首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Groundwater is inherently susceptible to contamination from anthropogenic activities and remediation is very difficult and expensive. Prevention of contamination is hence critical in effective groundwater management. In this paper an attempt has been made to assess aquifer vulnerability at the Russeifa solid waste landfill. This disposal site is placed at the most important aquifer in Jordan, which is known as Amman-Wadi Sir (B2/A7). The daily-generated leachate within the landfill is about 160 m3/day and there is no system for collecting and treating this leachate. Therefore, the leachate infiltrates to groundwater and degrades the quality of the groundwater. The area is strongly vulnerable to pollution due to the presence of intensive agricultural activity, the solid waste disposal site and industries. Increasing groundwater demand makes the protection of the aquifer from pollution crucial. Physical and hydrogeological characteristics make the aquifer susceptible to pollution. The vulnerability of groundwater to contamination in the study area was quantified using the DRASTIC model. The DRASTIC model uses the following seven parameters: depth to water, recharge, aquifer media, soil media, topography, impact on vadose zone and hydraulic conductivity. The water level data were measured in the observation wells within the disposal site. The recharge is derived based on precipitation, land use and soil characteristics. The aquifer media was obtained from a geological map of the area. The topography is obtained from the Natural Resources Authority of Jordan, 1:50,000 scale topographic map. The impact on the vadose zone is defined by the soil permeability and depth to water. The hydraulic conductivity was obtained from the field pumping tests. The calculated DRASTIC index number indicates a moderate pollution potential for the study area.  相似文献   

2.
Groundwater quantity and quality modeling is one approach for optimal use of available water resources in arid and semiarid regions. This study was conducted to simulate flow treatment and nitrate transport on Shahrekord aquifer using three-dimensional solute transport model and geographical information system. Hydraulic conductivity, specific yield and recharge values in flow simulation process and effect molecular diffusion coefficient, longitudinal dispersivity and distribution coefficient in quality model were calibrated. 120 water samples during July 2007 to June 2008 were collected monthly from 10 wells and measurements of nitrate were carried out. The results show that the developed model is successfully used to simulate flow path and nitrate transport in saturated porous media. The highest values of nitrate occur along Bahram–Abad village and the surroundings. The groundwater quality in the area represents a complex system, which is affected by different factors of pollution, such as urban wastewater and leaching of agricultural lands.  相似文献   

3.
Overextraction of groundwater is widely occurring along the coast where good quality groundwater is at risk, due to urbanization, tourist development and intensive agriculture. The Sabratah area at the northern central part of Jifarah Plain, Northwest Libya, is a typical area where the contamination of the aquifer in the form of saltwater intrusion, gypsum/anhydrite dissolution and high nitrate concentrations is very developed. Fifty groundwater samples were collected from the study area and analysed for certain parameters that indicate salinization and pollution of the aquifer. The results demonstrate high values of the parameters electrical conductivity, sodium, potassium, magnesium, chloride and sulphate which can be attributed to seawater intrusion. The intensive extraction of groundwater from the aquifer reduces freshwater outflow to the sea, creates drawdown cones and lowering of the water table to as much as 30 m below mean sea level. Irrigation with nitrogen fertilizers and domestic sewage and movement of contaminants in areas of high hydraulic gradients within the drawdown cones probably are responsible for the high nitrate concentration towards the south of the region. Seawater intrusion and deep salt water upconing result in general high SO4 2? concentrations in groundwater near the shoreline, where localized SO4 2? anomalies are also due to the dissolution of sebkha deposits for few wells in the nearby sebkhas. Upstream, the increase in SO4 2? concentrations in the south is ascribed to the dissolution of gypsum at depth in the upper aquifer.  相似文献   

