首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Surface runoff and soil erosion under eucalyptus and oak canopy   总被引:1,自引:0,他引:1       下载免费PDF全文
To assess potential differences in stormwater runoff and sediment yield between plots of blue gum eucalyptus (Eucalyptus globulus) and coast live oak (Quercus agrifolia), we measured runoff, sediment yield, water repellency and soil moisture at eight paired sites. Eucalyptus has been associated in many studies worldwide with elevated soil water repellency and increased runoff, a likely contributor to soil erosion. To better understand these connections and their relationship to land cover, there is a need for studies employing either rainfall simulators or natural rainfall. Our research employs the latter, and was subject to contrasting hydrologic conditions in the two years of the study. Fieldwork was conducted from October 2006 to February 2008 in the San Francisco Bay Area of central California. During the 2006–2007 winter wet season, runoff was significantly higher under eucalypts than at paired oak sites, and in the early phases of the season was connected with elevated water repellency. However, sediment yield at all sites during the 2006–2007 hydrologic year was below the detection limit of the Gerlach sediment collection traps, possibly due to a limited wet season, and only appeared as suspended sediment captured in overflow buckets. Intensive rainfall events in January 2008 however created substantial runoff of sediment and litter with significantly greater yield at oak sites compared to paired eucalyptus sites. Water repellency likely had little effect on runoff during these events, and the primary cause of greater erosion under oaks is the thinner cover of leaf litter in comparison to eucalyptus. Our study is limited to undisturbed sites with intact litter cover that have not experienced recent wildfires; if disturbed, we would expect a different picture given the propensity for crown fires of eucalypts, enhancement of rainsplash erosion, and the likely greater potential for stream‐connected sediment yield from post‐disturbance soil erosion events.  相似文献   

2.
In this paper a spatially distributed model of the hillslope sediment delivery processes, named the sediment delivery distributed (SEDD) model, is initially reviewed; the model takes into account the sediment delivery processes due to both the hillslope sediment transport and the effects of slope curvature. Then the rainfall and sediment yield events measured at the experimental SPA2 basin, in Sicily, are used both to calibrate the SEDD model and to verify the predictive capability of the distributed sediment delivery approach at event scale. For the SPA2 basin discretized into morphological units and stream tubes, the SEDD model is calibrated at event scale using the measurements carried out at the outlet of the experimental basin in the period December 2000–January 2001. The model calibration is used to determine a relationship useful for estimating the unique coefficient βe of the model by rainfall erosivity factor Re at event scale. To test the predictive capability of the βe = f(Re) relationship, 20 events measured in the period September 2002–December 2005 are used; the comparison between measured sediment yield values and calculated ones for all monitored events shows that the sediment delivery distributed approach has a good predictive ability at event scale. The analysis also shows that estimating βe by the relationship βe = f(Re) gives a better agreement between measured and calculated sediment yields than obtained with the median value βe,m of all 27 calculated βe values. Finally the analysis at annual scale, for the period 2000–2005, allows the estimation of the median value βa,m representative of the annual behaviour. This analysis shows that the sediment delivery distributed approach also has a good predictive ability at annual scale. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
The C factor, representing the impact of plant and ground cover on soil loss, is one of the important factors of the Modified Universal Soil Loss Equation (MUSLE) in the Soil and Water Assessment Tool (SWAT) to model sediment yield. The daily update of C factors in SWAT was originally determined by land use types and plant growth cycles. This does not reflect the spatial variation of C values that exists within a large land use area. We present a new approach to integrate remotely sensed C factors into SWAT for highlighting the effect of detailed vegetative cover data on soil erosion and sediment yield. First, the C factor was estimated using the abundance of ground components extracted from remote sensing images. Then, the gridding data of the C factor were aggregated to hydrological response units (HRUs), instead of to land use units of SWAT. In the end, the C factor values in HRUs were integrated into SWAT to predict sediment yield by modifying the ysed subroutine. This substitution work not only increases the spatial variation of the C factor in SWAT, but also makes it possible to utilize other sources of C databases rather than those from the United States. The demonstration in the Dage basin shows that the modified SWAT produces reasonable results in water flow simulation and sediment yield prediction using remotely sensed C values. The Nash–Sutcliffe efficiency coefficient (ENS) and R2 for surface runoff range from 0·69 to 0·77 and 0·73 to 0·87, respectively. The coefficients ENS and R2 for sediment yield were generally above 0·70 and 0·60, respectively. The soil erosion risk map based on sediment yield prediction at the HRU level illustrates instructive details on spatial distribution of soil loss. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
ABSTRACT

This study investigated the impacts of changes in land cover and climate on runoff and sediment yield in a river basin in India. Land Change Modeler was used to derive the future land cover and its changes using the Sankey diagram approach. The future climatic parameters were derived from five general circulation models for two emission scenarios with representative concentration pathways (RCPs) 4.5 and 8.5. The land cover and climate change impacts on runoff and sediment yield were estimated using SWAT model. The results show important changes in land cover and indicate that urban and agricultural areas strongly influence the runoff and sediment yield. Among the land cover and climate change impacts, climate has more predominant (70%–95%) impact. Runoff and sediment yield are likely to decrease in both RCP scenarios in the future period. The impacts of land cover changes are more prominent on sediment yield than runoff.  相似文献   

5.
