首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The present study is an analysis of the observed extreme temperature and precipitation trends over Yangtze from 1960 to 2002 on the basis of the daily data from 108 meteorological stations. The intention is to identify whether or not the frequency or intensity of extreme events has increased with climate warming over Yangtze River basin in the last 40 years. Both the Mann-Kendall (MK) trend test and simple linear regression were utilized to detect monotonic trends in annual and seasonal extremes. Trend tests reveal that the annual and seasonal mean maximum and minimum temperature trend is characterized by a positive trend and that the strongest trend is found in the winter mean minimum in the Yangtze. However, the observed significant trend on the upper Yangtze reaches is less than that found on the middle and lower Yangtze reaches and for the mean maximum is much less than that of the mean minimum. From the basin-wide point of view, significant increasing trends are observed in 1-day extreme temperature in summer and winter minimum, but there is no significant trend for 1-day maximum temperature. Moreover, the number of cold days ≤0 °C and ≤10 °C shows significant decrease, while the number of hot days (daily value ≥35 °C) shows only a minor decrease. The upward trends found in the winter minimum temperature in both the mean and the extreme value provide evidence of the warming-up of winter and of the weakening of temperature extremes in the Yangtze in last few decades. The monsoon climate implies that precipitation amount peaks in summer as does the occurrence of heavy rainfall events. While the trend test has revealed a significant trend in summer rainfall, no statistically significant change was observed in heavy rain intensity. The 1-day, 3-day and 7-day extremes show only a minor increase from a basin-wide point of view. However, a significant positive trend was found for the number of rainstorm days (daily rainfall ≥50 mm). The increase of rainstorm frequency, rather than intensity, on the middle and lower reaches contributes most to the positive trend in summer precipitation in the Yangtze.  相似文献   

2.
 The influence of different vegetation distributions on the atmospheric circulation during the Last Glacial Maximum (LGM, 21 000 years before present) is investigated. The atmospheric general circulation model of the Bureau of Meteorology Research Center was run using a modern vegetation and in a second experiment with a vegetation reconstruction for the LGM. It is found that a change from conifer to desert and tundra causes an additional LGM cooling of 1–2 °C in Western Europe, up to −4 °C in North America and −6 °C in Siberia. An expansion of dryland vegetation causes an additional annual cooling of 1–2 °C for Australia and northern Africa. On the other hand, an increase of temperature (2 °C) is found in Alaska due to changes in circulation. In the equatorial region the LGM vegetation leads to an increased modelled temperature of 0.5–1.5 °C and decreased precipitation (30%) over land due to a reduction of the tropical rainforest, mainly in Indonesia, where the reduction of precipitation over land is associated with an increase of precipitation of 30% over the western Pacific. Received: 15 December 1999 / Accepted: 10 January 2001  相似文献   

3.
 An improved concept of the best analogues method was used to reconstruct the Last Glacial Maximum (LGM) climate from a set of botanical records from the former Soviet Union and Mongolia. Terrestrial pollen and macrofossil taxa were grouped into broad classes – plant functional types (PFTs), defined by the ecological and climatic parameters used in the BIOME1 model. PFT scores were then calibrated in terms of modern climate using 1245 surface pollen spectra from Eurasia and North America. In contrast to individual taxa, which exhibit great variability and may not be present in the palaeoassemblages, even in suitable climates, PFTs are more characteristic of the vegetation types. The modified method thus allows climate reconstruction at time intervals with partial direct analogues of modern vegetation (e.g. the LGM). At 18 kBP, mean temperatures were 20–29 °C colder than today in winter and 5–11 °C colder in summer in European Russia and Ukraine. Sites from western Georgia show negative, but moderate temperature anomalies compared to today: 8–11 °C in January and 5–7 °C in July. LGM winters were 7–15 °C colder and summers were 1–7 °C colder in Siberia and Mongolia. Annual precipitation sums were 50–750 mm lower than today across northern Eurasia, suggesting a weakening of the Atlantic and Pacific influences. Reconstructed drought index shows much drier LGM conditions in northern and mid-latitude Russia, but similar to or slightly wetter than today around the Black Sea and in Mongolia, suggesting compensation of precipitation losses by lower-than-present evaporation. Received: 11 May 1998 / Accepted: 25 September 1998  相似文献   