4.
Groundwater vulnerability to contamination was determined within the Dead Sea groundwater basin, Jordan, using the DRASTIC model and evaluation of human activity impact (HAI). DRASTIC is an index model composed of several hydrogeological parameters and, in this study, the recharge parameter component was calculated as a function of rainfall, soil permeability, slope percentage, fault system, and the intersection locations between the fault system and the drainage system, based on the hydrogeologic characteristics of hard-rock terrain in an arid region. To evaluate the HAI index, a land use/cover map was produced using an ASTER VNIR image, acquired for September 2004, and combined with the resultant DRASTIC model. By comparing the DRASTIC and HAI indices, it is found that human activity is affecting the groundwater quality and increasing its pollution risk. The land use/cover map was verified using the average nitrate concentrations in groundwater associated with land in each class. A sensitivity analysis was carried out in order to study the model sensitivity. The analyses showed that the depth to water table and hydraulic conductivity parameters have no significant impact on the model, whereas the impact of vadose zone, aquifer media, and recharge parameters have a significant impact on the DRASTIC model.  相似文献   

5.
The variations of groundwater quality in the unconfined zone of the Almonte-Marismas aquifer, upon which Doñana National Park is located, are analysed. Most sampled points are multiple piezometers, allowing for the vertical distribution study of the hydrogeochemical characteristics in the aquifer. Temperature, pH, electrical conductivity, dissolved oxygen and redox potential were determined in the field. A large number of parameters, including major ions and a large amount of minor and trace elements, were analysed. In the southern zone, where aeolian sands crop out, water composition in the shallower part of the aquifer is of the sodium chloride type, with low pH (5.5–6) and mineralization (<200 μS/cm) values. As water circulates through the aquifer, bicarbonate and calcium concentrations increase slightly. In agricultural or urban zones, nitrates and sulphates present their highest contents in the upper part of the aquifer. In zones with low pH levels (around 6), concentration of many trace metals (Al, Co, Cr, Cu, Ni, Zn, etc.) also shows a distribution similar to that of sulphates and nitrates, which indicates its fertilizer-linked origin. In zones with neutral or alkaline pH, regardless of high nitrate content, concentration of the above mentioned metals is very low due to its immobilisation by surface adsorption processes. The distribution of Br contents also shows the effects of agricultural pollution.  相似文献   

6.
Water quality data from 56 wells, aquifer characteristics, soil types and land use in the city suburb of Dakar were compared to assess the effects of land use on the Thiaroye groundwater quality. The study area encompassed an unsewered densely populated zone, agricultural land, low density villages, and undeveloped land located in the sand dunes. A method similar to GIS technologies was applied to evaluate the degree of vulnerability of the different parts of the aquifer in relation to urban development, land use and aquifer characteristics. The aquifer parameters (hydraulic conductivity, groundwater level depth, recharge, soil type) were re-evaluated qualitatively into three class rankings (high, moderate and low), depending on the likelihood for contaminants reaching the water table, then combined using the two matrix Boolean logic based approaches to identify the nine classes of vulnerability assessed in the aquifer domain. An attempt was made to explain the distribution of nitrate concentration with the assessed vulnerability. In the area assessed, in the densely populated zone running from Pikine, to Thiaroye and Yeumbeul, very high nitrate concentrations correspond with the highest vulnerability index (H1). Nitrate contamination in this area is a consequence of point-source seepage from individual septic systems improperly built in this area. In the eastern part of the aquifer, high nitrate concentrations at Deni B. Ndao, Mbawane and Golam localities coincide with a moderate vulnerability assessment. The major source of nitrate in these areas is induced by agricultural activities.  相似文献   