The interactions between overland flow hydraulics and sediment yield were studied in flume experiments on erodible soil surfaces covered by rock fragments. The high erodibility of a non-cohesive fine sediment (D50 + 0·09mm) permitted the effects of local turbulence and scour on sediment yield to be examined. Overland flow hydraulics and sediment yield were compared for experiments with pebble (D50 + 1·5cm) and cobble (D50 + 8·6cm) rock fragment covers. Cover percentages range from 0 to 99 per cent. Rock fragment size strongly affects the relations between flow hydraulics and rock fragment cover. For pebbles spatially-averaged hydraulic parameters (flow velocity, flow depth, effective flow width, unit discharge, total shear stress, Darcy-Weisbach friction factor, percentage grain friction and grain shear stress) vary most rapidly within cover percentages at low covers (power functions). In contrast, for cobbles these parameters vary most rapidly within cover percentages at high covers (exponential functions). As the type of the function that describes the relation between flow hydraulics and cover percentage can be deduced from the ratio of rock fragment height to flow depth, the continuity equation can be employed to determine the actual coefficients of the functions, provided the regression of one hydraulic parameter (e.g. flow velocity) with cover percentage is known and a good estimate exists for two values of another hydraulic variable for a low and a high cover percentage. The variation of sediment yield with cover percentage is also strongly dependent on rock fragment size, but neither the convex-upward relation for pebbles, nor the positive relation for cobbles can be solely attributed to the spatially averaged hydraulics of sheet-flow. Rock fragments induce local turbulence that leads to scour hole development on the stoss side of the rock fragments while deposition commonly occurs in the wake. This local scour and deposition substantially affects sediment yield. However, scour dimensions cannot be predicted by spatially averaged flow hydraulics. An adjustment of existing scour formulas that predict scour around bridge piers is suggested. Sediment yield from non-cohesive soils might then be estimated by a combination of sediment transport and scour formulas.  相似文献   

6.
Lake sedimentation has a fundamental impact on lake lifetime. In this paper, we show how sensitive calculation of the latter is to the quality of data available and assumptions made during analysis. Based on the collection of a large new dataset, we quantify the sediment masses (1) mobilized on the hillslopes draining towards Lake Tana (Ethiopia), (2) stored in the floodplains, (3) transported into the lake, (4) deposited in the lake and (5) delivered out from the lake so as to establish a sediment budget. In 2012–2013, suspended sediment concentration (SSC) and discharge measurements were made at 13 monitoring stations, including two lake outlets. Altogether, 4635 SSC samples were collected and sediment rating curves that account for land cover conditions and rainfall seasonality were established for the 11 river stations, and mean monthly SSC was calculated for the outlets. Effects of the floodplain on rivers' sediment yield (SY) were investigated using measurements at both sides of the floodplains. SY from ungauged rivers was assessed using a model that includes catchment area and rainfall, whereas bedload and direct sediment input from lake shores were estimated. As a result, the gross annual SY was c. 39.55 (± 0.15) Mt, dominantly from Gilgel Abay and Gumara Rivers. The 2.57 (± 0.17) Mt sediment deposited in floodplains indicate that the floodplains serve as an important sediment sink. Moreover, annually c. 1.09 Mt of sediment leaves the lake through the two outlets. Annual sediment deposition in the lake was c. 36.97 (± 0.22) Mt and organic matter accumulation was 2.15 Mt, with a mean sediment trapping efficiency of 97%. Furthermore, SSC and SY are generally higher at the beginning of the rainy season because soils in cultivated fields are bare and loose due to frequent ploughing and seedbed preparation. Later in the season, increased crop and vegetation cover lead to a decrease in sediment production. Based on the established sediment budget with average rainfall, the lifetime of Lake Tana was estimated as 764 to 1032 years, which is shorter than what was anticipated in earlier studies. The sedimentation rate of Lake Tana (11.7 ± 0.1 kg m?2 yr?1) is in line with the sedimentation rates of larger lakes in the world, like Lake Dongting and Lake Kivu. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
