首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 688 毫秒
1.
Precise U–Pb geochronology and Hf isotope tracing of zircon is combined with whole-rock geochemical and Sr and Nd isotope data in order to unravel processes affecting mafic to felsic calcalkaline magmas prior to and during their crystallization in crustal magma chambers along the southern border of Central Srednogorie tectonic zone in Bulgaria (SE Europe). ID-TIMS U–Pb dating of single zircons from felsic and mixed/mingled dioritic to gabbroic horizons of single plutons define crystallization ages of around 86.5–86.0, 85.0–84.5 and 82 Ma. Concordia age uncertainties are generally less than 0.3 Ma (0.35%–2σ), and as good as 0.08 Ma (0.1%), when the weighted mean 206Pb/238U value is used. Such precision allows the distinction of magma replenishment processes if separated by more than 0.6–1.0 Ma and when they are marked by newly saturated zircons. We interpret zircon dates from a single sample that do not overlap to reflect new zircon growth during magma recharge in a long-lived crustal chamber. Mingling/mixing of the basaltic magma with colder granitoid mush at mid- to upper-crustal levels is proposed to explain zircon saturation and fast crystallization of U- and REE-rich zircons in the hybrid gabbro.Major and trace-element distribution and Sr and Nd whole-rock isotope chemistry define island arc affinities for the studied plutons. Slab derived fluids and a sediment component are constrained as enrichment sources for the mantle wedge-derived magma, though Hf isotopes in zircon suggest crustal assimilation was also important. Inherited zircons, and their corresponding ε-Hf, from the hybrid gabbroic rocks trace the lower crust as possible source for enrichment of the mantle magma. These inherited zircons are about 440 Ma old with ε-Hf of − 7 at 82 Ma, whereas newly saturated concordant Upper Cretaceous zircons reveal mantle ε-Hf values of + 7.2 to + 10.1. The upper and middle crusts contribute in the generation of the granitoid rocks. Their zircon inheritance is Lower Palaeozoic or significantly older and crustal dominated with 82–85 Ma corrected ε-Hf values of − 28. The Cretaceous concordant zircons in the granitoids are mantle dominated with a ε-Hf values spreading from + 3.9 to + 7.  相似文献   

2.
A combined study of chronometric dating and oxygen isotope analysis for minerals from vein and host eclogite as well as regional country-rock gneiss in the Dabie orogen provides a direct constraint on timing of fluid flow in this orogen formed by continental collision. Oxygen isotope ratios of vein minerals are significantly lower than those of the host eclogite, but comparable with those of the regional gneiss. This suggests the veining fluid came from the regional gneiss (i.e. exhumed slab itself) rather than the host eclogite. While zircon U–Pb and phengite Ar–Ar dating yields ages of 214 to 222 Ma for the eclogite and gneiss, the vein gives a quartz–muscovite Rb–Sr isochron age of 181 Ma and a muscovite K–Ar age of 179 Ma. Thus the veining postdates the Triassic ultrahigh pressure metamorphic event, witnessing postcollisional fluid flow after the orogenic cycle of continental collision.  相似文献   

