首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
This paper deals with the taxonomic revision of the Early Cretaceous large, many-chambered planispiral planktonic foraminifera, historically assigned to the genus Globigerinelloides or alternatively assigned in the 1990s to the genera Globigerinelloides Cushman and ten Dam, Biglobigerinella Lalicker, Blowiella Krechmar and Gorbachik and Alanlordella BouDagher-Fadel. In a previous paper we demonstrated that the morphological and microstructural features used in the literature for distinguishing Blowiella from Globigerinelloides have value only at species level, and the former genus was thus invalidated (being the junior synonym). Moreover, the Late Aptian specimens assigned to Biglobigerinella by some authors, based on the presence of twin last chamber(s), are also included in Globigerinelloides because individuals sharing the same features (number of chambers, growth rate, size of umbilicus, and a finely perforate wall) may or may not possess twin last chamber(s). Meanwhile, Moullade et al. questioned the taxonomic value of Alanlordella, erected by BouDagher-Fadel to accommodate planispiral taxa possessing a macroperforate wall. All the species analysed here possess a finely perforate wall and consequently cannot be assigned to this taxon.The large species of Globigerinelloides retained here, with six or more chambers in the outer whorl, are G. algerianus Cushman and ten Dam, G. aptiensis Longoria, G. barri (Bolli, Loeblich and Tappan) and G. ferreolensis (Moullade).In the sections studied, Globigerinelloides aptiensis was first found close to the Barremian/Aptian boundary, even though this species was recorded in Spain (Rio Argos) in the mid Upper Barremian; very rare, small, seven-chambered individuals here assigned to Globigerinelloides ferreolensis are recorded in the Lower Aptian (just below and within the Selli Level, OAE1a), while a few specimens belonging to Globigerinelloides barri occur in the Globigerinelloides ferreolensis Zone (Upper Aptian). Globigerinelloides aptiensis and G. ferreolensis range up to the Ticinella bejaouaensis Zone while Globigerinelloides barri disappears at the top of the Globigerinelloides algerianus Zone; finally, Globigerinelloides algerianus obviously spans the eponymous total range zone.From an evolutionary point of view, two lineages within the many-chambered Globigerinelloides have been recognized. In the first, already known in the literature, Globigerinelloides aptiensis gave rise to G. ferreolensis, which evolved into G. algerianus; the latter in turn gave rise to Pseudoplanomalina cheniourensis as the final evolutionary member. In the second lineage Globigerinelloides barri originated from G. blowi.  相似文献   

2.
Quantified organic-walled dinoflagellate cyst (dinocyst) assemblages are presented for two sedimentary successions deposited in neritic environments of the Tethys Ocean during the Barremian and Aptian in an attempt to reconcile established dinocyst biostratigraphic schemes for Tethyan and Austral regions. One section is at Angles, southeast France (the Barremian stratotype section); the other is at Deep Sea Drilling Project Site 263, off northwest Australia. We also construct a carbon isotope record for Site 263 using bulk organic carbon.Both sections contain abundant, well-preserved dinocyst assemblages. These are diverse, with 89 taxa identified at Angles and 103 taxa identified at Site 263. Of these, more than 93% are cosmopolitan. When combined with other work at Angles and Site 263, we found that nine dinocysts have their first occurrence (FO) or last occurrence (LO) at both locations. These dinocyst events are, in alphabetical order: LO of Cassiculosphaeridia magna, FO of Criboperidinium? tenuiceras, LO of Kleithriasphaeridium fasciatum, LO of Muderongia staurota, FO of Odontochitina operculata, LO of Phoberocysta neocomica, FO of Prolixosphaeridium parvispinum, FO of Pseudoceratium retusum var. securigerum, and FO of Tehamadinium sousense. Although these events support a Barremian–Aptian age for both sections, their stratigraphic order is not the same in the sections. The δ13Corg record at Site 263 displays a characteristic series of changes that have also been recorded in other carbon isotope curves spanning the Late Barremian–Early Aptian. Such independent dating (along with ammonite zones at Angles) suggests that three of the nine dinocyst events are approximately isochronous at Angles and Site 263: the LO of K. fasciatum in the mid Barremian, the FO of P. retusum var. securigerum and the FO of C.? tenuiceras in the earliest Aptian; the other six dinocyst events are diachronous. Dinocyst assemblages at Site 263 can be loosely placed within existing Australian zonation schemes, providing much-needed calibration. Our data suggest that the Muderongia testudinaria Zone ends in sediments of mid Barremian age, the succeeding Muderongia australis Zone extends into the Early Aptian, and the younger Odontochitina operculata Zone begins in Early Aptian deposits. The boundary between the M. australis and O. operculata zones, and the Ovoidinium cinctum (as Ascodinium) Subzone, positioned at the top of the M. australis Zone when present, could not be recognized incontrovertibly. Interestingly, however, this horizon broadly correlates with the onset and extent of the Selli Event, a time of major biogeochemical change.  相似文献   

