首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
??????????????Χ??GPS??????????????з?????????t???????λ?????????α?????50 km??Χ????GPS????α???????????????????70 mm????????????30 s???????λ??????????????????α????????λ???????????У???С?????о???????????????29 km????????λ???21 mm????????150 km???λ???1??2 mm????GPS???????α????????????????????????????????????????????λ?????и???20 km????????廬?????0.6 m??GPS????????α??о????????????????????????????????ε?????????????????  相似文献   

2.
?????й????GPS?????????и???IGS???????о???2004??12??26????????????9.0?????????GPS??????????λ?????????ι???????E????λ?????г????????????????ж?????????????GPS??????????????????????λ????????????????????????????????????????????????????д??????Э?????????????????????????á????3 000km??????????????????λ??????λ????????????????л?????????????????????????????????????????????????????????????????????Щ??λλ?????????????????????????????  相似文献   

3.
????STK?????COMPASS??GPS??GLONASS?????в???????????棬???й????????????????????PDOP??????λ??????з????????????????????????λ?????????UERE???????£????????????????λ?????5??6 m??PDOP???0.8??0.9??????????????????????????????????????????????μ?PDOP????????λ?????????????????????  相似文献   

4.
??GPS???μ???У???????????·??Ч????????????????ν??????λ??????г????д??????????ν????????????λ??????????λ?????????????????λ????????????????????????GPS?????λ?е?????λ???ξ????????????????????????Kalman?????????к????????????y????????????RPDOP??????Kalman??????и???????Ч????  相似文献   

5.
???????????????С??????????????????????????????????????????????????????????????????????????????????GPS?????λ????????е?С????????????????????????????????????????????????????????????GPS?????λ??0.5???С??С???????÷??????????????????????Ч??????????????????????  相似文献   

6.
??CHAMP?????GPS????????????????GPS??????????????????λ??????????????Ч???GPS?????伸?η??????????????????????????????????????????????GPS???????С????LEO????????????????????????????????????????????仯??С???1~2 cm????????????????????????????GPS??????????????????5 ns??  相似文献   

7.
????4?????е?????????????????????????Okada?????????λ???????????????λ???????????????????????λ?????????????????GPS???λ??????ж??????????????????????????????о????????????λ?????????λ??????????????????????????????????????????????????λ?????????λ?????GPS????????????????????в?????Δv-?0.007 m???в?Э????????tr??Σ???0.006 m????????????????????????λ??????????????????????????????S2A??=7.170 16 m??2????S2B=91.407 7 m??2???????????λ???????????????????????????????????????????????????????????????????????????λ?????????????????????  相似文献   

8.
����GPS��InSAR����ͬ��ر���άλ�Ƴ�   总被引:1,自引:0,他引:1  
???GPS???λ????InSAR??LOS?α???????????GPS??λ?????LOS????????GPS??????LOS??λ????????Delaunay???????????????????????壬??InSAR??LOS?α??????о?????????????????????λ??????????GPS???????????????????????????????λ?????????Χ???????????????????????????????λ???????????????????????InSAR??LOSλ?????????????????????????????????????????????α????????????????????????á?  相似文献   

9.
??????GPSα?????λ???????????辡??????????????????????????????????????????λ?????????λ???α???????????????????????????????????????????????????????????????????????????????GPS??????????б??????????????λ???α???С??α????????????????λ????????????????????????????????????????????λ??????????  相似文献   

10.
???t??????λ???????ó??????Mw 9.0??????8??GPS????????????С?????????GPS?ο?????????α??????????????????Σ????????λ???5.9 m???????????λ???1.8 m????λ?????峯?????з???????????ο??????????????????????????λ?ü?S??????????  相似文献   

11.
RTK-GPS�����������񶯵Ķ�Ƶ�ʳɷַ���   总被引:2,自引:1,他引:1  
???????RTK-GPS(????????λ??)???????????????????????????????????????????????????????RTK-GPS???????????????????????????????????????????????????????????е??  相似文献   

12.
һ���������������·�����   总被引:1,自引:0,他引:1  
?÷???????????????????????Щ????о???????????????????????·,????Χ0??360????????????????·?????????????????????·??????????????????????侫????2.8??????????????  相似文献   

13.
���μ����Kalman�˲�״̬ģ�͵ıȽϷ���   总被引:2,自引:0,他引:2  
??????λ??????μ???У?Kalman?????????????????????????????????????????????????Щ??????????????????????????????????????????????????????Щ????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????У????????????Kalman?????????????????????????????????μ??????е??????  相似文献   