3.
Detrital zircon provides a powerful archive of continental growth and recycling processes. We have tested this by a combined laser ablation ICP-MS U–Pb and Lu–Hf analysis of homogeneous growth domains in detrital zircon from late Paleozoic coastal accretionary systems in central Chile and the collisional Guarguaráz Complex in W Argentina. Because detritus from a large part of W Gondwana is present here, the data delineate the crustal evolution of southern South America at its Paleopacific margin, consistent with known data in the source regions.Zircon in the Guarguaráz Complex mainly displays an U–Pb age cluster at 0.93–1.46 Ga, similar to zircon in sediments of the adjacent allochthonous Cuyania Terrane. By contrast, zircon from the coastal accretionary systems shows a mixed provenance: Age clusters at 363–722 Ma are typical for zircon grown during the Braziliano, Pampean, Famatinian and post-Famatinian orogenic episodes east of Cuyania. An age spectrum at 1.00–1.39 Ga is interpreted as a mixture of zircon from Cuyania and several sources further east. Minor age clusters between 1.46 and 3.20 Ga suggest recycling of material from cratons within W Gondwana.The youngest age cluster (294–346 Ma) in the coastal accretionary prisms reflects a so far unknown local magmatic event, also represented by rhyolite and leucogranite pebbles. It sets time marks for the accretion history: Maximum depositional ages of most accreted metasediments are Middle to Upper Carboniferous. A change of the accretion mode occurred before 308 Ma, when also a concomitant retrowedge basin formed.Initial Hf-isotope compositions reveal at least three juvenile crust-forming periods in southern South America characterised by three major periods of juvenile magma production at 2.7–3.4 Ga, 1.9–2.3 Ga and 0.8–1.5 Ga. The 176Hf/177Hf of Mesoproterozoic zircon from the coastal accretionary systems is consistent with extensive crustal recycling and addition of some juvenile, mantle-derived magma, while that of zircon from the Guarguaráz Complex has a largely juvenile crustal signature. Zircon with Pampean, Famatinian and Braziliano ages (< 660 Ma) originated from recycled crust of variable age, which is, however, mainly Mesoproterozoic. By contrast, the Carboniferous magmatic event shows less variable and more radiogenic 176Hf/177Hf, pointing to a mean early Neoproterozoic crustal residence. This zircon is unlikely to have crystallized from melts of metasediments of the accretionary systems, but probably derived from a more juvenile crust in their backstop system.  相似文献   

4.
The crustal structure of the Dabie orogen was reconstructed by a combined study of U–Pb ages, Hf and O isotope compositions of zircons from granitic gneiss from North Dabie, the largest lithotectonic unit in the orogen. The results were deciphered from metamorphic history to protolith origin with respect to continental subduction and exhumation. Zircon U–Pb dating provides consistent ages of 751 ± 7 Ma for protolith crystallization, and two group ages of 213 ± 4 to 245 ± 17 Ma and 126 ± 4 to 131 ± 36 Ma for regional metamorphism. Majority of zircon Hf isotope analyses displays negative εHf(t) values of − 5.1 to − 2.9 with crust Hf model ages of 1.84 to 1.99 Ga, indicating protolith origin from reworking of middle Paleoproterozoic crust. The remaining analyses exhibit positive εHf(t) values of 5.3 to 14.5 with mantle Hf model ages of 0.74 to 1.11 Ga, suggesting prompt reworking of Late Mesoproterozoic to Early Neoproterozoic juvenile crust. Zircon O isotope analyses yield δ18O values of − 3.26 to 2.79‰, indicating differential involvement of meteoric water in protolith magma by remelting of hydrothermally altered low δ18O rocks. North Dabie shares the same age of Neoproterozoic low δ18O protolith with Central Dabie experiencing the Triassic UHP metamorphism, but it was significantly reworked at Early Cretaceous in association with contemporaneous magma emplacement. The Rodinia breakup at about 750 Ma would lead to not only the reworking of juvenile crust in an active rift zone for bimodal protolith of Central Dabie, but also reworking of ancient crust in an arc-continent collision zone for the North Dabie protolith. The spatial difference in the metamorphic age (Triassic vs. Cretaceous) between the northern and southern parts of North Dabie suggests intra-crustal detachment during the continental subduction. Furthermore, the Dabie orogen would have a three-layer structure prior to the Early Cretaceous magmatism: Central Dabie in the upper, North Dabie in the middle, and the source region of Cretaceous magmas in the lower.  相似文献   

5.
Any and all proposed theories regarding the origin of sapphires are still very much open to debate. Critical inconsistency arises on the magmatic petrogenesis mechanism of sapphire crystal formation. The Nezametnoye Deposit is one of the most prospective placer deposits of jewelry grade corundum (sapphire) and zircon (jacinth) in Russia, and is known for its native and alluvial gold–wolframite–tin deposits. We present new data obtained from mineral and primary melt inclusions that are syngenetic to corundum. Electron microprobe analysis indicates that rutile, zircon, albite, zinc-bearing hercynite, columbite, and fluorite represent syngenetic mineral inclusions. Silicate melt inclusions are almost always associated with carbon dioxide inclusions; this correlation suggests that a heterogeneous fluid–melt system was present during corundum crystallization. Distinctive features of chemical composition of the inclusions, along with their agpaitic coefficients, indicate that corundum crystallization occurred from granosyenite melts. Primary carbon dioxide-rich inclusions form random groups, or are associated with melt inclusions. P–T conditions for corundum crystallization have been calculated as 780–820 °C and 1.7–3 kbar, based on data from primary carbon dioxide and melt inclusions.  相似文献   