3.
Vijaya 《Cretaceous Research》1997,18(6):833-847
Palynofloras have been examined from infra- and intertrappean sediments of the Panchet and Rajmahal Formations in the Domra Sub-basin of the Damodar Basin, West Bengal, India. Three distinct palynological assemblages are identified and referred to the following palynozones: (i)Lundbladispora–Verrucosisporites(506.60–505.00 m, late Early Triassic, (ii)Murospora florida(501.65–422.20 m. Late Jurassic, Kimmeridgian–Tithonian), and (iii)Cicatricosisporites australiensis(342.00–229.6 m. Early Cretaceous, Tithonian–Berriasian). The first occurrences ofCallialasporites turbatusandC. dampieriare at 501.65 m.Callialasporitesis a dominant element of the succeeding assemblages from the Panchet Formation and indicates a Jurassic age. The FAD ofCicatricosisporites australiensisandC. augustusat 342.00 m, and inconsistent occurrences ofAequitriradites spinulosus,Crybelosporites stylosusin the overlying sediments indicate Jurassic–Cretaceous transition.  相似文献   

4.
The Penninic Ocean was a side tract of the Central Atlantic Oceanic System intercalated between the European and the Austroalpine plates. Its closure started in the Early Cretaceous, as subduction of the oceanic crust beyond the Austroalpine plate. The sedimentary change on the Austroalpine shelf from pelagic carbonates into deep-water siliciclastics correlated with the denudation of the accretionary wedge resulting from that subduction. Within the Bajuvaric Unit of the Upper Austroalpine, this transition is reflected by the lithostratigraphic boundary between the older Schrambach and the younger Tannheim Formation. This boundary is well exposed in a newly discovered site at Sittendorf, southwest of Vienna. This new outcrop yields an extraordinarily rich planktonic foraminifera assemblage characterized by typical Aptian species belonging to Blowiella, Globigerinelloides, Hedbergella, Leupoldina, and Praehedbergella. A detailed biostratigraphic analysis based on thin-section investigations precisely dated the lithostratigraphic boundary within the lower part of the early Aptian Leupoldina cabri Acme Zone, having an approximate age of 123 Ma. Along with the biostratigraphic analyses, the gamma-log outcrop measurement was a powerful tool in interpreting the stratigraphy and the tectonic setting in the outcrop, which intersects one smaller-scale isoclinal fold.  相似文献   

5.
Early Cretaceous sediments of Aptian–Albian age outcrop at Munday’s Hill Quarry, Bedfordshire, England. Previous papers describing the section have resulted in different terminologies being applied. The Lower Cretaceous in Bedfordshire is represented by sediments belonging to the Lower Greensand Group and the Gault Clay Formation. Within the Lower Greensand Group in the study area the Woburn Sands Formation, are of Aptian–Albian age. Selected samples have been analysed for palynology. The analysis reveals diverse palynomorph assemblages, including well-preserved dinoflagellate cysts and sporomorphs. Comparison of the assemblages with published records indicates that the lower samples are of Late Aptian age. Forms recorded include common Kiokansium unituberculatum, Cerbia tabulata, Aptea polymorpha and Cyclonephelium inconspicuum. An Early Albian age is indicated for the uppermost sample.  相似文献   