4.
Summary  Circulation types were identified by means of zonal and meridional indices calculated separately over ten different regions of 20°×20° over the Mediterranean and Europe. Seasonal temperature trends in 22 grid boxes of 5°×5° covering the entire Mediterranean, and at six stations Lisbon, Madrid, Florence, Luqa (Malta), Athens and Jerusalem, were calculated. A warming trend in the period 1873–1989 was detected. The warming is more evident in the western Mediterranean with an average rate of about 0.4 [°C/100 yr], than in the eastern Mediterranean with an increase of only 0.2 [°C/100 yr]. A cooling trend in autumn in the eastern Mediterranean with an average rate of −0.5 [°C/100 yr] was detected and attributed to an increase in northerly meridional circulation in that region. Warming trends at Lisbon, Madrid, Florence, Athens and Jerusalem, were more important than the trends in the grid boxes containing these stations. This rapid warming was attributed to urban effects. No such effects were found in Luqa due to its location and the lack of urban effects there. Temperatures at Luqa, Athens and Jerusalem are highly positively correlated. Likewise, temperatures at Lisbon and Madrid. Temperatures at Florence are either correlated with Madrid or with Luqa. Negative or no correlations were found between Lisbon or Madrid with Athens or Jerusalem, except during the winter. This was attributed to the fact that favourable circulation for high temperatures in the eastern stations was opposite to the favourable circulation for high temperatures in the western stations and vice versa. Finally, the above reinforces the concept of a Mediterranean Oscillation between the western and eastern basins. Received November 14, 1997 Revised June 2, 1998  相似文献   

5.
Summary  The possibility of climate change in the Korean Peninsula has been examined in view of the general increase in greenhouse gases. Analyses include changes in annual temperature and precipitation. These analyses are supplemented with our observations regarding the apparent decrease of forest areas. It was found that there was a 0.96 °C (0.42 °C per decade) increase in annual mean temperature between 1974 and 1997. The increase in large cities was 1.5 °C but only 0.58 °C at rural and marine stations. The difference in the mean temperature between large cities and rural stations was small from 1974 to 1981. However, the difference increased from 1982 to 1997. In particular, the warming appears most significant in winter. Prior to 1982, the lowest temperatures were often −18 °C in central Korea, and since then the lowest temperatures have been only −12∼−14 °C. Recently, the minimum January temperature has increased at a rate of 1.5 °C per decade. It is estimated that the increase of1 °C in annual mean temperature corresponds to about a 250 km northward shift of the subtropical zone boundary. The analysis of data from 1906 to 1997 indicates a trend of increasing annual precipitation, an increase of 182 mm during the 92-year peirod, with large year-to-year variations. More than half of the annual mean amount, 1,274 mm, occurred from June to September. Meteorological data and satellite observations suggest that changes have occurred in the characteristics of the quasi-stationary fronts that produce summer rain. In recent years scattered local heavy showers usually occur with an inactive showery front, in comparison with the classical steady rain for more than three weeks. For instance, local heavy rainfall, on 6 August 1998 was in the range of 123–481 mm. The scattered convective storms resulted in flooding with a heavy toll of approx. 500 people. The northward shift of the inactive showery front over Korea, and of a convergence zone in central China, correlate with the increase in temperature. It has been suggested that the decrease in forest areas and the change in ground cover also contribute to the warming of the Korean Peninsula. Received March 16, 2000  相似文献   

