 to 10–2 which has significant consequences for our understanding of the dynamics of the solar atmosphere. Because the HRTS transition zone line profiles are not broadened by resolved large-spatial-scale solar velocity fields, the line widths of the Civ lines have been analyzed. The average line width is 0.195 Å (FWHM) and requires an average nonthermal velocity of 16 km s–1 (most-probable) or 19 km s–1 (root-mean-square) which is lower than previously observed values.  相似文献   

4.
Extreme ultraviolet spectra of several active regions are presented and analyzed. Spectral intensities of 3 active regions observed with the NRL Skylab XUV spectroheliograph (170–630 Å) are derived. From this data density sensitive line ratios of Mg viii, Si x, S xii, Fe ix, Fe x, Fe xi, Fe xii, Fe xiii, Fe xiv, and Fe xv are examined and typically yield, to within a factor of 2, electron pressures of 1 dyne cm–2 (n e T = 6 × 1015 cm–3 K). The differential emission measure of the brightest 35 × 35 portion of an active region is obtained between 1.4 × 104 K and 5 × 106 K from HCO OSO-VI XUV (280–1370 Å) spectra published by Dupree et al. (1973). Stigmatic EUV spectra (1170–1710 Å) obtained by the NRL High Resolution Telescope and Spectrograph (HRTS) are also presented. Doppler velocities as a function of position along the slit are derived in an active region plage and sunspot. The velocities are based on an absolute wavelength scale derived from neutral chromospheric lines and are accurate to ±2 km s–1. Downflows at 105 K are found throughout the plage with typical velocities of 10 km s–1. In the sunspot, downflows are typically 5 to 20 km s–1 over the umbra and zero over the penumbra. In addition localized 90 and 150 km s–1 downflows are found in the umbra in the same 1 × 1 resolution elements which contain the lower velocity downflows. Spectral intensities and velocities in a typical plage 1 resolution element are derived. The velocities are greatest ( 10 km s–1) at 105 K with lower velocities at higher and lower temperatures. The differential emission measure between 1.3 × 104 K and 2 × 106 K is derived and is found to be comparable to that derived from the OSO-VI data. An electron pressure of 1.4 dynes cm–2 (n e T = 1.0 × 1016 cm–3 K) is determined from pressure sensitive line ratios of Si iii, O iv, and N iv. From the data presented it is shown that convection plays a major role in determining the structure and dynamics of the active region transition zone and corona.  相似文献   

5.
Pike  C.D.  Mason  H.E. 《Solar physics》2002,206(2):359-381
An X2.3 class flare was reported on 10 April 2001 in AR 9415. A halo coronal mass ejection (CME) was associated with this flare. The Coronal Diagnostic Spectrometer (CDS) on board the Solar and Heliospheric Observatory (SOHO), which was running in its daily synoptic mode, recorded a very high-velocity ejection of plasma associated with this activity. The spatial scanning and spectral capabilities of CDS allow the measurement of both transverse and line-of-sight velocities. Components of the plasma, as seen in emission from Ov at around 2.5×105 K, reached transverse velocities in excess of 800 km s–1. The nature of the spectral line profiles suggests that a rotational motion of ±350 km s–1 was superimposed upon the general outward expansion of approximately 150 km s–1. The ejection detected using CDS was found to have a constant acceleration and is thought to be a spray of plasma with a helical structure driven by the magnetic topology.  相似文献   

6.
We present results of the study of chromospheric and photospheric line-of-sight velocity fields in the young active region NOAA 11024. Multi-layer, multi-wavelength observational data were used for the analysis of the emerging flux in this active region. Spectropolarimetric observations were carried out with the telescope THEMIS on Tenerife (Canary Islands) on 4 July 2009. In addition, space-borne data from SOHO/MDI, STEREO and GOES were also considered. The combination of data from ground- and space-based telescopes allowed us to study the dynamics of the lower atmosphere of the active region with high spatial, spectral, and temporal resolutions. THEMIS spectra show strong temporal variations of the velocity in the chromosphere and photosphere for various activity features: two pores, active and quiet plage regions, and two surges. The range of variations of the chromospheric line-of-sight velocity at the heights of the formation of the Hα core was extremely large. Both upward and downward motions were observed in these layers. In particular, a surge with upward velocities up to ?73 km?s?1 was detected. In the photosphere, predominantly upward motions were found, varying from ?3.1 km?s?1 upflows to 1.4 km?s?1 downflows in different structures. The velocity variations at different levels in the lower atmosphere are compatible with the emergence of magnetic flux.  相似文献   