6.
The Late Aptian to Early Albian transition has previously been identified as a possible example of substantial climate cooling within the mid-Cretaceous greenhouse period. To study the response of continental weathering and terrestrial vegetation to this cooling episode at low- to mid-latitudes, marine nearshore deposits from the Algarve Basin (SW Portugal) have been investigated with a combined approach including palynology, clay mineralogy and bulk-rock geochemistry. In the Lower Aptian part of the succession, quartz-rich sandstone facies is accompanied by high abundances of early diagenetic kaolinite, which is interpreted to reflect episodes of enhanced humidity and high meteoric flow-through. In contrast, the Late Aptian to Early Albian deposits are characterized by high abundances of detrital clay minerals (mica and chlorite) indicating the dominance of physical weathering processes in the source area, most probably related to low precipitation rates in conjunction with tectonically enhanced erosion. Palynological data show a strong dominance of Classopollis pollen associated with low pteridophyte spore abundances, suggesting warm semi-arid to arid palaeoenvironments. Changes in sedimentation patterns from varicoloured lagoonal marls to thick-bedded shallow-water carbonates are neither expressed in the spore-pollen assemblages nor in the distributions of clay minerals which both remain essentially stable throughout the Late Aptian to Early Albian. These relatively stable patterns are in contrast with various lines of evidence, predominantly from high-latitude areas, that suggest a significant cooling during this time interval. Our study demonstrates that terrestrial environments of low- to mid-latitude regions were not significantly affected by the Late Aptian - Early Albian “cold snap”.  相似文献   

7.
High-resolution clay-mineral analyses were performed on upper Hauterivian to lower Aptian sediments along a platform-to-basin transect through the northern Tethyan margin from the Neuchâtel area (Switzerland), to the Vocontian Trough (France) in order to investigate links between climate change, carbonate platform evolution, and fractionation patterns in clay minerals during their transport.During the Hauterivian, the northern Tethyan carbonate platform developed in a heterozoan mode, and the associated ramp-like topography facilitated the export of detrital material into the adjacent basin, where clay-mineral assemblages are dominated by smectite and kaolinite is almost absent, thereby suggesting dry-seasonal conditions. During the Late Hauterivian Balearites balearis ammonite zone, a change to a more humid climate is documented by the appearance of kaolinite, which reaches up to 30% of the clay fraction in sediments in the Vocontian Trough. This prominent change just preceded the Faraoni Oceanic Anoxic Event and the onset of the demise of the Helvetic Carbonate Platform, which lasted to the late early Barremian.From the Late Barremian onwards, the renewed growth of the northern Tethyan carbonate platform in a photozoan mode and the associated development of a marginally confined platform topography fractionated the clay-mineral assemblages exported into hemipelagic settings: kaolinite particles were preferentially retained in proximal, platform settings, due to their size and their relatively high specific weight. In the inner platform environment preserved in the Swiss Jura, an average of 32% of kaolinite in the clay fraction is observed during the latest Barremian–earliest Aptian, whereas clay-mineral assemblages of coeval sediments from deeper depositional settings are dominated by smectite and show only minor amounts of kaolinite.This signifies that besides palaeoclimate conditions, the morphology and ecology of the carbonate platform had a significant effect on the distribution and composition of clay assemblages during the Late Hauterivian–Early Aptian along the northern Tethyan margin.  相似文献   

8.
Backstripping analysis has been carried out on nine outcrop sections of the Basque-Cantabrian Aptian and Albian of northern Spain which consist of shallow-water marine deposits up to 7000 m thick. It reveals four main pulses of common accelerated subsidence: I (Early Aptian), II (Early Albian), III (lower Late Albian), and IV (uppermost Late Albian) separated by tectonic quiescent intervals. Tectonic subsidence rates of 70 m Myr–1 for the Aptian and 101 m Myr–1 for the Albian were recorded (Sopuerta section). The calculated stretching factor referred to a pre-rift continental crust of 35 km is (βs=1.32) and represents approximately 8.5 km of crustal thinning. Points of change towards lesser subsidence rate in the curves are correlated with major unconformities in the sections, in the Basque-Cantabrian Basin and in Boreal Europe, suggesting geodynamic changes related with the opening of Bay of Biscay. Minor variations of spreading direction and intensity are proposed to explain the subsidence pulses.  相似文献   