Flow diversion terraces (FDT) are commonly used beneficial management practice (BMP) for soil conservation on sloped terrain susceptible to water erosion. A simple GIS‐based soil erosion model was designed to assess the effectiveness of the FDT system under different climatic, topographic, and soil conditions at a sub‐basin level. The model was used to estimate the soil conservation support practice factor (P‐factor), which inherently considered two major outcomes with its implementation, namely (1) reduced slope length, and (2) sediment deposition in terraced channels. A benchmark site, the agriculture‐dominated watershed in northwestern New Brunswick (NB), was selected to test the performance of the model and estimated P‐factors. The estimated P‐factors ranged from 0·38–1·0 for soil conservation planning objectives and ranged from 0·001 to 0·45 in sediment yield calculations for water‐quality assessment. The model estimated that the average annual sediment yield was 773 kg ha?1 yr ?1 compared with a measured value of 641 kg ha?1 yr?1. The P‐factors estimated in this study were comparable with predicted values obtained with the revised universal soil loss equation (RUSLE2). The P‐factors from this study have the potential to be directly used as input in hydrological models, such as the soil and water assessment tool (SWAT), or in soil conservation planning where only conventional digital elevation models (DEMs) are available. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
The knowledge of the contribution of sediment sources to river networks is a prerequisite to understand the impact of land use change on sediment yield. We calculated the relative contributions of sediment sources in two paired catchments, one with commercial eucalyptus plantations (0.83 km2) and the other with grassland used for livestock farming (1.10 km2), located in the Brazilian Pampa biome, using different combinations of conventional [geochemical (G), radionuclide (R) and stable isotopes and organic matter properties (S)] and alternative tracer properties [spectrocolorimetric visible-based-colour parameters (V)]. Potential sediment sources evaluated were stream channel, natural grassland and oat pasture fields in the grassland catchment, and stream channel, unpaved roads and eucalyptus plantation in the eucalyptus catchment. The results show that the best combination of tracers to discriminate the potential sources was using GSRV tracers in the grassland catchment, and using GSRV, GSV and GS tracers in the eucalyptus catchment. In all these cases, samples were 100% correctly classified in their respective groups. Considering the best tracers results (GSRV) in both catchments, the sediment source contributions estimated in the catchment with eucalyptus plantations was 63, 30 and 7% for stream channel, eucalyptus stands and unpaved roads, respectively. In the grassland catchment, the source contributions to sediment were 84, 14 and 2% for natural grassland, stream channel and oats pasture fields, respectively. The combination of these source apportionment results with the annual sediment loads monitored during a 3-year period demonstrates that commercial eucalyptus plantations supplied approximately 10 times less sediment (0.1 ton ha−1 year−1) than the traditional land uses in this region, that is, 1.0 ton ha−1 year−1 from grassland and 0.3 ton ha−1 year−1 from oats pasture fields. These results demonstrate the potential of combining conventional and alternative approaches to trace sediment sources originating from different land uses in this region. Furthermore, they show that well-managed forest plantations may be less sensitive to erosion than grassland used for intensive livestock farming, which should be taken into account to promote the sustainable use of land in this region of South America.  相似文献   

9.
