首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
A large amount of lignite‐derived water is created during the process of refining lignite. The concentration of Fe, Mn, phenol, and some other organic pollutants of the lignite‐derived water is above the discharge permit or circulating cooling water reuse standard in China. A laboratory‐scale upflow biological aerated filter (UBAF) was developed to treat this lignite‐derived water. Three kinds of coke powders, as waste products in the coal chemical industry with 0.1–0.4 mm, 0.5–1.0 mm, and 1.0–2.0 mm in diameter, were tested as the UBAF's carrier materials. A comparative study of gas–water ratio for the UBAF is presented. The studies presented in this paper demonstrate that with coke powder diameter of 0.5–1.0 mm and gas/water ratio of 7:1, the UBAF reactor can achieve optimal removal efficiency. After the UBAF treatment, the removal efficiency of Fe, Mn, and phenol was found to be 38.4–62.5%, 56.6–74.3%, and 89.5–94.3%, respectively. The lignite‐derived water can meet the discharge permit to surface water and reuse standard for circulating cooling water after the treatment by UBAF. The coke powder, as a waste material, can be used as a support material for UBAF very well.  相似文献   

2.
3.
4.
Field experiments have been carried out to study the nature and magnitude of seismic wave attenuation for a variety of lithologies. In each survey two three-component sets of geophones with wall clamping mechanisms were lowered down boreholes and signals originating from surface compressional and shear-wave sources were recorded. The data collected were corrected for spherical divergence and analyzed to determine intrinsic attenuation. For situations of anomalous wavefront expansion and in cases where multiple reflection losses may be significant, corrections were supplied by a synthetic seismogram programme to improve the estimates of intrinsic attenuation. Values of attenuation were obtained for pure sandstone, sandstone-marl sequences and fissured-unfissured chalk sequences. These formations were all near surface and relatively porous. Significant differences in the relative values of compressional and shear-wave attenuation in the various lithologies were noted. In particular compressional absorption in the fissured zones of chalk was twice the absorption associated with the seismic velocities and the absorption of shear waves fluctuated much less. A large contrast in P-wave attenuation was also observed between pure Bunter Sandstone and the sandstone-marl sequence (absorption was over three times as small in the former). A smaller contrast was noted for shear attenuation. The results obtained suggest that, for the relatively homogeneous formations such as pure sandstone and “unfissured” chalk, “shear” absorption was dominant over “bulk” absorption. In contrast bulk absorption was larger than shear absorption for other formations, e.g. the “fissured” chalk sequences and a “partially saturated” chalk section. Attenuation was found to be approximately proportional to frequency in all experiments.  相似文献   

5.
Air sparging has proven to be an effective remediation technique for treating saturated soils and ground water contaminated by volatile organic compounds (VOCs). Since little is known about the system variables and mass transfer mechanisms important to air sparging, several researchers have recently performed laboratory investigations to study such issues. This paper presents the results of column experiments performed to investigate the behavior of dense nonaqueous phase liquids (DNAPFs). specifically trichloroethylene (TCE), during air sparging. The specific objectives of the study were (1) to compare the removal of dissolved TCE with the removal of dissolved light nonaqueous phase liquids (LNAPLs). such as benzene or toluene; (2) to determine the effect of injected air-flow rate on dissolved TCE removal; (3) to determine the effect of initial dissolved TCE concentration on removal efficiency; and (4) to determine the differences in removal between dissolved and pure-phase TCE. The test results showed that (1) the removal of dissolved TCE was similar to that of dissolved LNAPL: (2) increased air-injection rates led to increased TCE removal at lower ranges of air injection, but further increases at higher ranges of air injection did not increase the rate of removal, indicating a threshold removal rate had been reached; (3) increased initial concentration of dissolved TCE resulted in similar rates of removal: and (4) the removal of pure-phase TCE was difficult using a low air-injection rate, but higher air-injection rates led to easier removal.  相似文献   