9.
Marine and non-marine facies of the Permian–Triassic boundary stratigraphic set (PTBST) are well developed in South China. Palynological assemblages enable subdivision and correlation of the Permian–Triassic boundary (PTB) rocks. Three palynological assemblages are recognized across the PTBST in two terrestrial PTB sections in western Guizhou and eastern Yunnan, South China. Assemblage 1 (Xuanwei Formation) is a Late Permian palynological assemblage dominated by ferns and pteridosperms, with minor gymnosperms. Most taxa are typical long-ranging Paleozoic forms, but the appearance of Lueckisporites confirms a Late Permian age for this assemblage. Assemblage 2 (PTBST) is marked by an abrupt decrease in palynomorph abundance and diversity, and thriving fungal/algal(?) spores. Assemblage 2 is still dominated by ferns and pteridosperms, with a few gymnosperms, but is characterized by a mixed palynoflora containing both Late Permian and Early Triassic elements. Most taxa are typical Late Permian ones also found in Assemblage 1, however, some taxa of Early Triassic aspect, e.g. Lundbladispora and Taeniaesporites, appeared for the first time. In Assemblage 3 (top Xuanwei Formation and Kayitou Formation), the proportion of gymnosperm pollen increases rapidly, exceeding that of ferns and pteridosperms, but the abundance of palynomorphs is still low. Typical Early Triassic taxa (such as Lundbladispora, Aratrisporites and Taeniaesporites) are present in greater abundance and confirms an Early Triassic age for this assemblage.  相似文献   

10.
In the Rajmahal Basin Lower Cretaceous rocks are classified under the Rajmahal Formation. It includes a series of volcanic basalt flows and associated sedimentary intertrappean beds. Up to 15 basalt flows have been recorded in this basin. The intertrappean beds comprise sandstone, shale, siltstone, and clay deposits which are rich in spores and pollen. The palynoflora recovered from intertrappean beds shows definite pattern of evolution and diversification. On the basis of its overall composition, distribution pattern of age marker taxa and the First Appearance Datum of key taxa, four palynological assemblages have been identified. The chronology of these assemblages in ascending order is (1) Ruffordiaspora australiensis, (2) Foraminisporis wonthaggiensis, (3) Foraminisporis asymmetricus, and (4) Coptospora verrucosa. These assemblages ascertain the age of the volcano-sedimentary sequence of the Rajmahal Formation in the Rajmahal Basin as Berriasian to Aptian. The palynochronology of the intertrappean beds enables their correlation in the Rajmahal Basin. In different areas of the basin, the palynological dating of the lowermost intertrappean bed within the Rajmahal Formation which overlies the Dubrajpur Formation, has provided a Berriasian to Aptian age. The palynological assemblage indicating the Berriasian age is inferred as the time of the initiation of volcanic activity which continued up to the Aptian in the Rajmahal Basin.  相似文献   

11.
Abstract

— The Lhasa Block (s.l.) is bounded to the South by the Tertiary Yarlung Zangbo suture zone and to the North by the terminal Jurassic/earliest Cretaceous Bangong Nu Jiang suture zone. Several tectonostratigraphic units have been recognized in the central-northern part of the Lhasa Block. These are from bottom to top : 1) a thick turbiditic series with a few lenses of allodapic limestones which have yielded an Aalenian — Bajocian foraminiferal assemblage. This series is tectonieally overlain by the Donqiao ophiolite; 2) the continental to shallow marine late Malm to lowermost Cretaceous Zigetang Formation which disconformably overlies the Donqiao ophiolite and 3) continental red detrital rocks or marine Early/Late Aptian boundary to Early Albian foraminifera-rich bedded limestones in which some volcanic rocks are locally interbedded.

We discuss the palaeogeographical distribution and biostratigraphical meaning of some foraminifera (Gutnicella cayeuxi (LUCAS), Palorbitolina fen<ícu/o?(Bl .LMKNBACIl), Praeorbitolina cormyi SCHROEDER and Palor-bilolmoides hedini CHREREHI and ScilKOKDK.lt) and their bearing on the radiometric age of the Aptian-Albian boundary.  相似文献   