6.
Summary In this study, Principal Component Analysis (PCA) has been used to identify the major modes of the outgoing long-wave radiation data for the period (1979–2002) during the Indian monsoon period (June–September), using seasonal mean values over the Indian region covering 143 grid points (5° N–35° N and 70° E–95° E at 2.5° Longitude–Latitude intervals. The five principal components explain up to 98.0% of the total variance. The first principal component explains 60% of the total variance with a pronounced variation in the outgoing long-wave radiation over the region 10° N to 25° N. It appears that the major reason for the monsoon variability is the intensity and associated fluctuations in the two major semi-permanent seasonal systems. This is largely indicative of strong seasonal shift of the major area of cloudiness associated with convergence zone. The second principal component explaining 20% of the total variance exhibits higher positive component loadings along 25° N and east of 80° E. The possible reason for this could be the synoptic systems such as monsoon depression/lows over the north bay and trough/vortices off the west-coast in the Arabian sea.  相似文献   

7.
Summary Climatological statistics of extreme temperature events over Kenya are established from the analysis of daily and monthly maximum temperatures for a representative station (Nairobi Dagoretti Corner) over the period 1956–1997. The months of June to August were shown to be the coldest with a mean monthly maximum temperature of less than 22 °C. Seasonal (June to August) mean maximum temperature was 21.5 °C. Using this seasonal mean temperature for the period 1967–1997 delineated 1968 as the coldest year in this series and 1983 as the warmest year. Spectral analysis of the seasonal data, for both the coldest and the warmest years, revealed that the major periods were the quasi-biweekly (10 days) and the Intraseasonal Oscillations (23 days). Secondary peaks occurred at periods of 4–6 and 2.5–3.5 days. A temperature threshold of 16.7 °C during July was used to define cold air outbreaks over Nairobi. This threshold temperature of 16.7 °C was obtained from the mean July maximum temperature (20.9 °C) minus two standard deviations. Notable trends include a decrease in the frequency of station-days, between 1956 and 1997, with temperatures less than 16.7 °C during July. Surface pressure patterns indicate that the origin of the cold air is near latitude 25° S and to the east of mainland South Africa. The cold air near 25° S is advected northwards ahead of the surface pressure ridge. Received July 19, 1999 Revised January 11, 2000  相似文献   

8.
The Mediterranean has been identified as particularly vulnerable to climate change, yet a high-resolution temperature reconstruction extending back into the Medieval Warm Period is still lacking. Here we present such a record from a high-elevation site on Mt. Smolikas in northern Greece, where some of Europe’s oldest trees provide evidence of warm season temperature variability back to 730 CE. The reconstruction is derived from 192 annually resolved, latewood density series from ancient living and relict Pinus heldreichii trees calibrating at r1911–2015 = 0.73 against regional July–September (JAS) temperatures. Although the recent 1985–2014 period was the warmest 30-year interval (JAS Twrt.1961–1990 = + 0.71 °C) since the eleventh century, temperatures during the ninth to tenth centuries were even warmer, including the warmest reconstructed 30-year period from 876–905 (+ 0.78 °C). These differences between warm periods are statistically insignificant though. Several distinct cold episodes punctuate the Little Ice Age, albeit the coldest 30-year period is centered during high medieval times from 997–1026 (− 1.63 °C). Comparison with reconstructions from the Alps and Scandinavia shows that a similar cold episode occurred in central Europe but was absent at northern latitudes. The reconstructions also reveal different millennial-scale temperature trends (NEur = − 0.73 °C/1000 years, CEur = − 0.13 °C, SEur = + 0.23 °C) potentially triggered by latitudinal changes in summer insolation due to orbital forcing. These features, the opposing millennial-scale temperature trends and the medieval multi-decadal cooling recorded in Central Europe and the Mediterranean, are not well captured in state-of-the-art climate model simulations.  相似文献   

9.
林中达 《大气科学进展》2013,30(4):1224-1234
The East Asian upper-tropospheric jet stream (EAJS) typically jumps north of 45°N in midsummer. These annual northward jumps are mostly classified into two dominant types: the first type corresponds to the enhanced westerly to the north of the EAJS’s axis (type A), while the second type is related to the weakened westerly within the EAJS’s axis (type B). In this study, the impacts of these two types of northward jumps on rainfall in eastern China are investigated. Our results show that rainfall significantly increases in northern Northeast China and decreases in the Yellow River-Huaihe River valleys, as well as in North China, during the type A jump. As a result of the type B jump, rainfall is enhanced in North China and suppressed in the Yangtze River valley. The changes in rainfall in eastern China during these two types of northward jumps are mainly caused by the northward shifts of the ascending air flow that is directly related to the EAJS. Concurrent with the type A (B) jump, the EAJS-related ascending branch moves from the Yangtze-Huai River valley to northern Northeast (North) China when the EAJS’s axis jumps from 40°N to 55°N (50°N). Meanwhile, the type A jump also strengthens the Northeast Asian low in the lower troposphere, leading to more moisture transport to northern Northeast China. The type B jump, however, induces a northwestward extension of the lower-tropospheric western North Pacific subtropical high and more moisture transport to North China.  相似文献   