7.
Coronal spectra during the total solar eclipse of 1980 February 16, were obtained in the 6374Å [Fex] line using a multislit spectrograph. These spectra have a dispersion of 2.5 Å mm-1. The observed line profiles from 1.1 to 1.7 R with a spatial resolution of 10 × 22 arcsec2, give half-widths that vary between 0.6 Å and 2.4Å. A large number of locations have half-widths around 1.3 Å corresponding to a temperature of 4.6 × 106 K. If temperature of the order of 1.3 × 106 K are typical of the regions that emit [Fex], then turbulent velocities of ~ 30 km s-1 need to be invoked for the enhanced line broadening. The line-of-sight velocities measured range between +14 km s-1 to -17 km s-1. Most of the locations have velocities less than ±5 km s-1. From these observations we conclude that corona does not show any localized differential mass motion and that it co-rotates with the photospheric layers deeper down.  相似文献   

8.
A time sequence over 80 min of coronal green-line spectra was obtained with a corona- graph at the Norikura Solar Observatory. Doppler velocities, line intensities, and line widths were derived through fitting a single Gaussian to the observed line profiles. Coronal waves have been clearly detected in the Doppler velocity data. The Fourier analysis shows powers in a 1–3 mHz range, and in higher frequencies (5–7 mHz) at localized regions. The propagation speed of the waves was estimated by correlation analysis. The line intensity and line width did not show clear oscillations, but their phase relationship with the Doppler velocity indicates propagating waves rather than standing waves. The existence of Alfvén waves whose speed is 500 km s–1 or faster is possible but inconclusive, while the existence of slower waves (of the order of 100 km s–1, possibly sound waves) is evident. The energy carried by the detected sound waves is far smaller than the required heat input rate to the quiet corona.  相似文献   

9.
By means of an inversion of H and K Ca ii line profiles the temperature and electron density in the chromosphere above the umbrae of two sunspots have been estimated. The temperature gradient 5 K km–1 exceeds the corresponding values in both quiet regions and plages. At a height of about 1500 km the umbra becomes hotter than the quiet region. At a temperature of about 10000 K the temperature gradient increases sharply. The electron density at 1500 km is approximately the same as that in the quiet chromosphere at the same height.  相似文献   

10.
A dual étalon Fabry‐Pérot spectrometer called DEFPOS has been used for observing physical properties of HII regions and planetary nebulae since May 2007 (Aksaker et al. 2009, 2011; Şahan et al. 2009; Şahan 2011). In this study, the Hα measurements of the HII region NGC 1499 (California Nebula) have been investigated with a 4′ circular field of view over a 200 km s–1 (4.4 Å) spectral window. These measurements provide information about the densities, line widths, and radial velocities of the surrounding NGC 1499 nebula. The intensities, the radial velocities and the line widths of the Hα emission line vary from 397.75 R to 1044.14 R, –4.88 km s–1 to –1.02 km s–1, and 36.72 km s–1 to 42.81 km s–1, respectively (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
We use H line profiles as a diagnostic of mass motion and nonthermal electron precipitation in the white-light flare (WLF) of 1991 June 9 01:34 UT. We find only weak downflow velocities (10 km s–1) at the site of white-light emission, and comparable velocities elsewhere.We also find that electron precipitation is strongest at the WLF site. We conclude that continuum emission in this flare was probably caused by nonthermal electrons and not by dynamical energy transport via a chromospheric condensation.  相似文献   

12.
Observations with the UVSP instrument on the SMM spacecraft were made at the polar limb and disk center for the accurate determination of Doppler shifts of the Civ 1548 Å emission line formed at 105 K in the transition region of the quiet Sun. Individual data points representing 3 arc sec square pixels yield both redshifts and blueshifts, but the mean values from four different days of observations are toward the red. The mean redshifts are in the range 4–8 km s-1 and are produced by nearly vertically directed flows; the uncertainty associated with the mean values correspond to ±0.5 km s-1. The redshift increases with brightness of the Civ line.  相似文献   

