首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The main semidiurnal (M2 and S2) and diurnal (K1 and O1) tidal constituents are simulated in the Persian Gulf (PG). The topography is discretized on a spherical grid with a resolution of 30 s in both latitude and longitude. It includes coastal areas prone to flooding. The model permits flooding of drying banks up to 5 m above mean sea level. At the open boundary, it is forced by 13 harmonic constituents extracted from a global tidal model. The model results are in good agreement with tide gauge observations. Co-tidal charts and flow extremes are presented for each tidal constituent. The co-tidal charts show two amphidromic points for semidiurnal and one for diurnal tidal constituents. Maximum amplitudes of sea level are obtained for the north-western part of the PG, where coastal flooding prevails in wide areas. Strong tidal currents occur in different parts of the PG for different types of constituents. Maximum velocities are found in shallow regions. Particularly, high amplitudes of elevations and high speed currents are founded in the canal between Qeshm Island and the mainland. Rectification of tides around Qeshm Island affects the propagation of tides in the PG as far as the coast of Saudi Arabia and the northern part of the PG.  相似文献   

2.
Observations of current velocity profiles and hydrography over and near a tall sill in a Chilean glacial fjord are used to illustrate the interactions between barotropic and baroclinic tides. The character of the barotropic tide in the glacial fjord is mixed with semidiurnal dominance. The ratio of sill height to water column depth at the study site is ca. 0.95. Water column stratification appeared only in the upper 5 m of the water column. Current velocity variations in the stratified surface layer were quite different to those underneath. Below the pycnocline, nonlinear interactions between semidiurnal M2 and diurnal K1 oscillations yielded a third-diurnal distortion MK3. Most interesting, surface layer currents were distortedby the superposition of semidiurnal M2 and sixthdiurnal M6 oscillations. The oscillations with M6 variability were identified, through wave superposition approaches, as reflected internal tides linked to M2 tidal variations. This was confirmed by theoretical results of stratified barotropic tidal flows interacting with abrupt bathymetry. Under the predominantly tidally mixed regime of the study area, the distortion to surface currents caused by the reflected wave was nearly symmetric during the large tidal ranges of the diurnal cycle. Nearly symmetric distortions resulted as the phase lag between incident and reflected wave-inducted currents was small (reflected currents developing a few minutes after maximum tidal flows). During the small ranges of the diurnal cycle, distortions were asymmetrical because of the relatively larger phase lags of the reflected signal (reflected currents developing tens of minutes after maximum tidal flows).  相似文献   

3.
Although surface water quality and its underlying processes vary over time scales ranging from seconds to decades, they have historically been studied at the lower (weekly to interannual) frequencies. The aim of this study was to investigate intradaily variability of three water quality parameters in a small freshwater tidal lagoon (Mildred Island, California). High frequency time series of specific conductivity, water temperature, and chlorophylla at two locations within the habitat were analyzed in conjunction with supporting hydrodynamic, meteorological, biological, and spatial mapping data. All three constituents exhibited large amplitude intradaily (e.g., semidiurnal tidal and diurnal) oscillations, and periodicity varied across constituents, space, and time. Like other tidal embayments, this habitat is influenced by several processes with distinct periodicities including physical controls, such as tides, solar radiation, and wind, and biological controls, such as photosynthesis, growth, and grazing. A scaling approach was developed to estimate individual process contributions to the observed variability. Scaling results were generally consistent with observations and together with detailed examination of time series and time derivatives, revealed specific mechanisms underlying the observed periodicities, including interactions between the tidal variability, heating, wind, and biology. The implications for monitoring were illustrated through subsampling of the data set. This exercise demonstrated how quantities needed by scientists and managers (e.g., mean or extreme concentrations) may be misrepresented by low frequency data and how short-duration high frequency measurements can aid in the design and interpretation of temporally coarser sampling programs. The dispersive export of chlorophylla from the habitat exhibited a fortnightly variability corresponding to the modulation of semidiurnal tidal currents with the diurnal cycle of phytoplankton variability, demonstrating how high frequency interactions can govern long-term trends. Process identification, as through the scaling analysis here, can help us anticipate changes in system behavior and adapt our own interactions with the system.  相似文献   