6.
Airborne surface-active organic substances can form adsorbed films at air-water and air-solid interfaces in the atmosphere. On the basis of considerable laboratory research, it has been suggested that these films can modify the microphysical processes of clouds and fog. The possible alterations of physical processes include retardation of the rate of growth and evaporation of water drops, passivation of cloud condensation nuclei, modification of drop coalescence efficiency, and the promotion of drop instability. The chemical structure of the film-forming compounds and the physical properties of the adsorbed films determine the degree to which the physical processes are modified. Upon consideration of the actual organic composition of the atmosphere, it was concluded that natural surface films will not greatly influence drop growth and evaporation. In addition, there is no definitive evidence from field experiments that other processes are influenced by natural organic films. The potential for useful weather modification through the intentional introduction of film-forming organic substances into the atmosphere was critically evaluated. Although numerous approaches have been suggested by laboratory studies, only the stabilization of airborne drops against evaporation has been unequivocally demonstrated in field experiments.  相似文献   

7.
《Advances in water resources》2007,30(6-7):1528-1546
A series of laboratory, field, and modeling studies were performed evaluating the potential for in situ aerobic cometabolism of chlorinated aliphatic hydrocarbon (CAH) mixtures, including 1,1,1-trichloroethane (1,1,1-TCA), 1,1-dichloroethane (1,1-DCA) and 1,1-dichloroethene (1,1-DCE) by bioaugmented microorganisms that grew on butane. A butane-grown bioaugmentation culture, primarily comprised of a Rhodococcus sp., was developed that effectively transformed mixtures of the three CAHs, under subsurface nutrient conditions. Microcosm experiments and modeling studies showed rapid transformation of 1,1-DCE with high transformation product toxicity and weak inhibition by butane, while 1,1,1-TCA was much more slowly transformed and strongly inhibited by butane. Field studies were conducted in the saturated zone at the Moffett Field In-Situ Test Facility in California. In the bioaugmented test leg, 1,1-DCE was most effectively transformed, followed by 1,1-DCA, and 1,1,1-TCA, consistent with the results from the laboratory studies. A 1-D reactive/transport code simulated the field responses during the early stages of testing (first 20 days), with the following extents of removal achieved at the first monitoring well; 1,1-DCE (∼97%), 1,1-DCA (∼77%), and 1,1,1-TCA (∼36%), with little or no CAH transformation observed beyond the first monitoring well. As time proceeded, decreased performance was observed. The modeling analysis indicated that this loss of performance may have been associated with 1,1-DCE transformation toxicity combined with the limited addition of butane as a growth substrate with longer pulse cycles. When shorter pulse cycles were reinitiated after 40 days of operation, 1,1-DCE transformation was restored and the following transformation extents were achieved; 1,1-DCE (∼94%), 1,1-DCA (∼8%), and 1,1,1-TCA (∼0%), with some CAH transformation occurring past the first monitoring well. Modeling analysis of this period indicated that the bioaugmented culture was likely not the dominant butane-utilizing microorganism present. This was consistent with observations in the indigenous leg during this period that showed effective butane utilization and the following extents of transformation: 1,1-DCE (∼86 %), 1,1-DCA (∼5%), and 1,1,1-TCA (∼0%). The combination of lab and field scale studies and supporting modeling provide a means of evaluating the performance of bioaugmentation and the cometabolic treatment of CAH mixtures.  相似文献   

8.
Both laboratory experiments and numerical modelling were conducted to study the biodegradation and transport of benzene–toluene–xylenes (BTX) in a simulated semi‐confined aquifer. The factors incorporated into the numerical model include advection, hydrodynamic dispersion, adsorption, and biodegradation. The various physico‐chemical parameters required by the numerical model were measured experimentally. In the experimental portion of the study, BTX compounds were introduced into the aquifer sand. After the contaminants had been transported through the system, BTX concentrations were measured at 12 equally spaced wells. Subsequently, microorganisms obtained from the activated sludge of a sewage treatment plant and cultured in BTX mixtures were introduced into the aquifer through the 12 sampling wells. The distribution data for BTX adsorption by the aquifer sand form a nonlinear isotherm. The degree of adsorption by the sand varies, depending on the composition of the solute. The degradation time, measured from the time since the bacteria were added to the aquifer until a specific contaminant was no longer detectable, was 35–42 h for BTX. The dissolved oxygen, after degradation by BTX compounds and bacteria, was consumed by about 40–60% in the entire simulated aquifer; thus the aerobic conditions were maintained. This study provides insights for the biodegradation and transport of BTX in aquifers by numerical modelling and laboratory experiments. Experimental and numerical comparisons indicate that the results by Monod degradation kinetics are more accurate than those by the first‐order degradation kinetics. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
Four state-of-the-art ground water sampling systems were analyzed to determine their reliability in providing representative samples of the volatile chlorinated hydrocarbons trichloroethylene (TCE), perchloroethylene (PCE), and 1,1,1-trichloroethane (TCA) from a simulated monitoring well. The sampling systems studied represent four commonly used devices, including a stainless steel and Teflon® piston pump, a Teflon bailer, a Teflon bladder pump, and a PVC air-lift pump.
Controlled laboratory sampling experiments were conducted in a tank and well test chamber designed to approximate field conditions. A well purging and sampling procedure was used in the test apparatus to determine the accuracy and precision of each device for detecting low concentrations of the compounds in ground water. The compounds selected are some of the most ubiquitous hazardous contaminants found in shallow aquifers near hazardous waste sites throughout the United States.
No significant statistical difference was found among the four sampling systems in detecting the compounds.  相似文献   