13.
H. Li  J. You  Q. Du 《Solar physics》2006,235(1-2):107-123
We present our results of high temporal resolution spectroscopic observation and study in Hα, Ca II, and He I lines for the 2B/M1.9 confined disk flare on September 9, 2001, combining with GOES soft X-ray (SXR) and Yohkoh hard X-ray (HXR) observations. Apparent redshifted and red-asymmetric profiles were observed in the initial phase. The redshift lasted until the late phase. The derived velocity depends on both the spectral line and the used method. The redshift velocities computed from the line centers of the observed emission profiles (υ0) are of the order of 10 km s−1 both inside and outside the streak area. However, the velocities determined from the excess profiles by the bisector method (υ) are larger in the streak (18–50 km s−1). Both υ and the red full widths (RFWs) derived from the excess profiles show temporal variations similar to the HXR light-curve in the streak area. Moreover, the Hα line wings of nonthermal characteristics, the redshift velocities, and the lifetime of impulsive broadening suggest that the streak is related to nonthermal electron bombardment. Spectral simulations reveal that we cannot reproduce the observed profiles in the three lines simultaneously with a set of parameters, indicating that the flare atmosphere was not homogeneous along the line-of-sight. Most of the observed Hα profiles showed a ‘flat-top’ structure, implying the flare plasma was optically thick for this line. The electron temperatures (Te) deduced from the line-center intensity of the three lines are similar and estimated to be higher than 7200 K. The obvious central reversal of the Hα profiles due to absorption of materials in the impulsive phase lasted more than 2 min. However, the far blue wings of the Ca II profiles in the impulsive phase showed low-intensity emission, which is suggestive of the existence of large turbulence or macroscopic motion (> 50 km s−1), which is inconsistent with the current flare model.  相似文献   

14.
The properties of explosive events in the solar transition zone are presented by means of detailed examples and statistical analyses. These events are observed as regions of exceptionally high velocity ( 100 km s–1) in profiles of Civ, formed at 105 K, observed with the High Resolution Telescope and Spectrograph (HRTS). The following average properties have been determined from observations obtained during the third rocket flight of the HRTS: full width at half maximum extent along the slit - 1.6 × 103 km; maximum velocity - 110 km s–1; peak emission measure - 4 × 1041 cm–3; lifetime - 60 s; birthrate - 4 × 10–21 cm–2 s–1 in a coronal hole and 1 × 10–20 cm–2 s–1 in the quiet Sun; mass - 6 × 108 g; and, kinetic energy - 6 × 1022 erg. The 6 examples show that there are considerable variations from these average parameters in individual events. Although small, the events show considerable spatial structure and are not point-like objects. A spatial separation is often detected between the positions of the red and blue shifted components and consequently the profile cannot be explained by turbulence alone. Mass motions in the events appear to be isotropic because the maximum observed velocity does not show any correlation with heliographic latitude. Apparent motions of the 100 km s–1 plasmas during their 60 s lifetime should be detected but none are seen. The spatial frequency of occurrence shows a maximum near latitudes of 40–50°, but otherwise their sites seem to be randomly distributed. There is enough mass in the explosive events that they could make a substantial contribution to the solar wind. It is hard to explain the heating of typical quiet structures by the release of energy in explosive events.  相似文献   

15.
Srikanth  R.  Singh  Jagdev  Raju  K.P. 《Solar physics》1999,187(1):1-9
Autocorrelation and cross-correlation techniques have been applied to obtain quantitative information about the dynamics of magnetic flux on the solar surface. The speed of network magnetic elements and the diffusion coefficient associated with their random motion is derived. The speed is found to be about 0.1 km s–1, independent of activity level. However, the diffusion coefficient shows a strong activity dependence: it is about 370–500 km2 s–1in the quiet network and 135–210 km2 s–1in the enhanced network. It is found that the lifetime of the enhanced network relative to the quiet network is compatible with that suggested by a comparison of their respective diffusion coefficients. This supports the proposition that a diffusion-like dispersion of magnetic flux is the dominant factor in the large-scale, long-term evolution of the network.  相似文献   

16.
Parnell  C.E. 《Solar physics》2001,200(1-2):23-45
There are four key processes that dictate the behaviorof the magnetic flux concentrations that form the so-called `magnetic carpet' of the quiet photosphere. These processes are emergence, cancellation, coalescence, and fragmentation. Rates of emergence have been estimated from observations, but the rates of cancellation, coalescence, and fragmentation are much more difficult to determine observationally. A model is set up to simulate an area of magnetic carpet in the quiet Sun. In the model there are three imposed parameters: the rate of emergence of new flux, the distribution of emerged flux and the rate of fragmentation of flux concentrations. The rate of cancellation and the rate of coalescence are deduced from the model. From the simulations it is estimated that the average emergence rate of new flux in the quiet Sun must be between 6×10–6 and 10– 5 Mx cm–2 s–1 to maintain an absolute flux density of between 2.5 and 3 G. For this rate of emergence a fragmentation rate of more than 12×10–5 s–1 is required to produce the observed exponential index for the number density of flux concentrations. This is equivalent to each fragment canceling more than once every 200 minutes. The rate of cancellation is calculated from the model and is found naturally to be equivalent to the rate of emergence. However, it is found that the frequency of cancellation is much greater than the frequency of emergence. In fact, it is likely that there are several orders of magnitude more cancellation events than emergence events. This implies that flux is injected in relatively large concentrations whereas cancellation occurs though the disappearance of many small concentrations.  相似文献   