4.
The Kochi Backwater (KB) is the second largest wetland system in India. It is connected to the sea at Fort Kochi and Munambam (Pallipuram) (30 km north of Kochi). As the tide is forced through two openings, its propagation in the backwater system is very complicated, particularly in the northern arm of the estuary. Using synchronous water level (WL) and current measurements in the KB from a network of stations during 2007–2008, it was convenient to demarcate the northern KB into two distinct regions according to the tidal forcing from the north (Pallipuram) and south (Vallarpadam). This demarcation is useful for computing the propagation speeds of the dominant tidal constituents in the northern branch of the KB with dual opening for opposing tides. WL variations indicated that M2 tide (Principal lunar semidiurnal constituent) dominated in the sea level variance, followed by the K1 constituent (Luni-solar declinational diurnal constituent). The M2 tidal influence was the strongest near the mouth and decayed in the upstream direction. The propagation speed of the M2 tide in the southern estuary was ~3.14 m/s. The ratio of the total annual runoff to the estuarine volume is ~42 that indicates the estuary will be flushed 42 times in a year. KB can be classified as a monsoonal estuary where the river discharge exhibits large seasonal variation.  相似文献   

5.
Tidal choking and bed friction in Negombo Lagoon,Sri Lanka   总被引:1,自引:0,他引:1  
We have studied bed friction and water exchange in a small, almost enclosed, shallow lagoon in Sri Lanka, where both tides and freshwater supply are important for the circulation. Because of the narrow entrance, the lagoon is strongly choked for semidiurnal tidal forcing (the choking coefficient is 0.25). A set of tide gauges positioned on each side of the entrance channel was used to calculate bed friction. Measurements made over three short periods having different freshwater supply to the lagoon indicate an average friction (drag) coefficient CD=0.0041±0.0002 (using a quadratic friction law). A comparison between observed and calculated velocities in the channel for a variety of velocities, indicates that the quadratic friction law is a good tool for parameterization. High freshwater supply increases the lagoonal sea level substantially and decreases the residence time.  相似文献   

6.
7.
海潮引起滨海含水层地下水位变化的初步研究   总被引:6,自引:0,他引:6  
依据短序列和长序列的潮汐效应观测数据,分析了北海地区海潮引起滨海含水层地下水位变化的动态特征.结果表明,受海潮影响的滨海含水层地下水位与海潮有相似的波动特征,但变幅减小,受海潮的影响程度与观测点离海岸的距离有关,随着离海岸距离的增加地下水位的变幅和潮汐系数大致呈负指数减小.在南、北海岸距离海岸分别达3756m和2276m以远时地下水位不受海潮变化的影响.长序列的观测资料显示,海潮和岸边地下水位有15天的长周期和1天的短周期的波动.  相似文献   

8.
High frequency sea level oscillations at Wells Harbor (Maine, Northeastern US), with periods in the range of several tens of minutes, display a tidally modulated response. During low tides, these sea level oscillations reach amplitudes of 10–20 cm, while during high tides they are significantly smaller. Wells Harbor is located in a low lying area with a tidal range of about 2 m and is connected to the open ocean through a narrow channel. Thus, the extent and depth of the bay significantly vary over a tidal cycle. This changing geometry determines both the resonant periods and the amplification factor of the bay. Numerical results confirm the link between observed variability and these specific topographic features. Results imply that when exceptionally energetic long waves reach the Wells Harbor entrance (as in the case of a tsunami or meteotsunami) the expected response will be significantly stronger during low tide than during high tide. Although mean sea level would be lower in the former case, the currents inside the bay would be stronger and potentially more dangerous. This tidally modulated response could be extrapolated to other sites with similar topographic characteristics.  相似文献   

9.
Estuarine species with wide geographic distributions often experience tidal regimes that vary significantly throughout their range. Plasticity in behaviors associated with the tide is expected to enable synchronization with local tides. The American horseshoe crabLimulus polyphemus typically inhabits estuaries and coastal areas with pronounced semi-diurnal tides that play a role in synchronizing the timing of spawning and larval hatching, but also lives in areas that lack significant tides and associated synchronization cues. We investigated the spatial and temporal pattern of adult spawning and larval hatching ofL. polyphemus in a microtidal coastal lagoon (Indian River Lagoon, Florida, USA). Spawning activity and larval abundance were monitored weekly February 1998–August 2000 at sites spanning 100 km of the lagoon. To identify possible synchronization cues for spawning and hatching success, the presence of adult and larvalL. polyphemus were related to environmental and hydrologic variables using logistic regression. The presence of spawning adults varied significantly among the sub-basins of the lagoon, with the highest densities occurring in the Banana River. Large spawning aggregations were not observed and densities never exceeded 6 m−2. Spawning occurred year-round but varied seasonally with episodes of increased mating activity in the early spring. The occurrence of mating pairs was episodic and was not synchronized among sites. Larval densities were low (4 m−3) and larvae were present at only 12 of the 21 sites. Hatching success was decoupled temporally from spawning activity, with peaks in larval abundance occurring approximately 8 wk after peaks in spawning. Larval abundance was associated with periods of high water. Reproductive activity of horseshoe crabs in the lagoon differs significantly from populations inhabiting areas with semi-diurnal and diurnal tides. These differences are likely due to the lack of periodic tidally-related synchronization cues and regular beach inundation.  相似文献   