10.
The lignite coal researched by this study was subjected to a two‐stage activation process performed in the scope of obtaining active carbon from domestic resources. “Activation” and “carbonization” stages were used in the experiments. The modified lignite was produced by impregnating lignite with KOH and washing the activation product with 15% HCl solution after thermal treatment. Increasing KOH dosage also increased the removal efficiency. The variables investigated in adsorption experiments were contact time, initial concentration, pH, and sorbent dosage. Adsorption kinetics was fitted by using the pseudo‐first‐order equation, pseudo‐second‐order equation, and intra‐particle diffusion. Isotherm modeling was carried out using Langmuir, Freundlich, and Dubinin–Radushkevich equations. Selected target compound in this work is common environmental pollutant in waters. A commonly known effect of chloroform is its carcinogenic effect. Therefore, removal of these compounds from water is considerably important. Chloroform removal of 97% for was achieved by the use of Konya region activated lignite.  相似文献   

11.
Abstract

Field and laboratory evidence show natural degradation of toluene, ethylbenzene, m-, p- and o-xylenes, 1,3,5-trimethylbenzene and naphthalene in sulphate reducing groundwater conditions of the Bassendean Sands in the Perth basin, Western Australia. Natural degradation rates were obtained from a groundwater tracer test with deuterated organic compounds injected into a dissolved hydrocarbon plume, down-gradient of a leaking underground storage tank at an urban service station. These were compared with similar data obtained from modelling of the whole contaminant plume itself and also with data obtained from large-scale laboratory column experiments with groundwater spiked with BTEX compounds. Toluene degradation rate was 200 to 500 times higher in the anaerobic laboratory columns than in the field. Degradation rates in the tracer test compared well with model-derived field estimates.  相似文献   

12.
A study designed to evaluate ground water quality changes resulting from spreading oil-field brine on roads for ice and dust control was conducted using a gravel roadbed that received weekly applications of brine eight times during the winter phase and 11 times during the summer phase of the study. A network of 11 monitoring wells and five pressure-vacuum lysimeters was installed to obtain ground water and soil water samples. Thirteen sets of water- quality samples were collected and analyzed for major ions, trace metals, and volatile organic compounds. Two sets of samples were taken prior to brine spreading, four sets during winter-phase spreading, five sets during summer- phase spreading, and two sets during the interim between the winter and summer phases. A brine plume delineated by elevated specific-conductance values and elevated chloride concentrations developed downgradient of the roadbed during both the winter and summer phases. The brine plume caused chloride concentrations in ground water samples to exceed U.S. EPA public drinking-water standards by two-fold during the winter phase and five-fold during the summer phase. No other major ions, trace metals, or volatile organic compounds exceeded the standards during the winter or summer phases. More than 99 percent dilution of the solutes in the brine occurred between the roadbed surface and the local ground water flow system. Further attenuation of calcium, sodium, potassium, and strontium resulted from adsorption, whereas further attenuation of benzene resulted from volatilization and adsorption.  相似文献   