10.
Summary By analyzing 12-year (1979–1990) 200 hPa wind data from National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis, we demonstrate that the intraseasonal time scale (30–60 days) variability of the Tropical Easterly Jet (TEJ) reported in individual case studies occurs during most years. In the entrance region (east of ∼70° E), axis of the TEJ at 200 hPa is found along the near equatorial latitudes during monsoon onset/monsoon revivals and propagates northward as the monsoon advances over India. This axis is found along ∼5° N and ∼15° N during active monsoon and break monsoon conditions respectively. Examination of the European Centre for Medium Range Weather Forecasts reanalysis wind data also confirms the northward propagation of the TEJ on intraseasonal time scales. During the intraseasonal northward propagations, axis of the TEJ is found about 10°–15° latitudes south of the well-known intraseasonally northward propagating monsoon convective belts. Because of this 10°–15° displacement, axis of the TEJ arrives over a location about two weeks after the arrival of the monsoon convection. Systematic shifting of the locations by convection, low level monsoon flow and TEJ in a collective way during different phases of the monsoon suggests that they all may be related.  相似文献   

11.
CLM4.0模式对中国区域土壤湿度的数值模拟及评估研究   总被引:7,自引:2,他引:5  
本文利用普林斯顿大学全球大气强迫场资料,驱动公用陆面过程模式(Community Land Model version 4.0,CLM4.0)模拟了中国区域1961~2010年土壤湿度的时空变化。将模拟结果与观测结果、美国国家环境预报中心再分析数据(National Centers for Environmental Prediction Reanalysis,NCEP)和高级微波扫描辐射计(Advanced Microwave Scanning Radiometer-EOS,AMSR-E)反演的土壤湿度进行了对比分析,结果表明CLM4.0模拟结果可以反映出中国区域观测土壤湿度的空间分布和时空变化特征,但东北、江淮和河套三个地区模拟值相对于观测值在各层次均系统性偏大。模拟与NCEP再分析土壤湿度的空间分布基本一致,与AMSR-E的反演值在35°N以北的分布也基本一致;从1961~2010年土壤湿度模拟结果分析得出,各层土壤湿度空间分布从西北向东南增加。低值区主要分布在新疆、青海、甘肃和内蒙古西部地区。东北平原、江淮地区和长江流域为高值区。土壤湿度数值总体上从浅层向深层增加。不同深度土壤湿度变化趋势基本相同。除新疆西部和东北部分地区外,土壤湿度在35°N以北以减少趋势为主,30°N以南的长江流域、华南及西南地区以增加为主。在全球气候变暖的背景下,CLM4.0模拟的夏季土壤湿度在不同程度上响应了降水的变化。中国典型干旱区和半干旱区土壤湿度减小,湿润区增加。其中湿润区土壤湿度对降水的响应最为显著,其次是半干旱区和干旱区。  相似文献   

12.
Upper-level cut-off lows in southern South America   总被引:2,自引:0,他引:2  
Summary This paper presents a statistical study of the spatial and seasonal distribution and duration of cut-off low systems over the southern South American region based on the NCEP- NCAR reanalysis data for the period 1979–1988. Cut-off lows were first objectively determined as minimum geopotential values at the 250 hPa level and then subjectively imposing a cut-off circulation and a cold core. A total of 171 cut-off low events were detected, being more frequent in austral autumn followed by winter, spring and summer. There is a preferential region of occurrence in spring and autumn located between 68°–80° W and 30°–45° S. The Pacific area showed the greatest frequency of occurrence followed by the Atlantic and the continental areas. Most of the cut-off lows last 2 or 3 days (around 90% of the cases) though there is a tendency of the continental events to be longer. The cut-off low event developed upwind the Andes on 22–28 September 1986 was selected as a case study. Low-level cold air advection was the main forcing of the deepening of the upper level low system.  相似文献   