10.
When gravity survey accuracies of a few microgals are sought, many correction factors must be accounted for, including meter calibration constants, water-table level fluctations, solid-earth tides, ocean tides and in some cases rapid atmospheric fluctuations. Calculation of most of these correction factors is relatively straightforward. However, the effects of ocean tide loading are not as easily estimated, partly due to the lack of knowledge of the ocean tides themselves. Amplitude and phase factors for the better-known ocean tide components O1 and M2 have been theoretically computed for a grid in southern California in order to correct gravity survey data at arbitrary locations for these ocean tidal-loading components. The gravity data from a three-month period were recorded on a tidal gravimeter at the station PAS and then hand-digitized in order to test the ocean tide estimation program. The O1 and M2 ocean tidal components were effectively reduced to less than 0.5 μGal. The remaining high-frequency tidal components appear to be K1 and S2. If the ocean tides are not taken into account, as much as 16–20 μGal of error can occur solely due to the effect of ocean loading on the gravitational tides when comparing two surveys near Pasadena. The effect increases towards the coastline and decreases inland. Examples of reduced data from the CIT gravity survey network, which has been observed on an approximately monthly basis since 1974, will be shown.  相似文献   

11.
The flushing of Florida’s Indian River Lagoon is investigated as a response to tidal and low-frequency lagoon-shelf exchanges in the presence of freshwater gains and losses. A one-dimensional computer model uses the continuity equation to convert water-level variations into both advective transport within the lagoon and lagoon-shelf exchanges. The model also incorporates transport by longitudinal diffusion. Flushing is quantified by calculating the 50% renewal time, R50, for each of 16 segments. R50 is calculated for tidal exchanges enhanced by 0–30 cm nontidal fluctuations in coastal sea level, then for a range of rainfall rates. In both series of simulations, results suggest that in the northern sub-basin, R50 increases dramatically with distance from the inlet due to relatively weak tidal and nontidal exchanges. A 50% renewal occurs in about one tidal cycle just inside Sebastian Inlet; at the northern end of the northern sub-basin, R50 is over 230 d, and only coastal sea-level variations on the order of 30 cm and/or dry season rainfall rates decrease R50 to less than 1 yr. R50 is 1 wk or less throughout the central and southern sub-basins, where lagoon-shelf exchanges occur through two inlets. Simulations involving seasonal variations in precipitation and evaporation indicate that maximum and minimum rates of freshwater input lead minimum and maximum salinities by time periods on the order of 2–3 wk for the lagoon as a whole and in the northern sub-basin. The central and southern sub-basins respond in 1–2 wk.  相似文献   

12.
Sea level measurements along the southeastern Brazilian coast, between 20° S and 30° S, show the effect of the Sumatra Tsunami of December 26, 2004. Two records from stations, one located inside an estuary and other inside a bay, shows oscillations of about 0.20 m range; one additional record from a station facing the open sea shows up to 1.2 m range oscillations. These oscillations have around 45 min period, starting 20–22 h after the Sumatra earthquake in the Indian Ocean (00:59 UTC) and lasting for 2 days. A computer modelling of the event reproduces the time of arrival of long shallow-water tsunami waves at the southeastern Brazilian coast but with slight longer period and amplitudes smaller than observed at the coast, probably due to its coarse resolution (1/4 of a degree). The high amplitudes observed at the coast suggest a mechanism of amplification of these waves over the southeastern Brazilian shelf.  相似文献   

13.
Numerical celestial-mechanical models are used to compare (andg interpolate and forecast) near-diurnal tidal variations in the Earth’s axial rotation and oscillations in the global angular momentum of the atmosphere using the IERS data and NCEP/NCAR meteorological data. In order to improve the accuracy of interpolations and forecasts made for short and intraday time intervals, it is expedient to include the effect of small perturbations in short-term zonal tides, which influence fluctuations in Universal Time UT1 directly related to the Earth’s rotation. Due to the quasi-static formulation of the problem, it is assumed that the dynamics of the thin surface atmosphere are completely determined by the gradient of the tide-generating geopotential, which supports forced oscillations of the entire subsystem (i.e., of the mantle and atmospheric envelope). A comparison of the numerical simulations with the NCEP/NCAR data shows that the model is effective for applications in forecasting atmospheric tides.  相似文献   