12.
Stable C and O isotope records were obtained from carbonate rocks spanning the Hauterivian to Cenomanian interval collected in several sections from the carbonate platform of Pădurea Craiului (Apuseni Mountains, Romania). In the absence of some key biostratigraphic marker species, stable isotopes were applied as a tool for stratigraphic correlation and dating. The composite δ13C and δ18O curves for the Early Cretaceous shows variable conditions with large positive and negative excursions and provide information on past environmental changes. The Hauterivian and the Barremian limestones (Blid Formation) display lower δ13C values (−2.8‰ to +2.9‰) relative to the Aptian–Albian deposits (−2.6‰ to +5.4‰) (Ecleja, Valea Măgurii and Vârciorog Formations). The red detrital formation (Albian–Cenomanian) is characterized by a highly variable distribution of the δ13C values (−3.5‰ to +3.9‰). Based on the similarities between the C-isotope curve established in Pădurea Craiului and from other sections in the Tethyan and the Pacific regions, two major oceanic anoxic events characterized by δ13C positive excursions were clearly recognized. The first is the OAE1a event (Early Aptian) in the upper part of the Ecleja Formation and the Valea Măgurii Formation. The second is the OAE1b event (Late Aptian–Albian) in the upper part of the Vârciorog Formation and in the Subpiatră Member. The position of the Aptian/Albian boundary is estimated to be at the upper part of the Vârciorog Formation, immediately after the beginning of the δ13C positive excursion. The δ13C data show major negative excursions during the Barremian (Blid Formation), Early Aptian (Ecleja Formation), and Late Aptian (Vârciorog Formation). The O isotope variation pattern (−10.2‰ to −2.1‰) is consistent with progressively warming temperatures during the Early Barremian followed by a cooling period. A subsequent warming period culminated in the Early Aptian. A significant cooling phase corresponds to the Late Aptian and Early Albian and the climate cooled again during the Late Albian and into the Early Cenomanian stage. The data provide a better understanding of the Early Cretaceous sedimentation cycles in Pădurea Craiului and create a more reliable framework for regional correlations.  相似文献   

13.
《Geodinamica Acta》2013,26(5):349-361
The most widespread blocks within the Cretaceous ophiolitic mélange (North Anatolian ophiolitic mélange) in Central Anatolia (Turkey) are pillow basalts, radiolarites, other ophiolitic fragments and Jurassic-Cretaceous carbonate blocks. The pillow basalts crop out as discrete blocks in close relation to radiolarites and ophiolitic units in Cretaceous ophiolitic mélange.

The geochemical results suggest that analyzed pillow basalts are within-plate ocean island alkali basalts. The enrichment of incompatible elements (Nb, Ta, Light REE, Th, U, Cs, Rb, Ba, K) demonstrates the ocean island environment (both tholeiites and alkali basalts) and enriched MORB. Dated calcareous intrafills and biodetrital carbonates reveal an age span of Callovian—Early Aptian. The thin-shelled protoglobigerinids, belonging to the genus Globuligerina, in the calcareous intrafills between pillow basalt lobes indicates a Callovian—Barremian age interval, most probably, Valanginian to Late Barremian. The volcanic and radiolarite detritus-bearing orbitolinid—Baccinella biodetrital carbonates dated as Late Barremian-Early Aptian in age, were probably deposited around atolls and have a close relationship with the ocean island pillow basalts.

The results collectively support the presence of a seamount on the Neo-Tethyan oceanic crust during the Valanginian—Late Barremian and atolls during the Late Barremian-Early Aptian interval. The presence of an oceanic crust older than that seamount along the Northern Branch of Neo-Tethys is conformable with the geodynamic evolution of the Tethys.  相似文献   

14.
The Lower Cretaceous sediments of the Ceahl?u Nappe (from the bend region of the Romanian Carpathians) were investigated from lithological and micropaleontological (calcareous nannoplankton) points of view. Our investigations revealed that the studied deposits were sedimented within the latest Tithonian-Albian interval. The calcareous nannofossil assemblages of the turbidite calcareous successions (the Sinaia Formation) were assigned to the NJK-?NC5 calcareous nannofossil zones, which cover the Late Tithonian-Early Barremian interval. The sandy-shaly turbidites, which followed the calcareous turbidites of the Sinaia Formation, are Early Barremian-Early Albian in age (interval covered by the ?NC5-NC8 calcareous nannofossil zones). Because the studied deposited are mainly turbidites, many reworked nannofossils from older deposits are present in the calcareous nannofloras. Thus, some biozones (i.e., NC5), defined based on the last occurrences of nannofossils, could not be identified. The calcareous nannofossil assemblages are composed of Tethyan taxa (which dominate the nannofloras) and cosmopolitan taxa. During two intervals (the Late Valanginian and across the Barremian/Aptian boundary), Tethyan and cosmopolitan nannofossils, together with Boreal ones, were observed. This type of mixed calcareous nannoplankton assemblage is indicative for sea-level high-stand, which allows the nannofloral exchange between the Tethyan and Boreal realms, within the two-above mentioned intervals.  相似文献   