7.
Ground water of the farm settlements in the bitumen deposit area of Western Nigeria were tested for pH, conductivity, turbidity, total dissolved solid, sulphate, phosphate, nitrogen nitrate, chloride, alkalinity, total hardness, calcium, magnesium, sodium, potassium and total coliform in the dry season (March) and rainy season (August) of years 2008 and 2009 using atomic absorption spectrometer and standard analytical methods. Conductivity, pH, turbidity, phosphate ions and total coliform values obtained in some of the wells were out of the recommended range for drinking water. Water quality index analysis was carried out using information entropy method. Water quality index of the wells when compared with the permissible limits of international standards, ranked the bore hole as ‘excellent’ in the dry season of year 2009 and just ‘good’ in the rainy season of the same year. Ground water sampling stations were ranked extremely poor at least once out of the four seasons considered. Water quality index ranking also showed that the quality of the wells declined over the years. The correlation coefficient matrix (p < 0.05) of water quality index and the parameters showed significant relationships between water quality index and total coliform (0.99), total dissolved solids and conductivity (0.96), hardness and Ca2+ (0.68), hardness and Mg2+ (0.75). Water quality index also showed moderate significant relationship with total dissolved solid, conductivity and N–NO3 ?. High concentration of total coliform in most of the shallow wells in the environment, due to bitumen deposit, renders them unfit for human consumption unless properly treated.  相似文献   

8.
Seawater intrusion in the Salalah plain aquifer,Oman   总被引:2,自引:0,他引:2  
Salalah is situated on a fresh water aquifer that is replenished during the annual monsoon season. The aquifer is the only source of water in Salalah city. The rainfall and mist precipitation in the Jabal AlQara recharges the plain with significant renewable fresh groundwater that has allowed agricultural and industrial development to occur. In Salalah city where groundwater has been used extensively since the early 1980s for agricultural, industrial and municipal purposes, the groundwater has been withdrawn from the aquifer more rapidly than it can be replenished by natural recharge. The heavy withdrawal of large quantities of the groundwater from the aquifer has led to the intrusion of seawater. Agricultural activities utilize over 70% of the groundwater. For the study of the saltwater intrusion, the area has been divided into four strips, A, B, C and D, on the basis of land-use in the area. Water samples were collected from 18 water wells. Chemical analysis of major ions and pollution parameters in the groundwater was carried out and compared to the previous observed values. The electrical conductivity and chloride concentrations were highest in the agricultural and residential strips and Garziz grass farm. Before 1992 the aquifer was in a steady state, but presently (2005) the groundwater quality in most of the agricultural and residential strips does not meet drinking water standards. In addition, model simulations were developed with the computer code MODFLOW and MT3DMS for solute transport to determine the movement of the freshwater/saltwater interface. The study proposes the protection of the groundwater in Salalah plain aquifer from further encroachment by artificial recharge with reclaimed water, preferably along the Salalah coastal agricultural strip. This scheme can also be applied to other regions with similar conditions.  相似文献   

9.
Modeling of groundwater flow for Mujib aquifer, Jordan   总被引:4,自引:0,他引:4  
Jordan is an arid country with very limited water resources. Groundwater is the main source for its water supply. Mujib aquifer is located in the central part of Jordan and is a major source of drinking water for Amman, Madaba and Karak cities. High abstraction rates from Mujib aquifer during the previous years lead to a major decline in water levels and deterioration in groundwater quality. Therefore, proper groundwater management of Mujib aquifer is necessary; and groundwater flow modeling is essential for proper management. For this purpose, Modflow was used to build a groundwater flow model to simulate the behavior of the flow system under different stresses. The model was calibrated for steady state condition by matching observed and simulated initial head counter lines. Drawdown data for the period 1985–1995 were used to calibrate the transient model by matching simulated drawdown with the observed one. Then, the transient model was validated by using drawdown data for the period 1996–2002. The results of the calibrated model showed that the horizontal hydraulic conductivity of the B2/A7 aquifer ranges between 0.001 and 40m/d. Calibrated specific yield ranges from 0.0001 to 0.15. The water balance for the steady state condition of Mujib aquifer indicated that the total annual direct recharge is 20.4 × 106m3, the total annual inflow is 13.0 × 106 m3, springs discharge is 15.3 × 106 m3, and total annual outflow is 18.7 × 106 m3. Different scenarios were considered to predict aquifer system response under different conditions. The results of the sensitivity analysis show that the model is highly sensitive to horizontal hydraulic conductivity and anisotropy and with lower level to the recharge rates. Also the model is sensitive to specific yield  相似文献   