6.
Northwestern Fujian Province is one of the most important Pre-Palaeozoic areas in the Cathaysia Block of South China. Metavolcano-sedimentary and metasedimentary rocks of different types, ages and metamorphic grades (granulite to upper greenschist facies) are present, and previously were divided into several Formations and Groups. Tectonic contacts occur between some units, whereas (deformed) unconformities have been reported between others. New SHRIMP U–Pb zircon ages presented here indicate that the original lithostratigraphy and the old “Group” and “Formation” terminology should be abandoned. Thus the “Tianjingping Formation” was not formed in the Archaean or Palaeoproterozoic, as previously considered, but must be younger than its youngest detrital zircons (1790 Ma) but older than regional metamorphism (460 Ma). Besides magmatic zircon ages of 807 Ma obtained from metavolcano-sedimentary rocks of the “Nanshan Formation” and 751–728 Ma for the “Mamianshan Group”, many inherited and detrital zircons with ages ranging from 1.0 to 0.8 Ga were also found in them. These ages indicate that the geological evolution of the study area may be related to the assembly and subsequent break-up of the Rodinia supercontinent. The new zircon results poorly constrain the age of the “Mayuan Group” as Neoproterozoic to early Palaeozoic (728–458 Ma), and not Palaeoproterozoic as previously thought. Many older inherited and detrital zircons with ages of 3.6, 2.8, 2.7, 2.6–2.5, 2.0–1.8 and 1.6 Ga were found in this study. A 3.6 Ga detrital grain is the oldest one so far identified in northwestern Fujian Province as well as throughout the Cathaysia Block. Nd isotope tDM values of eight volcano-sedimentary and clastic sedimentary rock samples centre on 2.73–1.68 Ga, being much older than the formation ages of their protoliths and thus showing that the recycling of older crust played an important role in their formation. These rocks underwent high grade metamorphism in the early Palaeozoic (458–425 Ma) during an important tectono-thermal event in the Cathaysia Block.  相似文献   

7.
A combined study using multi-radiometric dating and oxygen isotopic geothermometry was carried out for Mesozoic quartz syenite, alkali-feldspar granite and associated hydrothermal uranium mineralization at Dalongshan in the Middle-Lower Yangtze valley of east-central China. Radiometric dating of the quartz syenite yields a whole-rock Rb–Sr isochron age of 135.6±4.3 Ma, a zircon U–Pb isochron age of 132.9±2.2 Ma, and K–Ar ages of 126±2, 118±3 and 94±4 Ma for hornblende, biotite and orthoclase, respectively. The alkali-feldspar granite yields a whole-rock Rb–Sr isochron age of 117.3±3.3 Ma, a zircon U–Pb isochron age of 114.7±2.1 Ma, and K–Ar ages of 112±2, 109±3 and 88±4 Ma for hornblende, biotite and orthoclase, respectively. Oxygen isotope thermometry for both granites gives temperatures of 685 to 720, 555 to 580, 435 to 460 and 320 to 330 °C, for hornblende, magnetite, biotite and orthoclase respectively, when paired with quartz. The systematic differences among the ages by the different techniques on the different minerals are used to reconstruct the cooling history of the granite. The results yield rapid cooling rates of 27.4 to 58.6 °C/Ma from 800 to 300 °C in the early stage, but slow cooling rates of 6.3 to 7.2 °C/Ma from 300 to 150 °C in the late stage. The regular sequence of oxygen isotope temperatures for the different quartz–mineral pairs demonstrates that diffusion is a dominant factor controlling the closure of both radiometric and O isotopic systems during granite cooling. Pitchblende U–Pb isochron dating yields an uranium mineralization age of 106.4±2.9 Ma, which is younger than the age of the granite emplacement and thus considerably postdates the time of magma crystallization, but is close to the closure time of the K–Ar system in the biotite. This points to a close relationship between granite cooling and ore-forming process. It appears that hydrothermal mineralization took place in the stage of slow cooling of the granite, whereas the rapid cooling of the granite was concurrent with the migration of hydrothermal fluids along fault structures. Therefore, the activity of the ore-forming hydrothermal system is temporally dictated by the cooling rates of the granite and may lag about 25 to 30 Ma behind the crystallization timing of associated granite.  相似文献   