13.
The trends and features of China’s climatic change in the past and future are analysed by applying station obser-vations and GCM simulation results. Nationally, the country has warmed by 0.3oC in annual mean air temperature and decreased by 5% in annual precipitation over 1951-1990. Regionally, temperature change has varied from a cooling of 0.3oC in Southwest China to a warming of 1.0oC in Northeast China. With the exception of South China, all regions of China have shown a declination in precipitation. Climatic change has the features of increasing remark-ably in winter temperature and decreasing obviously in summer precipitation. Under doubled CO2 concentration, climatic change in China will tend to be warmer and moister, with increases of 4.5oC in annual mean air temperature and 11% in annual precipitation on the national scale. Future climatic change will reduce the temporal and spatial differences of climatic factors.  相似文献   

14.
In the context of 1905-1995 series from Nanjing and Hangzhou, study is undertaken of establishing a predictive model of annual mean temperature in 1996-2005 to come over the Changjiang (Yangtze River) delta region through mean generating function and artificial neural network in combination. Results show that the established model yields mean error of 0.45℃ for their absolute values of annual mean temperature from 10 yearly independent samples (1986-1995) and the difference between the mean predictions and related measurements is 0.156℃. The developed model is found superior to a mean generating function regression model both in historical data fitting and independent sample prediction.  相似文献   

15.
The Siberian High and climate change over middle to high latitude Asia   总被引:8,自引:0,他引:8  
Summary The Siberian High is the most important atmospheric centre of action in Eurasia during the winter months. Here its variability and relationship with temperature and precipitation is investigated for the period 1922 to 2000. The pronounced weakening of the Siberian High during the last ∼ 20 years is its most remarkable feature. Mean temperature, averaged over middle to high latitude Asia (30° E–140° E, 30° N–70° N), is correlated with the Siberian High central intensity (SHCI) with correlation coefficient of − 0.58 (1922–1999), and for precipitation, the correlation coefficient is − 0.44 (1922–1998). Taking the Arctic Oscillation (AO), the SHCI, the Eurasian teleconnection pattern (EU), and the Southern Oscillation (SO) index into account, 72 percent of the variance in temperature can be explained for the period 1949–1997 (for precipitation the variance is 26 percent), with the AO alone explaining 30 percent of the variance, and the Siberian High contributing 24 percent. The precipitation variance explained by the Siberian High is only 9.8 percent of the total. Received January 2, 2001 Revised November 24, 2001  相似文献   

16.
 Monthly sea surface temperature anomalies (SSTA) at near-global scale (60 °N–40 °S) and May to October rainfall amounts in West Africa (16 °N–5 °N; 16 °W–16 °E) are first used to investigate the seasonal and interannual evolutions of their relationship. It is shown that West African rainfall variability is associated with two types of oceanic changes: (1) a large-scale evolution involving the two largest SSTA leading eigenmodes (16% of the total variance with stronger loadings in the equatorial and southern oceans) related to the long-term (multiannual) component of rainfall variability mainly expressed in the Sudan–Sahel region; and (2) a regional and seasonally coupled evolution of the meridional thermal gradient in the tropical Atlantic due to the linear combination of the two largest SSTA modes in the Atlantic (11% with strong inverse loadings over the northern and southern tropics) which is associated with the interannual and quasi-decadal components of regional rainfall in West Africa. Linear regression and discriminant analyses provide evidence that the main July–September rainfall anomalies in Sudan–Sahel can be detected with rather good skills using the leading (April–June) or synchronous (July–September) values of the four main oceanic modes. In particular, the driest conditions over Sahel, more marked since the beginning of the 1970s, are specifically linked to the warm phases of the two global modes and to cold/warm anomalies in the northern/southern tropical Atlantic. Idealized but realistic SSTA patterns, obtained from some basic linear combinations of the four main oceanic modes appear sufficient to generate quickly (from mid-July to the end of August) significant West African rainfall anomalies in model experiments, consistent with the statistical results. The recent negative impact on West African rainfall exerted by the global oceanic forcing is primarily due to the generation of subsidence anomalies in the mid-troposphere over West Africa. When an idealized north to south SSTA gradient is added in the tropical Atlantic, strong north to south height gradients in the middle levels appear. These limit the northward excursion of the rainbelt in West Africa: the Sahelian area experiences drier conditions due to the additive effect (subsidence anomalies+latitudinal blocking) while over the Guinea regions wet conditions do not significantly increase, since the subsidence anomalies and the blocking effect act here in opposite ways. Received: 26 June 1997 / Accepted: 3 October 1997  相似文献   