17.
We analyzed the monochromatic Hα and spectral (within a range of 6549–6579 Å) observational data for the 2B/X6.9 flare of August 9, 2011, that produced emission in the optical continuum. The morphology and evolution of the Hα flare and the position, time evolution, spectrum, and energetics of the white-light flare (WLF) kernels were studied. The following results were obtained: the flare erupted in the region of collision of a new and rapidly growing and propagating magnetic flux and a preexisting one. This collision led to a merger of two active bipolar regions. The white-light flare had a complex structure: no less than five kernels of continuum emission were detected prior to and in the course of the impulsive flare phase. Preimpulsive and impulsive white-light emission kernels belonged to different types (types II and I, respectively) of white-light flares. A close temporal agreement between the white-light emission maxima and the microwave emission peak was observed for the impulsive white-light emission kernels. The maximum flux, luminosity, and total energy emitted by the brightest impulsive WLF kernel equaled 1.4 × 1010 ergs cm?2 s?1, 1.5 × 1027 ergs/s, and 5 × 1029 ergs, respectively. The Hα profiles within the impulsive WLF kernels had broad wings (with a total extent of up to 26 Å and a half-width of up to 9 Å) and self-reversed cores. The profiles were symmetrical, but were shifted towards the red side of the spectrum. This is indicative of a downward motion of the entire emitting volume with a radial velocity of several tens of km/s. The intensity pattern in the wings did not correspond to the Stark one. The profiles were broadened by nonthermal turbulent motions with velocities of 150–300 km/s. The observed Hα profiles were analyzed and compared in their features to the profiles calculated for an intense heating of the chromosphere by nonthermal electrons accompanied by the development of a chromospheric condensation propagating downward. We came to the conclusion that the analyzed flare exhibited spectral features that may not be readily explained within the framework of chromosphere heating by a beam of nonthermal electrons.  相似文献   

18.
The analysis of the high temperature plasma in Fe xxiii–xxiv in the 15 June 1973 flare is presented. The observations were obtained with the NRLXUV spectroheliograph on Skylab. The results are: (1) There was preheating of the active region in which the flare occurred. In particular, a large loop in the vicinity of the flaring region showed enhanced brightness for many hours before the flare. The loop disappeared when the flare occurred, and returned in the postflare phase, as if the energy flux which had been heating the large loop was blocked during the flare and restored after the flare was gone. The large magnetic fields did not change significantly. (2) The flare occurred in low-lying loop or loops. The spatial distribution of flare emission shows that there was a temperature gradient along the loop. (3) The high temperature plasma emitting Fe xxiii and xxiv had an initial upward motion with a velocity of about 80 km s–1. (4) There was large turbulent mass motion in the high temperature plasma with a random velocity of 100 to 160 km s–1. (5) The peak temperature of the hot plasma, determined from the Fe xxiii and xxiv intensity ratio, was 14 × 106 K. It decreased slightly and then, for a period of 4 min, remained at 12.6 × 106 K before dropping sharply to below 10 × 106 K. The density of the central core of the hot plasma, determined from absolute intensity of Fe xxiv 255 Å line, was of the order of 1011 cm–3.The persistence of the high level of turbulence and of the high temperature plateau in the decaying phase of the flare indicates the presence of secondary energy release. From the energy balance equation the required energy source is calculated to be about 3 to 7 ergs cm–3 s–1.Ball Brothers Research Corporation.  相似文献   

19.
20.
Mason  H.E.  Landi  E.  Pike  C.D.  Young  P.R. 《Solar physics》1999,189(1):129-146
The analysis of two active regions on the limb using observations from SOHO-CDS allows us to determine the electron density and temperature distribution of the coronal emission. We find that the active regions have hot cores (3×106 K) with larger cooler (106 K) loop structures extending above the limb. The electron number density, determined using the Si X diagnostic line ratio, is found to be highest in the active region core (greater than 2.3×109 cm–3). Electron number density values are determined for a range of spectral lines from different ions and are found to increase with temperature between 0.8 and 2.5×106 K. These results are consistent with recent models of enhanced heating along the compact core of active regions, where the magnetic field shear is strongest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号