14.
轨迹分类是以训练轨迹的特征来预测未知轨迹的类标签,可进行可疑车辆识别、非法渔船检测和交通模式检测等重要应用。当前大多数轨迹分类方法只考虑速度和加速度这2个运动参数,且只利用简单的统计量(如均值、中值、最大值),不能充分挖掘轨迹的潜在特点,导致分类精度不高。针对该问题,本文在总结相关文献的基础上,提出一种基于移动对象运动特征的轨迹分类方法。针对速度、加速度、曲率、方向和转角这5个运动参数,利用偏度系数、峰度系数、变异系数和时间序列分析其中的自相关系数等,提取有区分力的全局运动特征;并从分割后的子轨迹中提取局部运动特征。对于方向和转角,引入方向统计学对其运动特征进行精确计算。实验表明本方法在船舶、野生动物和飓风数据集的分类精度达到了100%、80%和71.43%,实验验证了本方法构建的运动特征,在不同数据集下有效可行。  相似文献   

15.
针对少量稳定水准点无法建立区域地壳垂直运动模型的问题,提出一种利用GNSS与水准融合建立区域地壳垂直运动模型的方法。首先利用稳定水准点、GPS点初步建立区域地壳垂直运动模型;再根据各个水准点、GPS点的模型结果与实际结果的差异,选取区域地壳垂直运动建模所用点;最后利用函数模型拟合区域地壳垂直运动模型。以山东及周边一等水准网以及CORS数据为例进行计算,证明该方法能够克服因水准点数量不足而无法建立模型的弊端,并提高区域地壳垂直运动模型的精度。  相似文献   

16.
借鉴选权拟合思想,对区域地壳运动的整体旋转和线性应变模型中欧拉矢量部分附加不等式约束,将区域地壳运动的欧拉参数约束到由多年观测资料确定的平均欧拉参数值附近,建立附有不等式约束的整体旋转和线性应变模型。对中国大陆构造环境监测网络在环渤海区域的近几期GPS观测速度场数据进行拟合分析,结果表明,本文方法通过不等式约束可适当增强块体整体运动趋势的平滑性,获得对速度场更高的拟合精度,可进一步增强模型的物理解释能力。  相似文献   

17.
推导了测站分布对定轨精度影响的公式,提出一种兼顾测站数量、观测数据质量以及测站地理分布的测站选取策略。利用IGS和iGMAS全球观测网数据,设计了3种不同的测站分布方案,进行GPS精密定轨实验。结果表明,使用30个全球均匀分布的测站,GPS三维定轨精度能达到6.0 cm左右|使用40个全球均匀分布的测站,GPS三维定轨精度能达到3.5 cm的水平|使用50个全球均匀分布的测站,GPS三维定轨精度能达到2.8 cm以内|超过50个的测站对GPS定轨精度提高基本上没有贡献。  相似文献   

18.
Infrasonic waves(frequency ≤ 20 Hz) are generated during the formation and movement of debris flows, traveling in air with a speed far higher than that of the debris-flow movement. Infrasound monitoring and localization of infrasonic waves can serve as warning properties for debris-flows. Based on the characteristics of infrasonic signals, this study presents a three-point array of infrasound sensors as time-synchronous multiple sensors for acquiring signals. In the meantime, the signals are sorted by mutual correlation of signals to figure out their latency, and by means of array coordinating to locate the sound source to realize the monitoring and positioning of a debris-flows hazard. The method has been in situ tested and has been proven to be accurate in monitoring debris-flow occurrences and determining their positions, which is particularly effective for pre-event warning of debris-flow hazards.  相似文献   

19.
The initiation mechanism of debris flow is regarded as the key step in understanding the debris-flow processes of occurrence, development and damage. Moreover, migration, accumulation and blocking effects of fine particles in soil will lead to soil failure and then develop into debris flow. Based on this hypothesis and considering the three factors of slope gradient, rainfall duration and rainfall intensity, 16 flume experiments were designed using the method of orthogonal design and completed in a laboratory. Particle composition changes in slope toe, volumetric water content, fine particle movement characteristics and soil failure mechanism were analyzed and understood as follows: the soil has complex, random and unstable structures, which causes remarkable pore characteristics of poor connectivity, non-uniformity and easy variation. The major factors that influence fine particle migration are rainfall intensity and slope. Rainfall intensity dominates particle movement, whereby high intensity rainfall induces a large number of mass movement and sharp fluctuation, causing more fine particles to accumulate at the steep slope toe. The slope toe plays an important role in water collection and fine particle accumulation. Both fine particle migration and coarse particle movement appears similar fluctuation. Fine particle migration is interrupted in unconnected pores, causing pore blockage and fine particle accumulation, which then leads to the formation of a weak layer and further soil failure or collapses. Fine particle movement also causes debris flow formation in two ways: movement on the soil surface and migration inside the soil. The results verify the hypothesis that the function of fine particle migration in soil failure process is conducive for further understanding the formation mechanism of soil failure and debris flow initiation.  相似文献   

20.
高分辨率遥感影像获取公路沿线空间地理信息速度快、信息丰富,其立体像对可定位测图.对基于0.5m分辨率GeoEye-1立体像对在公路勘测中的应用技术进行了研究,给出了利用GeoEye-1立体模型制作公路数字高程模型和大比例尺测图的流程,采用GPSRTK布设地面控制点,通过空三平差消除RPC模型系统误差,实验结果表明可提高...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号