8.
Zircon fission-track (FT) and U–Pb analyses were performed on zircon extracted from a pseudotachylyte zone and surrounding rocks of the Asuke Shear Zone (ASZ), Aichi Prefecture, Japan. The U–Pb ages of all four samples are  67–76 Ma, which is interpreted as the formation age of Ryoke granitic rocks along the ASZ. The mean zircon FT age of host rock is 73 ± 7 (2σ) Ma, suggesting a time of initial cooling through the zircon closure temperature. The pseudotachylyte zone however, yielded a zircon FT age of 53 ± 9 (2σ) Ma, statistically different from the age of the host rock. Zircon FTs showed reduced mean lengths and intermediate ages for samples adjacent to the pseudotachylyte zone. Coupled with the new zircon U–Pb ages and previous heat conduction modeling, the present FT data are best interpreted as reflecting paleothermal effects of the frictional heating of the fault. The age for the pseudotachylyte coincides with the change in direction of rotation of the Pacific plate from NW to N which can be considered to initialize the NNE–SSW trending sinistral–extensional ASZ before the Miocene clockwise rotation of SW Japan. The present study demonstrates that a history of fault motions in seismically active regions can be reconstructed by dating pseudotachylytes using zircon FT thermochronology.  相似文献   

9.
The structure and composition of accessory zircons from the tonalites of the Vyg River, southeastern Karelia, were investigated. Their local U-Pb SHRIMP dating yielded ages between 3127±15 and 3146±25 Ma. It was shown that the zircons consist of three zones, a central part containing solid and melt inclusions and zoned magmatic and metasomatic shells. The obtained ages correspond to the magmatic and metasomatic stages of zircon crystallization. In general, the zircons have elevated contents of LREE (up to 867 ppm La), which were mainly accumulated in the outer metasomatic shell. Apatite and CO2 inclusions are widespread. Orthoclase, orthopyroxene, ilmenite, galena, quartz, and bastnaesite were identified in a solid inclusion in one zircon core using a CAMSCAN MX 2500 electron microscope. The presence of bastnaesite accentuates the relation of LREE with a CO2-rich fluid. It was shown that REE content is not correlated with U, Th, and U/Th ratio.  相似文献   

10.
The integration of new and published geochronologic data with structural, magmatic/anatectic and pressure–temperature (P–T) process information allow the recognition of high-grade polymetamorphic granulites and associated high-grade shear zones in the Central Zone (CZ) of the Limpopo high-grade terrain in South Africa. Together, these two important features reflect a major high-grade D3/M3 event at ~ 2.02 Ga that overprinted the > 2.63 Ga high-grade Neoarchaean D2/M2 event, characterized by SW-plunging sheath folds. These major D2/M2 folds developed before ~ 2.63 Ga based on U–Pb zircon age data for precursors to leucocratic anatectic gneisses that cut the high-grade gneissic fabric. The D3/M3 shear event is accurately dated by U–Pb monazite (2017.1 ± 2.8 Ma) and PbSL garnet (2023 ± 11 Ma) age data obtained from syntectonic anatectic material, and from sheared metapelitic gneisses that were completely reworked during the high-grade shear event. The shear event was preceded by isobaric heating (P = ~ 6 kbar and T = ~ 670–780 °C), which resulted in the widespread formation of polymetamorphic granulites. Many efforts to date high-grade gneisses from the CZ using PbSL garnet dating resulted in a large spread of ages (~ 2.0–2.6 Ga) that reflect the polymetamorphic nature of these complexly deformed high-grade rocks.  相似文献   