13.
Estimating overland flow erosion capacity using unit stream power   总被引:2,自引:0,他引:2  
Soil erosion caused by water flow is a complex problem. Both empirical and physically based approaches were used for the estimation of surface erosion rates. Their applications are mainly limited to experimental areas or laboratory studies. The maximum sediment concentration overland flow can carry is not considered in most of the existing surface erosion models. The lack of erosion capacity limitation may cause over estimations of sediment concentration. A correlation analysis is used in this study to determine significant factors that impact surface erosion capacity. The result shows that the unit stream power is the most dominant factor for overland flow erosion which is consistent with experimental data. A bounded regression formula is used to reflect the limits that sediment concentration cannot be less than zero nor greater than a maximum value. The coefficients used in the model are calibrated using published laboratory data. The computed results agree with laboratory data very well. A one dimensional overland flow diffusive wave model is used in conjunction with the developed soil erosion equation to simulate field experimental results. This study concludes that the non-linear regression method using unit stream power as the dominant factor performs well for estimating overland flow erosion capacity.  相似文献   

14.
Open water disposal of muddy sediments in the estuarine environment is practiced to minimize dredging costs and to preserve contained disposal site capacity. Open water sites are usually either dispersive or retentive. Dispersive sites are used in the expectation that disposed sediments will not remain there, but will be transported out of the site, leaving room for additional disposal. Retentive sites are designed to ensure that disposed sediments mostly remain within the site. Choice of one of these approaches depends on the site character, sediment character, and disposal quantities. Design of disposal management plans for both site types is accomplished by use of field observations, laboratory tests, and numerical modeling.Three disposal site studies illustrate the methods used. At the Alcatraz site in San Francisco Bay, a dispersive condition is maintained by use of constraints on dredged mud characteristics that were developed from laboratory tests on erosion rates and from numerical modeling of the dump process. Field experiments were designed to evaluate the management procedure. In Corpus Christi Bay a numerical model was used to determine how much disposed sediment returns to the navigation channel, and to devise a location for disposal that will minimize that return. In Puget Sound a model has been used to ensure that most of the disposed material remains in the site. New techniques, including a piped disposal through 60 m of water, were investigated.  相似文献   

15.
The extent of natural attenuation is an important consideration in determining the most appropriate corrective action at sites where ground water quality has been impacted by releases of petroleum hydrocarbons or other chemicals. The objective of this study was to develop a practical approach that would evaluate natural attenuation based on easily obtained field data and field tested indicators of natural attenuation. The primary indicators that can he used to evaluate natural attenuation include plume characteristics and dissolved oxygen levels in ground water. Case studies of actual field sites show that plumes migrate more slowly than expected, reach a steady state, and decrease in extent and concentration when natural attenuation is occurring. Background dissolved oxygen levels greater than 1 to 2 mg/L and an inverse correlation between dissolved oxygen and contaminant levels have been identified through laboratory and field studies as key indicators of aerobic biodegradation. an important attenuation mechanism. Secondary indicators such as geochemical data, and more intensive methods such as contaminant mass balances, laboratory microcosm studies, and detailed ground water modeling can demonstrate natural attenuation as well. The recommended approach for evaluating natural attenuation is to design site assessment activities so that required data such as dissolved oxygen levels and historical plume flow path concentrations are obtained. With the necessary data, the primary indicators should be applied to evaluate natural attenuation. II the initial evaluation suggests that natural attenuation is a viable corrective action alternative, then a monitoring plan should be implemented to verify the extent of natural attenuation.  相似文献   

16.
The results of laboratory modelling of microbiological removal of soluble compounds of Fe, Mn, and other heavy metals (Al, Cr, Zn, Co, Cu, Pb, Cd) with the use of a laboratory bioreactor. The results have shown that the main method of optimization of conditions facilitating the removal of dissolved metal compounds from drinking water consisted in creating and maintaining an oxygen aeration regime favorable for bacterial oxidation processes and, which is especially important, in preventing stagnancy in the sand filter of bioreactor during its shutoff. The latter was accompanied by an acceleration of bacterial reduction processes of precipitated heavy metals, resulting in their dissolution, hence secondary water pollution.  相似文献   