10.
Based on this preliminary study, existing sand and gravel mining regulations (in Maine, USA) can be inferred to provide some protection to water resources. Sand and gravel deposits are important natural resources that have dual uses: mining for construction material and pumping for drinking water. How the mining of sand and gravel affects aquifers and change aquifer vulnerability to contamination is not well documented. Mining regulations vary greatly by state and local jurisdiction. This study test metrics to measure the effectiveness of mining regulations. The sand and gravel aquifer system studied is covered with former and active gravel pits to nearly 25% of its areal extent. Data from homeowner interviews and field measurements found scant evidence of changes in water quantity. Water quality analyses collected from springs, streams, ponds and wells indicate that the aquifer was vulnerable to contamination by chloride and nitrate. However, water quality changes can not be related directly to mining activities.  相似文献   

11.
Intensification of potato farming has contaminated groundwater with nitrate in many cases in Prince Edward Island, Canada, which raises concerns for drinking water quality and associated ecosystem protection. Numerical models were developed to simulate nitrate-N transport in groundwater and enhance understanding of the impacts of farming on water quality in the Wilmot River watershed. Nitrate is assumed non-reactive based on δ15N and δ18O in nitrate and geochemical information. The source functions were reconstructed from tile drain measurements, N budget and historical land-use information. The transport model was calibrated to long-term nitrate-N observations in the Wilmot River and verified against nitrate-N measurements in two rivers from watersheds with similar physical conditions. Simulations show groundwater flow is stratified and vertical flux decreases exponentially with depth. While it would take several years to reduce the nitrate-N in the shallow portion of the aquifer, it would take several decades or even longer to restore water quality in the deeper portions of the aquifer. Elevated nitrate-N concentrations in base flow are positively correlated with potato cropping intensity and significant reductions in nitrate-N loading are required if the nitrate level of surface water is to recover to the standard in the Canadian Water Quality Guidelines.  相似文献   

12.
The reasons for the rapid degradation and salination of the shallow aquifer in the northern Jordan Valley were investigated. Shallow groundwater, surface water and thermal water were sampled from the study area for this purpose. The geochemical mass-balance technique was used to quantify the contribution of different sources, geochemical processes and rock types to the final water composition, applying the NETPATH software package. The isotopic compositions of the water were also investigated. The results suggest three potential recharge sources: the Yarmouk River, the Jordan River, and the Mukheibah thermal water. Evaporation significantly contributes to the current chemistry of the shallow water, as is indicated by the geochemical models and the isotopic results. Tritium analyses indicate that the water is clearly new (less than 50 years). The relatively high values of nitrate in some wells may be of anthropogenic origin.  相似文献   

13.
The presence and levels of major nutrients in the water from Vondo and Albasini Dams and their water treatment plants have been assessed to determine trophic status of the dams and impacts on aquatic ecosystems and drinking water. Water quality parameters particularly phosphates and nitrates are critical in assessing the trophic status. Water quality parameters linked to eutrophication and agrochemicals were analyzed. Phosphate was undetectable in both dams. The nitrate levels in Albasini and Vondo Dams which were from 1.16 to 6.65?mg/L and 0.46 to 4.19?mg/L, respectively, were within and above the South African guideline for aquatic ecosystems of 2?mg/L. The raw water pH for Vondo and Albasini Dams were from 6.20 to 7.46 and 6.35 to 8.70, respectively, and were mostly within acceptable guidelines for aquatic ecosystems. The water transparency for Vondo and Albasini Dams were from 0.5 to 4.2?m and 0.4 to 0.9?m, respectively. The levels of all other water quality parameters investigated in both dams and their WTPs mostly indicate low, rarely high and no water quality problems in aquatic ecosystems and drinking water. The low levels of total suspended solids and water transparency, the pH range, low to high electrical conductivity, low to acceptable dissolved oxygen levels, acceptable to high biological oxygen demand and nitrate levels for both dams indicate oligotrophic to eutrophic states. Though oligotrophic state dominates, the mixture of trophic states has been attributed to increase in urbanization and intensive agriculture.  相似文献   