11.
Recent discoveries over the last decade of new gemfields, exploitation of new and existing deposits, and application of relatively new techniques have greatly increased our knowledge of the basalt-derived gem sapphire–ruby–zircon deposits. In this paper we focus on the Late Mesozoic to Cenozoic intraplate basaltic fields of the West Pacific continental margins. We review advances made in understanding the genesis of these deposits, based on the application of newer techniques. We also critically review existing data on the gem corundum deposits, in order to further refine a model for their origin.In some of the intraplate basaltic fields, corundum-bearing xenoliths have been found showing a range of PT formation conditions from 790 °C at 0.85 GPa to as much as 1100 to 1200 °C at 1.0 to 2.5 GPa. Although most magmatic sapphires contain syngenetic inclusions of columbite-group phases, zircon, spinel and rutile, some contain additional nepheline and K-feldspar, suggesting crystallization from more undersaturated alkaline magma while the Weldborough field of NE Tasmania also contains molybdenite and beryl, suggesting at least some interaction with more fractionated ‘granitic-type’ magmas. There is a large range in PT conditions calculated for the metamorphic rubies (from 780 to 940 °C, through 800 to 1150 °C up to 1000 to 1300 °C). Fluid/melt inclusion studies on magmatic corundums generally suggest that they formed in a CO2-rich environment from a ‘syenitic’ melt under a range of T conditions from 720 to 880 °C up to 1000 to 1200 °C. Oxygen isotope studies reveal that typical magmatic corundums have values of + 4.4 to 6.9‰, whereas metamorphic corundums from the same basaltic host have lower values of + 1.3 to 4.2‰.Geochronological studies have shown that some fields produced a simple eruptive and zircon/corundum crystallization event while others had multiple eruptive events but only one or two zircon crystallization events. For a few fields, some corundums/zircons crystallized in storage regions and then remained relatively inert for periods of 200 to 400 Ma without significant change before transport to the surface in the Cenozoic. Tectonic studies of the Australian region suggest that many of the corundums crystallized from magmas related to episodic basaltic volcanism in a tectonic regime of extension, associated with the opening of the Tasman and Coral Seas. For the Asian region, the magmatic–polygenetic corundums within the basaltic fields largely crystallized in a tectonic regime of distributed E–W extension, whereas the metamorphic-metasomatic corundums crystallised in a transpressional regime associated with the collision of the Indian Plate with the Eurasian Plate (e.g., [Garnier, V., Giuliani, G., Maluski, H., Ohnenstetter, D., Deloule, E., 2003. Ar–Ar and U–Pb ages of marble-hosted ruby deposits from Central and South-east Asia. Geophysical Research Abstracts 5, 03751; Garnier, V., Giuliani, G., Ohnenstetter, D., and Schwarz, D., 2004. Les gisements de corindon: classification et genese. Les placers a corindon gemme. Le Regne Mineral 55, 7-47; Garnier, V., Ohnenstetter, D., Giuliani, G., Maluski, H., Deloule, E., Phan Trong, T., Pham Van, L., Hoang Quang, V., 2005a. Age and significance of ruby-bearing marble from the Red River Shear Zone, Northern Vietnam. Canadian Mineralogist 43, 1315–1329]).  相似文献   

12.
The Precambrian/Cambrian (PC/C) boundary is one of the most important intervals for the evolution of life, represented by prominent biological evolution from the first appearance of soft-bodied animals from the late Neoproterozoic to the sudden diversification of animals with mineralized skeletons in the Cambrian. In South China several areas contain many fossils and are well exposed, suitable for the investigation of PC/C boundary. However, geochronological relationships are still poorly known because of lack of combined detailed investigations of internal structures of zircons and in-situ U–Pb dating.We focus on the internal structure of zircons from a tuff layer within Bed 5 in the Meishucun section on which we undertook cathodoluminescence (CL) imaging and in-situ U–Pb dating with LA-ICP-MS and nano-SIMS. Over 600 zircons from the tuff layer were classified into three types based on their CL images: oscillatory rims, inherited cores and dull structures. U–Pb dating of the internal structure of the zircons by LA-ICP-MS clearly shows a distinct unimodal age population dependent on the structure: 531 ± 17 Ma for the oscillatory rims and 515 Ma for the dull structures. The clear oscillatory zonation, the prismatic morphology, and their occurrence indicate that the oscillatory rims were formed from felsic magmatism, and that the U–Pb nano-SIMS age of 536.5 ± 2.5 Ma records the depositional age of the tuff. Our results indicate that the PC/C boundary is situated below Bed 5, and therefore the bottom of Zone 1 (Marker A) is more appropriate for the PC/C boundary than is the top of Zone 1 (Marker B). The age of a positive anomaly (P2) in the early Cambrian is estimated to be ca. 536 Ma.  相似文献   