15.
Thick Aptian deposits in north central Tunisia comprise hemipelagic lower Aptian, reflecting the sea-level rise of OAE 1a, and an upper Aptian shallow marine environment characterized by the establishment of a carbonate platform facies. Carbon stable isotope data permit recognition of the OAE 1a event in the Djebel Serdj section. Cephalopods are rare throughout these successions, but occurrences are sufficient to date the facies changes and the position of the OAE1a event. Ammonite genera include lower Aptian Deshayesites, Dufrenoyia, Pseudohaploceras, Toxoceratoides and ?Ancyloceras; and upper Aptian Zuercherella, Riedelites and Parahoplites. Correlation of carbon isotope data with those of other Tethyan sections is undertaken together with the integration of planktonic foraminiferal data.  相似文献   

16.
17.
This paper focuses on a borehole, Xichen-1 well, drilled on the Chenhang Island, Xisha Islands in the South China Sea. Mineralogical, petrographic, stable isotopic and minor-element data from the Holocene to Pleistocene interval (0–179 m ) in the Xichen-1 well are discussed in detail. The 400-m-long core is divisible into four mineralogical facies: a high-Mg calcitic aragonite facies (0–16.91 m, Holocene), an aragonitic low- Mg calcite facies (16.91–30.60 m, Late Pleistocene), a low- Mg calcitic facies (30.60–179 m, Middle-Early Pleistocene) and a low- Mg calcitic and dolomitic facies (179–400 m, Early Pleistocene–Late Miocene). The Holocene section has much higher whole-rock δ18O and δ13C values and Mg and Sr content than the non-dolomitized Pleistocene limestones (16.91–179 m). The 16.91–165 m interval is characterized by a relatively invariant oxygen isotopic composition and very heterogeneous carbon isotopic composition. Between 165 and 179 m, there is a positively correlated increase of whole-rock δ18O and δ18C with depth, and Mg content also shows a gradual increase with depth. Petrographic data demonstrate that the Pleistocene reef sequence has been extensively affected by meteoric waters. We conclude that the Late Pleistocene section (16.91–30.60 m) and the Middle-Early Pleistocene section (30.60–165 m) have suffered incomplete and complete meteoric diagenesis, respectively, and that the Early Pleistocene interval (165–179 m) was diagenetically altered in a meteoric–marine mixing environment.  相似文献   

18.
The Upper Barremian to Aptian Almadich Formation (Inner Prebetic Domain of the Betic Cordillera) is composed of hemipelagic sediments deposited on a distal carbonate ramp in the southern Iberian Palaeomargin. Within this facies we have found a thick interval of blue to black shales and marls that is interpreted as deposited under oxygen-depleted conditions. We think that this interval, dated as early Aptian, represents the local record of Ocean Anoxic Event 1a. The integrated biostratigraphic analysis of a section in the Almadich Formation, by means of planktonic foraminifera, calcareous nannofossils and ammonites, enables us to recognize most of the biostratigraphic units based on these three fossil groups and to correlate between them. The Sartousiana, Sarasini, Weissi, Deshayesi and Furcata (ammonite) Zones were identified for the Upper Barremian–Lower Aptian interval. By means of calcareous nannofossil biostratigraphy the Micrantholithus hoschulzii, Hayesites irregularis and Rhagodiscus angustus Zones, plus several additional biohorizons, were identified. A quantitative study performed on a set of 27 Lower Aptian samples has enabled the precise identification of the ‘nannoconid crisis’, the lower limit of which clearly precedes the main anoxic event, and its correlation with other bioevents. Planktonic foraminifera occur consistently throughout the Lower to Upper Aptian of the Cau section and are moderately well preserved. This fact allows us to use the most recent taxonomic framework, based on wall texture, to identify the Blowiella blowi, Schackoina cabri, Globigerinelloides ferreolensis, Globigerinelloides algerianus, Hedbergella trocoidea andTicinella bejaouaensis Zones. Coincident with the anoxic episode, the planktonic foraminiferal assemblages are composed of a significant number of forms with elongated chambers and/or tubulospines assigned to the genera Claviblowiella,Lilliputianella , Leupoldina and Schackoina. Most of the planktonic foraminiferal and nannofossil taxa are illustrated.  相似文献   