14.
The main objective of this study was to assess the spatial and temporal variability of groundwater level fluctuations in the Amman–Zarqa basin, during the period 2001–2005. In the year 2003, as a consequence of war, there was a sudden increase in the population in this basin. Knowing that the basin is already heavily populated and witnesses most of the human and industrial activities in Jordan, this study was prompted to help make wise water resources management decisions to cope with the new situation. Data from 31 fairly distributed wells in the upper aquifer of the basin were subjected to geostatistical treatment. Kriging interpolation techniques have indicated that the groundwater flow directions remained almost constant over the years. The two main directions are SW–NE and E–W. Kriging mapped fluctuations have also showed that drop and rise events are localized in the basin. Forecasting possibilities for management purposes were tackled using autocorrelation analysis. The constructed autocorrelograms indicated, in general, the temporal dependence of seasonal water level fluctuations, and that forecasting can be carried out within a period of 3–21 months. Several suggestions were made to mitigate the drop and rise hazards in the detected sites.  相似文献   

15.
Groundwater pumped from the semi-confined Complex Terminal (CT) aquifer is an important production factor in irrigated oases agriculture in southern Tunisia. A rise in the groundwater salinity has been observed as a consequence of increasing abstraction from the aquifer during the last few decades. All sources of contamination were investigated using hydrochemical data available from the 1990s. Water samples were taken from wells tapping both the CT and the shallow aquifers and analyzed with regard to chemistry tracers. Hydrochemical and water quality data obtained through a sampling period (December 2010) and analysis program indicate that nitrate pollution can be a serious problem affecting groundwater due to the use of nitrogen (N) fertilizers–pesticides in agriculture. The concentration of nitrate in an groundwater-irrigated area in Gafsa oases basin was studied, where abstraction from an unconfined CT aquifer has increased threefold over 25 years to 34 million m3/year; groundwater levels are falling at up to 0.7 m/year; and groundwater is increasingly mineralised (TDS increase from 500 to 4,000 mg/L), with nitrate concentrations ranging from 16 to 320 mg/L.  相似文献   

16.
Improper design, faulty planning, mismanagement and incorrect operation of irrigation schemes are the principle reasons for the deterioration of groundwater quality in a large number of countries, in particular in semi-arid and arid regions. The aim of this study is to determine the dimensions of groundwater quality after surface irrigation was begun in the semi-arid Harran Plain. Physical and chemical parameters of the groundwater including pH, temperature, electrical conductivity (EC), sodium, potassium, calcium, magnesium, chloride, bicarbonate, sulphate, nitrate, nitrite, ammonium, total phosphorus, total organic carbon and turbidity were determined monthly during the 2006 water year. The quality of the groundwater in the study area was assessed hydrochemically in order to determine its suitability for human consumption and agricultural purposes. In the general plain, the EC values measured were considerably above the guide level of 650 μS/cm, while nitrate in particular was found in almost all groundwater samples to be significantly above the maximum admissible concentration of 50 mg/l for the quality of water intended for human consumption as per the international and national standards. Total hardness reveals that a majority of the groundwater samples fall in the very hard water category. Interpretation of analytical data shows that Ca–HCO3 and Ca–SO4 are the dominant hydrochemical facies in the study area.  相似文献   

17.
在北京市昌平区高崖口-南口岩溶水分布区,通过水文地质钻探4眼勘查井,进行"非稳定流"抽水试验,采用配线法计算渗透系数、导水系数;按舒卡列夫分类,划分岩溶水水化学类型,并根据Piper图论述了岩溶水水化学特性;根据国家《地下水质量标准》(GB/T14848—93)进行水质标准评价;结果表明区内蓟县系雾迷山组岩溶裂隙含水层空间分布受到南部、西部和西南部3个方向岩浆岩体的明显挤压,空间范围减少,地下水补给受阻,区内东北部南口-孙河断裂上升盘800m以浅,岩溶裂隙发育、渗透性好、导水性强,地下水质量为Ⅲ类,可选作集中生活饮用水水源地靶区。  相似文献   