Soil erosion by water is a pressing environmental problem caused and suffered by agriculture in Mediterranean environments. Soil conservation practices can contribute to alleviating this problem. The aim of this study is to gain more profound knowledge of the effects of conservation practices on soil losses by linking crop management and soil status to runoff and sediment losses measured at the outlet of a catchment during seven years. The catchment has 27.42 ha and is located in a commercial farm in southern Spain, where a package of soil conservation practices is an essential component of the farming system. The catchment is devoted to irrigated annual crops with maize–cotton–wheat as the primary rotation. Mean annual rainfall‐induced runoff coefficient was 0.14 and mean annual soil loss was 2.4 Mg ha?1 y?1. Irrigation contributed to 40% of the crop water supply, but the amount of runoff and sediment yield that it generated was negligible. A Principal Components Analysis showed that total soil loss is determined by the magnitude of the event (rainfall and runoff depths, duration) and by factors related to the aggressiveness of the events (rainfall intensity and preceding soil moisture). A third component showed the importance of crop coverage to reduce sediment losses. Cover crops grown during autumn and early winter and crop residues protecting the soil surface enhanced soil conservation notably. The role of irrigation to facilitate growing cover crops in Mediterranean environments is discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
P. I. A. Kinnell 《水文研究》2008,22(16):3168-3175
The Universal Soil Loss Equation (USLE) or the revised USLE (RUSLE) are often used together with sediment delivery ratios in order to predict sediment delivery from hillslopes. In using sediment delivery ratios for this purpose, it is assumed that the sediment delivery ratio for a given hillslope does not vary with the amount of erosion occurring in the upslope area. This assumption is false. There is a perception that hillslope erosion is calculated on the basis that hillslopes are, in effect, simply divided into 22·1 m long segments. This perception fails to recognize the fact the inclusion of the 22·1 m length in the calculation has no physical significance but simply produces a value of 1·0 for the slope length factor when slopes have a length equal to that of the unit plot. There is a perception that the slope length factor is inappropriate because not all the dislodged sediment is discharged. This perception fails to recognize that the USLE and the RUSLE actually predict sediment yield from planar surfaces, not the total amount of soil material dislocated and removed some distance by erosion within an area. The application of the USLE/RUSLE to hillslopes also needs to take into account the fact that runoff may not be generated uniformly over that hillslope. This can be achieved by an equation for the slope length factor that takes account of spatial variations in upslope runoff on soil loss from a segment or grid cell. Several alternatives to the USLE event erosivity index have been proposed in order to predict event erosion better than can be achieved using the EI30 index. Most ignore the consequences of changing the event erosivity index on the values for the soil, crop and soil conservation protection factors because there is a misconception that these factors are independent of one another. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
Rock fragment cover has long been an important agricultural crop production technique on the Loess Plateau, China. Although this approach plays an important role in controlling hydrological processes and preventing soil erosion, inconsistent results have been recovered in this field. In this study, we investigated the effects of rock fragment cover on infiltration, run‐off, soil erosion, and hydraulic parameters using rainfall simulation in the field in a semi‐arid region of China. Two field plots encompassing 6 rock fragment coverages (0%, 10%, 20%, 25%, 30%, and 40%), as well as 2 rock fragment positions and sizes were exposed to rainfall at a particular intensity (60 mm h?1). The results of this study showed that increasing the rock fragment coverage with rock fragments resting on the soil surface increased infiltration but decreased run‐off generation and sediment yield. A contrasting result was found, however, when rock fragments were partially embedded into the soil surface; in this case, a positive relationship between rock fragment coverage and run‐off rate as well as a nonmonotonic relationship with respect to soil loss rate was recovered. The size of rock fragments also exerted a positive effect on run‐off generation and sediment yield but had a negative effect on infiltration. At the same time, both mean flow velocity and Froude number decreased with increasing rock fragment coverage regardless of rock fragment position and size, whereas both Manning roughness and Darcy–Weisbach friction factor were positively correlated. Results show that stream power is the most sensitive hydraulic parameter affecting soil loss. Combined with variance analysis, we concluded that the order of significance of rock fragment cover variables was position followed by coverage and then size. We also quantitatively incorporated the effects of rock fragment cover on soil loss via the C and K factors in the Revised Universal Soil Loss Equation. Overall, this study will enable the development of more accurate modelling approaches and lead to a better understanding of hydrological processes under rock fragment cover conditions.  相似文献   

12.