17.
夏季中国中东部不同历时降水时空分布特征   总被引:7,自引:2,他引:5  
利用1961~2012年台站逐时降水资料,分析了夏季中国中东部不同历时降水的主要气候分布和长期变化特征,为深入认识其时空变化规律和形成机理奠定基础。分析结果表明,降水事件的平均历时由南向北呈"短—长—短"分布型,华南和北方地区以6 h以下的短历时降水为主;而中部地区(28°N~37°N)6 h以上长历时降水占总降水量60%以上。随着降水历时的增加,小雨事件(0.1~1.0 mm/h)的发生概率降低,中雨事件(1.1~10.0 mm/h)的发生概率升高;大雨、暴雨事件(10.0 mm/h)更易出现在35°N以南历时偏短的降水事件中。1961~2012年,中国中东部总降水量呈"南升北降"的趋势分布,夏季南方大部分地区降水强度、时数和事件数均呈上升趋势;而北方地区降水时数和事件数显著减少,不过降水强度呈增强趋势。中东部降水历时总体呈上升趋势,尤其以我国长江与黄河之间的中部地区变化最为显著。同时,该地区短历时(1~6 h)降水无显著的年代际转折,长历时(6 h)降水的年代际增加是20世纪70年代末至20世纪90年代初降水增多的主要原因。20世纪90年代初期以来,南方地区降水的年代际增多则是长、短降水共同作用的结果,但超过6 h降水的影响范围更广,且影响中心较短历时降水偏北。  相似文献   

18.
Summary One of the greatest challenges in tropical weather forecasting is the rapid intensification (RI) of the tropical cyclone (TC), during which its one-minute maximum sustained wind speed increases at least 30 knots per 24 hours. Here we identify and elucidate the climatic conditions that are critical to the frequency and location of the RI on annual, intraseasonal, and interannual time scales. Whereas RI and formation share common environmental preferences, we found that the percentage of TCs with RI varies annually and from year to year. In August, only 30% of TC actually experiences RI, in contrast to the annual maximum of 47% in November. The proportion of RI in July–September is higher during El Ni?o years (53%) than the corresponding one in the La Ni?a years (37%). Three climate factors may contribute to the increase in the proportion of RI: the southward shift in the monthly or seasonal mean location of the TC formation, the increase in the low-level westerly meridional shear vorticity, and the decrease in northerly vertical shear. When the mean latitude of TC formation increases, the mixed-layer heat content decreases while TC’s inertial stability increases; both are more detrimental to the RI than to TC formation because the RI requires large amount of latent heat energy being extracted efficiently from the ocean mixed layer and requires accelerated low-level radial inflow that carries latent heat reaching the inner core region. We further demonstrate that the RI frequency in the Philippine Sea and South China Sea can be predicted 10 to 30 days in advance based on the convective anomalies in the equatorial western Pacific (5° S–5° N, 130°–150° E) on intraseasonal time scale. The Ni?o 3.4 SSTA in June is a potential predictor for the peak TC season (July–September) RI activity in the southeast quadrant of the western North Pacific (0–20° N, 140–180° E). The RI is an essential characteristic of category 4 and 5 hurricanes and super typhoons because all category 4 and 5 hurricanes in the Atlantic basin and 90% of the super typhoons in the western North Pacific experience at least one RI process in their life cycles. Over the past 40 years, the annual total of RI in the western North Pacific shows pronounced interdecadal variation but no significant trend. This result suggests that the number of supper typhoons has no upward trend in the past 40 years. Our results also suggest that when the mean latitude, where the tropical storms form, shifts southward (either seasonally or from year to year) the proportion of super typhoon or major hurricane will likely increase. This shift is determined by large scale circulation change rather than local SST effects. This idea differs from the current notion that increasing SST can lead to more frequent occurrence of category 4 or 5 hurricanes through local thermodynamics. Corresponding author’s address: Bin Wang, Department of Meteorology, University of Hawaii, 2525 Correa Rd., Honolulu, Hawaii 96822, USA (also visiting professor at the Ocean University of China)  相似文献   