13.
The Sivamalai alkaline complex lies at the southern margin of the Cauvery Shear System that separates the Archaean and Proterozoic domains of the Southern Granulite Terrain in India. U–Pb TIMS dating of zircon from a pegmatitic syenite sample in the complex yields a concordant age of 590.2 ± 1.3 (2σ) Ma which is interpreted to date the intrusion of the alkaline rocks. A lower concordia intercept at 168 ± 210 Ma defined by two grains with high common lead may indicate post-magmatic disturbances due to recrystallisation which is also evident in the CL images of the zircons. EPMA dating of monazite from a post-kinematic pegmatite which intrudes the crystalline basement hosting the alkaline rocks yields an age of 478 ± 29 (2σ) Ma and provides a lower bracket for the main phase of tectonism in this part of the Southern Granulite Terrain. The Pan-African high-grade metamorphism and ductile deformation has thus most likely affected the alkaline rocks. This is supported by the presence of a metamorphic foliation and extensive recrystallisation textures seen in the rocks. The major and trace element concentrations measured on selected samples reveals the presence of both enriched and depleted rock types. The enriched group includes ferrosyenite and nepheline syenite while the depleted group has only nepheline syenites. The trace element depletion of some nepheline syenites is interpreted to be a result of fractional crystallization involving the removal of accessory phases like zircon, titanite, apatite and allanite.  相似文献   

14.
Granites and primary tin mineralization in the Erzgebirge were dated using (1) conventional U–Pb dating of uraninite inclusions in mica, (2) Rb–Sr dating of inclusions in quartz that represent highly evolved melts, (3) Re–Os dating of magmatic–hydrothermal molybdenite, and (4) chemical Th–U–Pb dating of uraninite. Conventional isotope dilution and thermal ion mass spectrometry and chemical Th–U–Pb dating of uraninite in granites from the Ehrenfriedersdorf mining district provide ages of 323.9 ± 3.5 Ma (2σ; Greifenstein granite) and 320.6 ± 1.9 and 319.7 ± 3.4 Ma (2σ, both Sauberg mine), in agreement with U–Pb apatite ages of 323.9 ± 2.9 and 317.3 ± 1.6 Ms (2σ, both Sauberg mine). Rb–Sr analysis of melt inclusions from Zinnwald gives highly radiogenic Sr isotopic compositions that, with an assumed initial Sr isotopic composition, permit calculation of precise ages from single inclusions. The scatter of the data indicates that some quartz-hosted melt inclusions have been affected by partial loss of fluid exsolved from the melt inclusion. Re–Os dating of two molybdenite samples from Altenberg provides ages of 323.9 ± 2.5 and 317.9 ± 2.4 Ma (2σ). Together with age data from the literature, our new ages demonstrate that primary tin mineralization and the emplacement of the large Sn-specialized granites in the Erzgebirge fall in a narrow range between 318 and 323 Ma. Primary Sn mineralization occurred within a short interval during post-collisional collapse of the Variscan orogen and was essentially synchronous over the entire Erzgebirge. In contrast to earlier claims, no systematic age difference between granites of the eastern and western Erzgebirge was established. Furthermore, our data do not support a large age range for Late-Variscan granites of the Erzgebirge (330–290 Ma), as has been previously suggested.  相似文献   