Monitoring sediment yields from catchments is important for assessing overall denudation rates and the impact of environmental change. One of the methods used to assess sediment yield is by quantifying sedimentation rates in reservoirs, lakes or small ponds. Before reliable sediment yield values (t ha?1 a?1) can be computed from such sedimentation records, the measured sediment volumes need to be converted to sediment masses using representative values of the dry sediment bulk density. In textbooks, simple relations predicting dry sediment bulk density from sediment texture, time since deposition and hydrologic condition are presented. In this study, 13 small flood retention ponds in central Belgium were sampled to reveal the variability in dry sediment bulk density and to test the commonly used relations to predict dry sediment bulk density. Dry sediment bulk density varies not only between the selected ponds (0·78–1·35 t m?3) but also within individual ponds (coefficient of variation at 95 per cent ranges from 7 to 80 per cent). The observed variability can be attributed primarily to the hydrologic condition of the retention pond and, also, to sediment texture. The existing relations are not a reliable predictor for the observed dry bulk densities, because they are primarily based on sediment texture. Thus, when using volumetric sedimentation data from small ponds with varying hydrologic condition to predict sediment yield, existing relations predicting dry sediment bulk density cannot be applied. Instead, frequent and dense sampling of sediments is necessary to calculate a representative value of the dry sediment bulk density. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
A database composed of 673 natural rainfall events with sediment concentration measurements at the field or plot scale was analysed. Measurements were conducted on similar soil type (loess soils prone to sealing phenomenon) to apprehend the variability and complexity involved in interrill erosion processes attributable to soil surface conditions. The effects of the dominant controlling factors are not described by means of equations; rather, we established a classification of potential sediment concentration domain according to combination of the dominant parameters. Thereby, significant differences and evolution trends of mean sediment concentration between the different parameter categories are identified. Further, when parameter influences interact, it allows us to discern the relative effects of factors according to their respective degree of expression. It was shown that crop cover had a major influence on mean sediment concentration, particularly when soil surface roughness is low and when maximum 6‐min intensity of rainfall events exceeds 10 mm h?1: mean sediment concentration decreases from 8·93 g l?1 for 0–20 per cent of coverage to 0·97 g l?1 for 21–60 per cent of coverage. The established classification also indicates that the increase of the maximum 6‐min intensity of the rainfall factor leads to a linear increase of mean sediment concentration for crop cover over 21 per cent (e.g. from 2·96 g l?1 to 14·44 g l?1 for the 1–5 cm roughness class) and to an exponential increase for low crop cover (e.g. from 3·92 g l?1 to 58·76 g l?1 for the 1–5 cm roughness class). The implication of this work may bring perspective for erosion prediction modelling and give references for the development of interrill erosion equation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
Predicting sediment yield at the catchment scale is one of the main challenges in geomorphologic research. The application of both physics‐based models and regression models has until now not provided very satisfying results for prediction of sediment yield for medium to large sized catchments (c. >50 km2). The explanation for this lies in a combination of the large data requirements of most models and a lack of knowledge to describe all processes and process interactions at the catchment scale. In particular, point sources of sediment (e.g. gullies, mass movements), connectivity and sediment transport remain difficult to describe in most models. From reservoir sedimentation data of 44 Italian catchments, it appeared that there was a (non‐significant) positive relation between catchment area and sediment yield. This is in contrast to what is generally expected from the theory of decreasing sediment delivery rates with increasing catchment area. Furthermore, this positive relation suggests that processes other than upland erosion are responsible for catchment sediment yield. Here we explore the potential of the Factorial Scoring Model (FSM) and the Pacific Southwest Interagency Committee (PSIAC) model to predict sediment yield, and indicate the most important sediment sources. In these models different factors are used to characterize a drainage basin in terms of sensitivity to erosion and connectivity. In both models an index is calculated that is related to sediment yield. The FSM explained between 36 and 61 per cent of the variation in sediment yield, and the PSIAC model between 57 and 62 per cent, depending on the factors used to characterize the catchments. The FSM model performed best based on a factor to describe gullies, lithology, landslides, catchment shape and vegetation. Topography and catchment area did not explain additional variance. In particular, the addition of the landslide factor resulted in a significantly increased model performance. The FSM and PSIAC model both performed better than a spatially distributed model describing water erosion and sediment transport, which was applied to the same catchments but explained only between 20 and 51 per cent of the variation in sediment yield. Model results confirmed the hypothesis that processes other than upland erosion are probably responsible for sediment yield in the Italian catchments. A promising future development of the models is by the use of detailed spatially distributed data to determine the scores, decrease model subjectivity and provide spatially distributed output. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
Soil is an essential resource for human livelihoods. Soil erosion is now a global environmental crisis that threatens the natural environment and agriculture. This study aimed to assess the annual rate of soil erosion using distributed information for topography, land use and soil, with a remote sensing (RS) and geographical information system (GIS) approach and comparison of simulated with observed sediment loss. The Shakkar River basin, situated in the Narsinghpur and Chhindwara districts of Madhya Pradesh, India, was selected for this study. The universal soil loss equation (USLE) with RS and GIS was used to predict the spatial distribution of soil erosion occurring in the study area on a grid-cell basis. Thematic maps of rainfall erosivity factor (R), soil erodibility factor (K), topographic factor (LS), crop/cover management factor (C), and conservation/support practice factor (P) were prepared using annual rainfall data, soil map, digital elevation model (DEM) and an executable C++ program, and a satellite image of the study area in the GIS environment. The annual rate of soil erosion was estimated for a 15-year period (1992–2006) and was found to vary between 6.45 and 13.74 t ha?1 year?1, with an average annual rate of 9.84 t ha?1 year?1. The percentage deviation between simulated and observed values varies between 2.68% and 18.73%, with a coefficient of determination (R2) of 0.874.  相似文献   

16.