19.
Summary We analysed long-term temperature trends based on 12 homogenised series of monthly temperature data in Switzerland at elevations between 316 m.a.s.l. and 2490 m.a.s.l for the 20th century (1901–2000) and for the last thirty years (1975–2004). Comparisons were made between these two periods, with changes standardised to decadal trends. Our results show mean decadal trends of +0.135 °C during the 20th century and +0.57 °C based on the last three decades only. These trends are more than twice as high as the averaged temperature trends in the Northern Hemisphere. Most stations behave quite similarly, indicating that the increasing trends are linked to large-scale rather than local processes. Seasonal analyses show that the greatest temperature increase in the 1975–2004 period occurred during spring and summer whereas they were particularly weak in spring during the 20th century. Recent temperature increases are as much related to increases in maximum temperatures as to increases in minimum temperature, a trend that was not apparent in the 1901–2000 period. The different seasonal warming rates may have important consequences for vegetation, natural disasters, human health, and energy consumption, amongst others. The strong increase in summer temperatures helps to explain the accelerated glacier retreat in the Alps since 1980. Authors’ addresses: Martine Rebetez, WSL Swiss Federal Research Institute, 1015 Lausanne, Switzerland; Michael Reinhard, Laboratory of Ecological Systems (ECOS), EPFL Swiss Federal Institute of Technology, 1015 Lausanne, Switzerland.  相似文献   

20.
Climatic regime shift and decadal anomalous events in China   总被引:15,自引:0,他引:15  
Climatic time series from historical documents and instrumental records from China showed temporal and regional patterns in the last two to three centuries, including two multidecadal oscillations at quasi-20-year and quasi-70-year timescales revealed by signal analysis from wavelet transform. Climatic anomalous events on the decadal timescale were identified based on the two oscillations when their positive (or negative) phases coincide with each other to amplify amplitude. The coldest event occurred in the decade of 1965–1975 in eastern China, while the periods of 1920–1930, 1940–1950, and 1988–2000 appeared to be warmer in most parts of China. For the precipitation series in northern China, the dry anomalous event was found in the late 1920s, while the wet anomalous event occurred in the 1950s. A severe drought in 1927–1929 in northern China coincided with the anomalous warm and dry decade, caused large-scale famine in nine provinces over northern China. Climatic anomalous events with a warm-dry or cold-wet association in the physical climate system would potentially cause severe negative impacts on natural ecosystem in the key vulnerable region over northern China. The spatial pattern of summer rainfall anomalies in the eastern China monsoon region showed an opposite variations in phase between the Yellow River Valley (North China) and the mid-low Yangtze River Valley as well as accompanied the shift of the northernmost monsoon boundary. Climatic regime shifts for different time points in the last 200 years were identified. In North China, transitions from dry to wet periods occurred around 1800, 1875, and 1940 while the transitions from wet to dry periods appeared around 1840, 1910, and the late 1970s. The reversal transition in these time points can also be found in the lower Yangtze River. Climatic regime shifts in China were linked to the interaction of mid- and low latitude atmospheric circulations (the westerly flow and the monsoon flow) when they cross the Tibetan Plateau in East Asia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号