17.
Bank filtration and artificial ground water recharge are important, effective, and cheap techniques for surface water treatment and removal of microbes, as well as inorganic, and some organic, contaminants. Nevertheless, physical, chemical, and biological processes of the removal of impurities are not understood sufficiently. A research project titled Natural and Artificial Systems for Recharge and Infiltration attempts to provide more clarity in the processes affecting the removal of these contaminants. The project focuses on the fate and transport of selected emerging contaminants during bank filtration at two transects in Berlin, Germany. Several detections of pharmaceutically active compounds (PhACs) in ground water samples from bank filtration sites in Germany led to furthering research on the removal of these compounds during bank filtration. In this study, six PhACs including the analgesic drugs diclofenac and propyphenazone, the antiepileptic drugs carbamazepine and primidone, and the drug metabolites clofibric acid and 1-acetyl-1-methyl-2-dimethyl-oxamoyl-2-phenylhydrazide were found to leach from the contaminated streams and lakes into the ground water. These compounds were also detected at low concentrations in receiving public supply wells. Bank filtration either decreased the concentrations by dilution (e.g., for carbamazepine and primidone) and partial removal (e.g., for diclofenac), or totally removed PhACs (e.g., bezafibrate, indomethacine, antibiotics, and estrogens). Several PhACs, such as carbamazepine and especially primidone, were readily transported during bank filtration. They are thought to be good indicators for evaluating whether surface water is impacted by contamination from municipal sewage effluent or whether contamination associated with sewage effluent can be transported into ground water at ground water recharge sites.  相似文献   

18.
This study investigated the removal of two model pharmaceutically active compounds (PhAcs), viz., ibuprofen and triclosan, in lab‐scale engineered floodplain filtration (EFF) system. Biodegradation experiments were performed to acquire knowledge about the degradation of the targeted PhAcs, at an initial concentration of 350 µg/L. Biodegradation results showed that the two compounds were bio‐transformed to >70% after 15 days of incubation. Column tests were performed in a statistically significant manner to determine the adsorptive potential of the suggested filler layer in the EFF (C/C0), by varying the flow rate and initial concentration of the compound. It was observed based on the F and p‐values that the main effects (F = 3163, p < 0.005) were more significant than the interactive effects (F = 9561, p < 0.05) for both ibuprofen and triclosan removal. Besides, by performing the Student's “t” test, it was concluded that the flow rate plays a major role in determining the rapidness of achieving complete breakthrough than the initial concentration of both the compounds. The data obtained from column studies under biotic conditions indicated that the removal mechanism for PhAcs is mainly biotransformation based, and that an EFF system may be effectively used to remove these emerging compounds during ground water recharge for water recycling.  相似文献   

19.
Oxygen probes developed to measure in situ oxygen concentrations in gaseous and aqueous environments were evaluated in laboratory tests and during long-term field evaluation trials at contaminated sites. The oxygen probes were shown to have a linear calibration and to be accurate compared to conventional dissolved oxygen electrodes and gas chromatography, both of which require labor-intensive sample collection and processing. The probes, once calibrated, required no maintenance or recalibration for up to a period of 7 years in low-oxygen environments, demonstrating long-term stability. Times to achieve 90% of the stabilized concentration ( t 90) after a step change in aqueous oxygen concentration were 100–120 min in laboratory experiments and up to 180 min in field experiments, which is adequate for monitoring subsurface changes. Field application data demonstrated that the oxygen probes could monitor oxygen concentrations in hydrocarbon-contaminated ground water to a depth of 20 m below the water table or in pyritic vadose zones over extended periods. During bioremediation field trials, oxygen monitoring enabled estimation of oxygen utilization rates by microorganisms and hydrocarbon biodegradation rates. Also, probes were able to monitor the development of ground water desaturation during air sparging trials, enabling the automated assessment of the distribution of injected air.  相似文献   

20.
The decrease in Aral Sea area, which started in the 1960s, caused considerable changes in the hydrological, chemical, and biological structure of sea water. Regular observations of Aral water chemistry ceased in the early 1990s. There were no observations of the concentrations of biogenic element compounds in water (the so-called “first-day analyses”). During expeditions of the Institute of Oceanology, RAS, in September 2012 and October 2013, integrated hydrochemical observations were carried out, including measuring the concentrations of biogenic element compounds, dissolved oxygen, hydrogen sulfide, and carbonate equilibrium components. An objective of this study was to develop methods of hydrochemical studies under high water salinity (mineralization). In addition to the standard hydrochemical complex, water samples were taken to determine total water mineralization and the concentration of dissolved and suspended metal forms. The results of these studies are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号