15.
The U–Pb age determinations of zircon and rutile from the Aar massif reveal a complex evolution of the Central Alpine basement. The oldest components are found in zircons of metasediments, which bear cores of Archean age; the U–Pb age of discordant prismatic zircons of the same rocks ranges between 580 and 680 Ma, an age that is typical for Pan-African metamorphism. The zircons are interpreted as Pan-African detritus with Archean inheritance. The provenance region of the Pan-African zircons is assumed to be a terrane of Gondwana-affinity, i.e. the W. African craton or the Pentevrian microplate. The Caledonian metamorphism left a pervasive structural imprint in amphibolite facies on the rocks of the Aar massif; it is dated at 456±2 and 445 Ma by zircons of a layered migmatitic gneiss and a migmatitic leucosome, respectively, both occurring in the northernmost zones of the massif. Hercynian metamorphism never exceeded greenschist-facies conditions and is recorded by zircon in a garnet-amphibolite and by rutile in a meta-psammite that yield an age of 330 Ma. Both zircon and rutile are considered to be products of retrograde mineral reactions and therefore do not date the peak conditions of Hercynian metamorphism. The Gastern granite at the western end of the Aar massif is a contaminated granite that intruded at 303±4 Ma, contemporaneously with the wide-spread late Hercynian post-collisional I-type magmatism. The study demonstrates the potential of isotope dilution U–Pb dating of single grains and microfractions in deciphering complex evolutionary histories of polymetamorphic terrains.  相似文献   

16.
秦岭富水杂岩体的一些变辉长岩含有粒度较大,U、Pb含量较高的斜锆石和锆石,是U-Pb同位素测年的极好矿物。本文对秦岭富水杂岩的中粗粒角闪黑云辉长岩中的斜错石和错石分别进行了SHRIMP法和TIMS法U-Pb同位素年龄测定,获得斜锆石和锆石的U-Pb同位素年龄分别为501.4±1.2 Ma和480.0±3.4 Ma,二者相差约20 Ma;对该岩石中的斜锆石和锆石的关系及锆石的成因进行了初步研究,认为斜锆石的U-Pb同位素年龄应可解释为秦岭富水杂岩中基性岩石的形成时代,而锆石的成因比较复杂,对其U-Pb同位素年龄地质意义的合理解释需作进一步的研究。  相似文献   

17.
Archean basement gneisses and supracrustal rocks, together with Neoproterozoic (Sinian) metasedimentary rocks (the Penglai Group) occur in the Jiaobei Terrane at the southeastern margin of the North China Craton. SHRIMP U–Pb zircon dating of an Archean TTG gneiss gave an age of 2541 ± 5 Ma, whereas metasedimentary rocks from the Neoproterozoic Penglai Group yielded a range in zircon ages from 2.9 to 1.8 Ga. The zircons can be broadly divided into three age populations, at: 2.0–1.8 Ga, 2.45–2.1 Ga and >2.5 Ga. Detrital zircon grains with ages >2.6 Ga are few in number and there are none with ages <1.8 Ga. These results indicate that most of the detrital material comes from a Paleoproterozoic source, most likely from the Jianshan and Fenzishan groups, with some material coming from Archean gneisses in the Jiaobei Terrane. An age of 1866 ± 4 Ma for amphibolite-facies hornblende–plagioclase gneiss, forming part of a supracrustal sequence within the Archean TTG gneiss, indicates Late Paleoproterozoic metamorphism. Both the Archean gneiss complex and Penglai metasedimentary rocks resemble previously described components of the Jiao-Liao-Ji orogenic belt and suggest that the Jiaobei Terrane has a North China Craton affinity; they also suggest that the time of collision along the Jiao-Liao-Ji Belt was at 1865 Ma.  相似文献   