19.
Long‐term relative sea‐level cycles (0·5 to 6 Myr) have yet to be fully understood for the Cretaceous. During the Aptian, in the northern Maestrat Basin (Eastern Iberian Peninsula), fault‐controlled subsidence created depositional space, but eustasy governed changes in depositional trends. Relative sea‐level history was reconstructed by sequence stratigraphic analysis. Two forced regressive stages of relative sea‐level were recognized within three depositional sequences. The first stage is late Early Aptian age (intra Dufrenoyia furcata Zone) and is characterized by foreshore to upper shoreface sedimentary wedges, which occur detached from a highstand carbonate platform, and were deposited above basin marls. The amplitude of relative sea‐level drop was in the order of tens of metres, with a duration of <1 Myr. The second stage of relative sea‐level fall occurred within the Late Aptian and is recorded by an incised valley that, when restored to its pre‐contractional attitude, was >2 km wide and cut ≥115 m down into the underlying Aptian succession. With the subsequent transgression, the incision was backfilled with peritidal to shallow subtidal deposits. The changes in depositional trends, lithofacies evolution and geometric relation of the stratigraphic units characterized are similar to those observed in coeval rocks within the Maestrat Basin, as well as in other correlative basins elsewhere. The pace and magnitude of the two relative sea‐level drops identified fall within the glacio‐eustatic domain. In the Maestrat Basin, terrestrial palynological studies provide evidence that the late Early and Late Aptian climate was cooler than the earliest part of the Early Aptian and the Albian Stage, which were characterized by warmer environmental conditions. The outcrops documented here are significant because they preserve the results of Aptian long‐term sea‐level trends that are often only recognizable on larger scales (i.e. seismic), such as for the Arabian Plate.  相似文献   

20.
Patagonia has yielded the most comprehensive fossil record of Cretaceous theropods from Gondwana, consisting of 31 nominal species belonging to singleton taxa and six families: Abelisauridae, Noasauridae, Carcharodontosauridae, Megaraptoridae nov. fam., Alvarezsauridae, and Unenlagiidae. They provide anatomical information that allows improved interpretation of theropods discovered in other regions of Gondwana. Abelisauroids are the best represented theropods in Patagonia. They underwent an evolutionary radiation documented from the Early Cretaceous through to the latest Cretaceous, and are represented by the clades Abelisauridae and Noasauridae. Patagonian carcharodontosaurids are known from three taxa (Tyrannotitan, Giganotosaurus and Mapusaurus), as well as from isolated teeth, collected from Aptian to Cenomanian beds. These allosauroids constituted the top predators during the mid-Cretaceous, during which gigantic titanosaur sauropods were the largest herbivores. Megaraptorans have become better documented in recent years with the discovery of more complete remains. Megaraptor, Aerosteon and Orkoraptor have been described from Cretaceous beds from Argentina, and these taxa exhibit close relationships with the Aptian genera Australovenator, from Australia, and Fukuiraptor, from Japan. The Gondwanan megaraptorans are gathered into the new family Megaraptoridae, and the Asiatic Fukuiraptor is recovered as the immediate sister taxon of this clade. Although megaraptorans have been recently interpreted as members of Allosauroidea, we present evidence that they are deeply nested within Coelurosauria. Moreover, anatomical information supports Megaraptora as more closely related to the Asiamerican Tyrannosauridae than thought. Megaraptorans improve our knowledge about the scarcely documented basal radiation of Gondwanan coelurosaurs and tyrannosauroids as a whole. Information at hand indicates that South America was a cradle for the evolutionary radiation for different coelurosaurian lineages, including some basal forms (e.g., Bicentenaria, Aniksosaurus), megaraptorans, alvarezsaurids less derived than those of Laurasia, and unenlagiids, revealing that Gondwanan coelurosaurs played sharply differing ecological roles, and that they were taxonomically as diverse as in the northern continents. The unenlagiids represent an endemic South American clade that has been recently found to be more closely related to birds than to dromaeosaurid theropods. Analysis of the theropod fossil record from Gondwana shows the highest peak of origination index occurred during the Aptian–Albian and a less intense one in the Campanian time spans. Additionally, peaks of extinction index are recognized for the Cenomanian and Turonian–Coniacian time spans. In comparison, the Laurasian pattern differs from that of Gondwana in the presence of an older extinction event during the Aptian–Albian time-span and a high origination rate during the Cenomanian time-bin. Both Laurasian and Gondwanan theropod records show a peak of origination rates during the Campanian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号