14.
周期性潮积岩及其研究意义   总被引:2,自引:0,他引:2  
回顾了最近十余年来国外对周期性潮汐沉积物,特别是潮汐韵律层的研究进展,系统介绍了几种从古代沉积物中识别出来的潮汐周期,包括基本潮汐(半日潮,全日潮和混合潮),大一小潮周期以及一些长周期波动等。最后,对潮汐韵律层在推测地史时期地-月系的演化历史及计算短期沉积速率中的意义作了评述。  相似文献   

15.
An active oolitic sand wave was monitored for a period of 37 days in order to address the relationship between the direction and strength of tidal currents and the resultant geometry, and amount and direction of migration of bedforms in carbonate sands. The study area is situated in a tidal channel near Lee Stocking Island (Exumas, Bahamas) containing an estimated 5.5 to 6 × 105 m3 of mobile oolitic sand. Tidal ranges within the inlet are microtidal and the maximum current velocity at the studied site is 0.6 m s?1. At least 300–400 m3 of mostly oolitic sand are formed within, or brought into, the channel area every year. The tidal inlet is subdivided into an ocean-orientated segment, in which sand waves are shaped by both flood and ebb tides, and a platform-orientated segment, where sand waves are mainly shaped by flood tides. The studied sand wave lies on the platformward flood-tide dominated segment in a water depth of 3.5.4.5 m. During the 37 days of observation, the oolitic and bioclastic sand wave migrated 4 m in the direction of the dominant flood current. The increments of migration were directly related to the strength of the tide. During each tidal cycle, bedforms formed depending on the strength of the tidal current, tidal range and their location on the sand wave. During flood tides, a steep lee and a gentle stoss side formed and current ripples and small dunes developed on the crest of the sand wave, while the trough developed only ripples. The average lee slope of the sand wave is 24.2°, and therefore steeper than typical siliciclastic sand waves. During ebb tides, portions of the crest are eroded creating a convex upward ebb stoss side, covered with climbing cuspate and linguoid ripples and composite dunes. The area between the ebb-lee side and the trough is covered with fan systems, sinuous ripples and dunes. The migration of all bedforms deviated to a variable degree from the main current direction, reflecting complex flow patterns in the tidal inlet. Small bedforms displayed the largest deviation, migrating at an angle of up to 90° and more to the dominant current direction during spring tides.  相似文献   

16.
A two-dimensional, vertically integrated, nonlinear numerical model was applied to investigate the tide-driven bed load transport of sediments and morphodynamics in the shallow coastal lagoon of Yavaros, located in the southeastern part of the Gulf of California, Mexico. Satellite imagery exposes strong sediment dynamics in this coastal region. The dynamics in the lagoon were forced by 13 tidal constituents at the open boundary. Tides are of a mixed character and they are predominantly semidiurnal. The calculations showed areas of intense tidal currents and considerable water exchange with the Gulf of California. Numerical experiments revealed an ebb-dominant tidal distortion and a net export of sediment from the lagoon to the Gulf of California. A simulation of 20 years showed that the lagoon exported about 1,600 m3 of sediment; however, the daily oscillating exchange of sediment reached values of around 8 m3. The daily averaged flux of export–import sediments oscillates principally with semiannual, monthly and fortnightly periods. By applying a threshold velocity, a variable friction coefficient and the calculated amplitude of tidal velocities, it was possible to determine that morphological changes occur in zones of sharp topographic gradients and to explain the effect of friction on the export–import process of sediments. A 10-year simulation revealed that accumulation of sediment (~20 cm) occurred in small areas, whereas erosion occurred in larger areas but with less intensity (~8 cm). Besides the importance for the morphodynamics, these kinds of erosion–accretion processes may be relevant for the marine ecology.  相似文献   