Ashok Mishra  S. Kar  V. P. Singh 《水文研究》2007,21(22):3035-3045
The Hydrologic Simulation Programme‐Fortran (HSPF), a hydrologic and water quality computer model, was employed for simulating runoff and sediment yield during the monsoon months (June–October) from a small watershed situated in a sub‐humid subtropical region of India. The model was calibrated using measured runoff and sediment yield data for the monsoon months of 1996 and was validated for the monsoon months of 2000 and 2001. During the calibration period, daily‐calibrated runoff had a Nash‐Sutcliffe efficiency (ENS) value of 0·68 and during the validation period it ranged from 0·44 to 0·67. For daily sediment yield ENS was 0·71 for the calibration period and it ranged from 0·68 to 0·90 for the validation period. Sensitivity analysis was performed to assess the impact of important watershed characteristics. The model parameters obtained in this study could serve as reference values for model application in similar climatic regions, with practical implications in watershed planning and management and designing best management practices. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
The separated and combined effects of land‐cover scenarios and future climate on the provision of hydrological services were evaluated in Vez watershed, northern Portugal. Soil and Water Assessment Tool was calibrated against daily discharge, sediments and nitrates, with good agreements between model predictions and field observations. Four hypothetical land‐cover scenarios were applied under current climate conditions (eucalyptus/pine, oak, agriculture/vine and low vegetation). A statistical downscaling of four General Circulation Models, bias‐corrected with ground observations, was carried out for 2021–2040 and 2041–2060, using representative concentration pathway 4.5 scenario. Also, the combined effects of future climate conditions were evaluated under eucalyptus/pine and agriculture/vine scenario. Results for land cover revealed that eucalyptus/pine scenario reduced by 7% the annual water quantity and up to 17% in the summer period. Although climate change has only a modest effect on the reduction of the total annual discharge (?7%), the effect on the water levels during summer was more pronounced, between ?15% and ?38%. This study shows that climate change can affect the provision of hydrological services by reducing dry season flows and by increasing flood risks during the wet months. Regarding the combined effects, future climate may reduce the low flows, which can be aggravated with eucalyptus/pine scenario. In turn, peak flows and soil erosion can be offset. Future climate may increase soil erosion and nitrate concentration, which can be aggravated with agriculture scenario. Results moreover emphasize the need to consider both climate and land‐cover impacts in adaptation and land management options at the watershed scale. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Glacial erosion rates are estimated to be among the highest in the world. Few studies have attempted, however, to quantify the flux of sediment from the periglacial landscape to a glacier. Here, erosion rates from the nonglacial landscape above the Matanuska Glacier, Alaska are presented and compare with an 8‐yr record of proglacial suspended sediment yield. Non‐glacial lowering rates range from 1·8 ± 0·5 mm yr?1 to 8·5 ± 3·4 mm yr?1 from estimates of rock fall and debris‐flow fan volumes. An average erosion rate of 0·08 ± 0·04 mm yr?1 from eight convex‐up ridge crests was determined using in situ produced cosmogenic 10Be. Extrapolating these rates, based on landscape morphometry, to the Matanuska basin (58% ice‐cover), it was found that nonglacial processes account for an annual sediment flux of 2·3 ± 1·0 × 106 t. Suspended sediment data for 8 years and an assumed bedload to estimate the annual sediment yield at the Matanuska terminus to be 2·9 ± 1·0 × 106 t, corresponding to an erosion rate of 1·8 ± 0·6 mm yr?1: nonglacial sources therefore account for 80 ± 45% of the proglacial yield. A similar set of analyses were used for a small tributary sub‐basin (32% ice‐cover) to determine an erosion rate of 12·1 ± 6·9 mm yr?1, based on proglacial sediment yield, with the nonglacial sediment flux equal to 10 ± 7% of the proglacial yield. It is suggested that erosion rates by nonglacial processes are similar to inferred subglacial rates, such that the ice‐free regions of a glaciated landscape contribute significantly to the glacial sediment budget. The similar magnitude of nonglacial and glacial rates implies that partially glaciated landscapes will respond rapidly to changes in climate and base level through a rapid nonglacial response to glacially driven incision. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