18.
The Austroalpine basement to the south of the Tauern Window once was part of the northern margin of Gondwana. It includes the “Altkristallin” and the phyllitic Thurntaler Complex. In the Altkristallin (AMU, MPU), suites of arc-related metamafic sequences occur together with calc-alkaline metagranite. SHRIMP U–Pb dating of zircon from calc-alkaline metagranite associated with an eclogitic amphibolite give an age of 470 ± 3 Ma interpreted as the age of protolith emplacement. In the Thurntaler Complex, metaporphyroids occur together with tholeiitic as well as alkaline within-plate basalt-type metabasite. The metaryholites of this association give a crystallization SHRIMP age of 477 ± 4 Ma, which suggests contemporaneity of arc-related and extensional settings in the Austroalpine basement units. The age data demonstrate widespread magmatic activity associated with the Early-Ordovician amalgamation at the end of the 550–470 Ma subduction–accretion–collision cycle. The Pb–Pb and U–Pb systematics of step-wise leached staurolite and kyanite from the peak-metamorphic assemblage of the Altkristallin indicate that (1) step-wise leaching of staurolite and kyanite yields the age of inclusions rather than the host; (2) zircon inclusions in staurolite suggest an Ordovician or older age for the precursor of the staurolite-schists; (3) the weighted average of the 206Pb/238U data of the various leaching steps yields a Variscan age for the inclusions (ilmenite, biotite, and andesine). Since these inclusions are part of the metamorphic mineral assemblage, this age provides a minimum estimate for staurolite growth, i.e., metamorphism. Thus, the Pb–Pb and U–Pb systematics of staurolite provide evidence for a Variscan metamorphism of the Austroalpine basement, e.g., MPU, AMU and Thurntaler Complex, to the south of the Tauern Window.  相似文献   

19.
The Higo Complex of west-central Kyushu, western Japan is a 25 km long body of metasedimentary and metabasic lithologies that increase in metamorphic grade from schist in the north to migmatitic granulite in the south, where granitoids are emplaced along the southern margin. The timing of granulite metamorphism has been extensively investigated and debated. Previously published Sm–Nd mineral isochrons for garnet-bearing metapelite yielded ca.220–280 Ma ages, suggesting high-grade equilibration older than the lower grade schist to the north, which yielded ca.180 Ma K–Ar muscovite ages. Ion and electron microprobe analyses on zircon have yielded detrital grains with rim ages of ca.250 Ma and ca.110 Ma. Electron microprobe ages from monazite and xenotime are consistently 110–130 Ma. Two models have been proposed: 1) high-grade metamorphism and tectonism at ca.115 Ma, with older ages attributed to inheritance; and 2) high-grade metamorphism at ca.250 Ma, with resetting of isotopic systems by contact metamorphism at ca.105 Ma during the intrusion of granodiorite. These models are evaluated through petrographic investigation and electron microprobe Th–U–total Pb dating of monazite in metapelitic migmatites and associated lithologies. In-situ investigation of monazite reveals growth and dissolution features associated with prograde and retrograde stages of progressive metamorphism and deformation. Monazite Th–U–Pb isochrons from metapelite, diatexite and late-deformational felsic dykes consistently yield ca.110–120 Ma ages. Earlier and later stages of monazite growth cannot be temporally resolved. The preservation of petrogenetic relationships, coupled with the low diffusion rate of Pb at < 900 °C in monazite, is strong evidence for timing high-temperature metamorphism and deformation at ca.115 Ma. Older ages from a variety of chronometers are attributed to isotopic disequilibrium between mineral phases and the preservation of inherited and detrital age components. Tentative support is given to tectonic models that correlate the Higo terrane with exotic terranes between the Inner and Outer tectonic Zones of southwest Japan, possibly derived from the active continental margin of the South China Block. These terranes were dismembered and translated northeastwards by transcurrent shearing and faulting from the beginning to the end of the Cretaceous Period.  相似文献   

20.
Gem corundum, a minor but persistent megacryst in east Australian basalt fields, is mined from some placer concentrations. Laser ablation, inductively coupled plasma mass spectrometry analyses and O isotope determinations on a colour range of corundum from different fields, show that chromophore (Fe, Cr, Ti, V) and genetic indicator (Ga, Mg, δ18O) values can distinguish corundum sources (magmatic, metamorphic and metasomatic) before basalt incorporation. They also characterise corundum groups from different fields. This identified two metamorphic groups, one carrying ruby at Barrington Tops, and a magmatic group distinct from those from other gem fields (lower Fe, northeast Tasmania; higher Fe, Yarrowitch). Ruby-bearing groups show clear provincial characteristics and include lower temperature spinel-facies groups (Barrington, Yarrowitch) and higher temperature garnet-facies groups (Cudgegong–Macquarie River). High Mg/Fe and Ni values in the latter approach those for corundum in diamond, and are a possible diamond indicator. The corundum derived from diverse fold-belt and felsic sources in underlying lithosphere forms a dataset for comparing corundum from other basalt fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号