17.
The delivery, flux and fate of terrigenous sediment entering the Great Barrier Reef lagoon has been a focus of recent studies and represents an ongoing environmental concern. Wave‐induced bed stress is the most significant mechanism of sediment resuspension in the Great Barrier Reef, and field data and mathematical modelling indicates that the combined effects of short‐period wind waves, longer period swell waves, and tidal and wind‐driven currents can often exceed the critical bed stress for resuspension. Suspended‐sediment concentrations at 20 m water depth indicate resuspension seldom occurs on the middle shelf under normal wave conditions. Non‐cyclonic turbidity events are generally confined to the inner shelf. The wave climate in the southern sector of the central Great Barrier Reef lagoon is the most erosive, and resuspension of outer shelf sediments was hindcast for recorded cyclones. Wind‐driven, longshore currents are fundamental to the northward movement of sediment, and the annual northward mass flux from embayments undergoing resuspension in the Burdekin region is estimated to be one order of magnitude larger than the mass of sediment introduced by a moderate flood plume. Strong onshore winds are estimated to generate significant three‐dimensional bottom return currents on approximately 30–70 days per year, forming a potentially significant offshore‐directed sediment flux during high suspended‐sediment concentration events on the inner shelf.  相似文献   

18.
The arrangement of sediment couplets preserved in Thalassinoides shafts suggests that tides regulated the passive filling of these trace fossils and, thus, represent tubular tidalites. The thickness variation in individual layers and couplets implies a mixed diurnal, semi‐diurnal tidal signature where packages of either thick‐layered or thin‐layered couplets alternate. Calcarenitic sediment accumulated when tidal current velocity was too high to allow deposition of mud, whereas a marly mud layer is interpreted to have formed during more tranquil times of a tidal cycle (in particular, low‐tide slack water). The tidal record within the burrows covers a few weeks and the corresponding spring–neap cycles. The fill of the Thalassinoides shafts is the only known record to decipher the tidal signature from otherwise totally bioturbated sediments. These deposits accumulated in a lower‐shoreface to upper‐offshore setting during the late Miocene on a shallow shelf extending from the Atlantic Ocean to the west into northern Patagonia. The fill of all investigated burrows started around spring tide and, thus, the behaviour of the burrow producers – probably crustaceans – is speculated to have been affected by tides or the high water level because all studied burrows became abandoned around the same period of a tidal cycle.  相似文献   

19.
Sea water intrusion is an environmental problem cause by the irrational exploitation of coastal groundwater resources and has attracted the attention of many coastal countries. In this study, we used time series monitoring data of groundwater levels and tidal waves to analyze the influence of tide flow on groundwater dynamics in the southern Laizhou Bay. The auto-correlation and cross-correlation coefficients between groundwater level and tidal wave level were calculated specifically to measure the boundary conditions along the coastline. In addition, spectrum analysis was employed to assess the periodicity and hysteresis of various tide and groundwater level fluctuations. The results of time series analysis show that groundwater level fluctuation is noticeably influenced by tides, but the influence is limited to a certain distance and cannot reach the saltwater-freshwater interface in the southern Laizhou Bay. There are three main periodic components of groundwater level in tidal effect range (i.e. 23.804 h, 12.500 h and 12.046 h), the pattern of which is the same as the tides. The affected groundwater level fluctuations lag behind the tides. The dynamic analysis of groundwater indicates that the coastal aquifer has a hydraulic connection with seawater but not in a direct way. Owing to the existence of the groundwater mound between the salty groundwater (brine) and fresh groundwater, the maximum influencing distance of the tide on the groundwater is 8.85 km. Considering that the fresh-saline groundwater interface is about 30 km away from the coastline, modern seawater has a limited contribution to sea-salt water intrusion in Laizhou Bay. The results of this study are expected to provide a reference for the study on sea water intrusion.  相似文献   

20.
Sea level variability in Long Island Sound is examined at both tidal and subtidal frequencies over a 1-yr period. The sound is found to be decoupled effectively from the lower Hudson Estuary at tidal frequencies. The predominantly semidiurnal tides in the sound are forced by the oceanic tides transmitted from the mouth. There is a near fourfold amplification of the semi-diurnal tides within the sound due to resonance. Diurnal tides are much weaker in the sound, and there is also no evidence of significant amplification in the interior. At subtidal frequencies, the pressure-adjusted sea level in the interior of the sound is forced by a combination of co-oscillation with coastal sea level at the mouth and direct setup induced by local wind forcing over the surface of the sound. Because the longitudinal axis of Long Island Sound is roughly aligned with the open coast from Montauk Point to Sandy Hook, these two mechanisms work in concert to produce larger subtidal sea level fluctuations in the western sound relative to those in the eastern sound. A linearized, frequency-dependent analytical model is developed to aid the interpretation of field observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号