18.
The Paluxy aquifer in north-central Texas is composed primarily of Lower Cretaceous clastics. This aquifer provides water for both domestic and agricultural purposes in the region. The study area for this investigation incorporates the outcrop and recharge areas, as well as the confined and unconfined portions of the aquifer. The purpose of this investigation is to develop a predictive modeling approach for evaluating the susceptibility of groundwater in the Paluxy aquifer to contamination, and then compare this susceptibility evaluation to water-chemistry data collected from wells completed within the aquifer. Using such an approach allows one to investigate the potential for groundwater contamination on a regional, rather than site-specific scale. Based on data from variables such as land use/land cover, soil permeability, depth to water, aquifer hydraulic conductivity and topography, subjective numerical weightings have been assigned according to each variables' relative importance in groundwater pollution susceptibility. The weights for each variable comprise a Geographic Information System (GIS) map layer. These map layers are combined to formulate the final pollution susceptibility map. Using this method of investigation, the pollution susceptibility map classifies 32% of the study area as having low pollution susceptibility, 41% as having moderate pollution susceptibility, 25% as having high pollution susceptibility, and 2% as having very high pollution susceptibility. When comparing these modeling results with water-chemistry data from wells within the Paluxy aquifer, the four wells with the highest concentration of nitrate contamination are all found within regions of very high pollution potential. This confirms the accuracy and usefulness of the predictive modeling approach for assessing aquifer pollution susceptibility. Received: 1 June 1999 · Accepted: 30 August 1999  相似文献   

19.
Influences of agricultural practices on water quality of the Tumbling Creek cave stream are of particular interest because of the karst nature of the area and the recent implementation of a Better Management Practice (BMP). Water quality parameters, measured bi-weekly during one year, consisted of pH, turbidity, water temperature, specific conductivity, total dissolved solids, alkalinity, and chloride. Heavy metals, nutrient and bacteria levels were also monitored during the study. Effects of land use were most obvious in turbidity, nitrate, chloride, and bacteria levels. Sites within the recharge area that pose a major threat to its water quality were identified. Results provide a baseline for these water quality parameters and their seasonal variability that can be used in future studies to address the effects of water quality and stream sediment contamination on the caves ecosystem and to determine the effectiveness of the BMP implemented in this karst area.  相似文献   

20.
The Kingston Basin in Jamaica is an important hydrologic basin in terms of both domestic and industrial sector. The Kingston hydrologic basin covers an area of approximately 258 km2 of which 111 km2 underlain by an alluvium aquifer, 34 km2 by a limestone aquifer and the remainder underlain by low permeability rocks with insignificant groundwater resources. Rapid development in recent years has led to an increased demand for water, which is increasingly being fulfilled by groundwater abstraction. A detailed knowledge of the water quality can enhance understanding of the hydrochemical system, promoting sustainable development and effective management of groundwater resources. To achieve this, a hydrochemical investigation was carried out in the Kingston Basin. Results showed that the water is Na–Ca–Cl–HCO3 and Na–Ca–HCO3 type with higher concentrations of nitrate, sodium and chloride as the leading causes of contamination in most of the wells. High concentrations of nitrate correlate with wells from areas of high population density and could be attributed to anthropogenic causes, mainly involving improper sewage treatment methodologies or leaking sewer lines. Jamaica, owing to its island nature, has the continuous problem of saline water intrusion, and this is reflected in the higher levels of chloride, sodium and conductivity in the water samples collected from the wells. The wells studied show higher concentrations of chloride ranging from around 10.2 mg/l in wells located approximately (4931.45 m) from the coast to around 234 mg/l in the well located near to the coast. The conductivity values also closely correlate with the chloride levels found in the wells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号