No-till (NT) is a soil management system designed to protect soil resources from water erosion and provide numerous benefits compared to conventional tillage through the increase of organic matter inputs into the soil. However, NT in isolation is not sufficient to control erosion processes caused by an excessive production of surface runoff. This study evaluated soil losses on agricultural hillslopes under no-till characterized by contrasted water, soil, and crop management conditions. To this end, water and soil losses were monitored between 2014 and 2018 at two scales, including four macroplots (0.6 ha; 27 events) and two paired zero-order catchments (2.4 ha; 63 events). The resulting dataset covered a wide range of rainfall conditions that occurred in contrasted soil, crop, and runoff management conditions. Hyetographs, hydrographs, and sedigraphs were constructed, and these data were used to evaluate the impact of management on sediment yields, including that of terraces, scarification, and phytomass on sediment yield. The installation of terraces reduced sediment yield by 58.7%, mainly through surface runoff control. Crop management including an increased phytomass input efficiently controlled soil losses (63%), although it did not reduce runoff volume and peak flow. In contrast, scarification had no impact on runoff and soil losses. The current research demonstrated the need to combine the installation of terraces and leaving a high amount of phytomass on the soil to control surface runoff and erosion and reduce sediment yield. The current research therefore reinforces the relevance of the monitoring strategy conducted at the scale of macroplots and zero-order catchments to evaluate the impact of contrasted water, soil, and crop management methods and select the most effective conservation agriculture practices.  相似文献   

20.
Soil erosion is a severe problem hindering sustainable agriculture on the Loess Plateau of China. Plot experiments were conducted under the natural rainfall condition during 1995–1997 at Wangdongguo and Aobao catchments in this region to evaluate the effects of various land use, cropping systems, land slopes and rainfall on runoff and sediment losses, as well as the differences in catchment responses. The experiments included various surface conditions ranging from bare soil to vegetated surfaces (maize, wheat residue, Robinia pseudoacacia L., Amorpha fruticosa L., Stipa capillata L., buckwheat and Astragarus adsurgens L.). The measurements were carried out on hill slopes with different gradients (i.e. 0 ° to 36 °). These plots varied from 20 to 60 m in length. Results indicated that runoff and erosion in this region occurred mainly during summer storms. Summer runoff and sediment losses under cropping and other vegetation were significantly less than those from ploughed bare soil (i.e. without crop/plant or crop residue). There were fewer runoff and sediment losses with increasing canopy cover. Land slope had a major effect on runoff and sediment losses and this effect was markedly larger in the tillage plots than that in the natural grass and forest plots, although this effect was very small when the maximum rainfall intensity was larger than 58·8 mm/h or smaller than 2·4 mm/h. Sediment losses per unit area rose with increasing slope length for the same land slope and same land use. The effect of slope length on sediment losses was stronger on a bare soil plot than on a crop/plant plot. The runoff volume and sediment losses were both closely related to rainfall volume and maximum intensity, while runoff coefficient was mainly controlled by maximum rainfall intensity. Hortonian overland flow is the dominant runoff process in the region. The differences in runoff volume, runoff coefficient and sediment losses between the catchments are mainly controlled by the maximum rainfall intensity and infiltration characteristics. The Aobao catchment yielded much larger runoff volume, runoff coefficient and sediment than the Wangdongguo catchment. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号