首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The caldera-forming eruption of Volcán Ceboruco, Mexico   总被引:1,自引:1,他引:0  
3 of magma erupted, ∼95% of which was deposited as fall layers. During most of the deposition of P1, eruptive intensity (mass flux) was almost constant at 4–8×107 kg s−1, producing a Plinian column 25–30 km in height. Size grading at the top of P1 indicates, however, that mass flux waned dramatically, and possibly that there was a brief pause in the eruption. During the post-P1 phase of the eruption, a much smaller volume of magma erupted, although mass flux varied by more than an order of magnitude. We suggest that caldera collapse began at the end of the P1 phase of the eruption, because along with the large differences in mass flux behavior between P1 and post-P1 layers, there were also dramatic changes in lithic content (P1 contains ∼8% lithics; post-P1 layers contain 30–60%) and magma composition (P1 is 98% rhyodacite; post-P1 layers are 60–90% rhyodacite). However, the total volume of magma erupted during the Jala pumice event is close to that estimated for the caldera. These observations appear to conflict with models which envision that, after an eruption is initiated by overpressure in the magma chamber, caldera collapse begins when the reservoir becomes underpressurized as a result of the removal of magma. The conflict arises because firstly, the P1 layer makes up too large a proportion (∼75%) of the total volume erupted to correspond to an overpressurized phase, and secondly, the caldera volume exceeds the post-P1 volume of magma by at least a factor of three. The mismatches between model and observations could be reconciled if collapse began near the beginning of the eruption, but no record of such early collapse is evident in the tephra sequence. The apparent inability to place the Jala pumice eruptive sequence into existing models of caldera collapse, which were constructed to explain the formation of calderas much greater in volume than that at Ceboruco, may indicate that differences in caldera mechanics exist that depend on size or that a more general model for caldera formation is needed. Received: 18 November 1998 / Accepted: 23 October 1999  相似文献   

2.
The May, 2008, Chaitén (southern Chile) eruption was characterized by several explosive events, each associated with plumes which reached up to about 19?km above sea level on May 6. A study of the textural and physical features of the juvenile clasts erupted during the climactic phase of the 2008 eruption of Chaitén is presented. Pumice clasts show unimodal density distribution (main mode at 600?kg/m3), average vesicularity of about 69?%, a glassy groundmass with no microcrystals, and vesicles with dimension between ~1?μm and ~2?mm. They also show a unimodal vesicle size distribution with most frequent vesicle size in the range 0.05–0.08?mm and an estimated vesicle number density of 1.3?±?0.5?×?105?mm?3 related to a rapid nucleation event produced during the late phases of magma rise. This is confirmed by the absence of microcrystals that could otherwise have delayed vesicle formation and allowed the magma to maintain a low viscosity and a supersaturation in volatiles. Vesiculation and fragmentation were triggered by a sudden decompression of the melt associated with the opening of the volcanic conduit (~10?MPa?s?1).  相似文献   

3.
Cristobalite is a low-pressure high-temperature polymorph of SiO2 found in many volcanic rocks. Its volcanogenic formation has received attention because (1) pure particulate cristobalite can be toxic when inhaled, and its dispersal in volcanic ash is therefore a potential hazard; and (2) its nominal stability field is at temperatures higher than those of magmatic systems, making it an interesting example of metastable crystallization. We present analyses (by XRD, SEM, EPMA, Laser Raman, and synchrotron μ-cT) of representative rhyolitic pyroclasts and of samples from different facies of the compound lava flow from the 2011–2012 eruption of Cordón Caulle (Chile). Cristobalite was not detected in pyroclasts, negating any concern for respiratory hazards, but it makes up 0–23 wt% of lava samples, occurring as prismatic vapour-deposited crystals in vesicles and/or as a groundmass phase in microcrystalline samples. Textures of lava collected near the vent, which best represent those generated in the conduit, indicate that pore isolation promotes vapour deposition of cristobalite. Mass balance shows that the SiO2 deposited in isolated pore space can have originated from corrosion of the adjacent groundmass. Textures of lava collected down-flow were modified during transport in the insulated interior of the flow, where protracted cooling, additional vesiculation events, and shearing overprint original textures. In the most slowly cooled and intensely sheared samples from the core of the flow, nearly all original pore space is lost, and vapour-deposited cristobalite crystals are crushed and incorporated into the groundmass as the vesicles in which they formed collapse by strain and compaction of the surrounding matrix. Holocrystalline lava from the core of the flow achieves high mass concentrations of cristobalite as slow cooling allows extensive microlite crystallization and devitrification to form groundmass cristobalite. Vapour deposition and devitrification act concurrently but semi-independently. Both are promoted by slow cooling, and it is ultimately devitrification that most strongly contributes to total cristobalite content in a given flow facies. Our findings provide a new field context in which to address questions that have arisen from the study of cristobalite in dome eruptions, with insight afforded by the fundamentally different emplacement geometries of flows and domes.  相似文献   

4.
5.
Pyroclastic flow deposits of the 1991 eruption of Volcán de Colima,Mexico   总被引:1,自引:1,他引:0  
The April 16, 1991, eruption of Volcán de Colima represents a classical example of partial dome collapse with the generation of progressively longer-runout, Merapi-type pyroclastic flows that traveled up to 4 km along the El Cordoban gullies (East, Central and West). The flows filled the gullies with block-and-ash flow deposits up to 10 m thick, of which, after 7 years of erosion, only remnants remained in the El Cordoban West and East gullies. The El Cordoban Central gully, however, provided a well-preserved and incised longitudinal section of the 1991 deposits. The deposits were emplaced as proximal and distal facies, separated by a change in slope angle from >30° to <20°. The proximal facies consists of massive, clast-supported flow units (up to 1 m thick) with andesite blocks locally supported by a matrix of coarse ash and devoid of segregation structures or grading. The distal facies consists of a massive, matrix-supported deposit up to 8 m thick, which contains dispersed andesite blocks in a fine ash matrix. In the distal facies, a train of blocks marks flow-unit upper boundaries and, although sorting is poor, some grading is present. Thin, finely stratified, or dune-bedded layers of fine ash material are locally present above or below units of both facies. Sedimentologic parameters show that the size or fraction of large pyroclasts (larger than –1 ) decreases from proximal to distal facies, as the percentage of matrix (0 to 4 ) increases, especially immediately beyond the break in slope. We propose that the propagation of the Colima pyroclastic flows is critically dependent on local slope angle, the presence of erodible slope debris, and the decrease in grain size with distance from the vent. The progressive fining is probably caused by some combination of erosion, clast breakup and deposition of larger pyroclasts, and is itself influenced by the slope angle. In the proximal region, the flows moved as granular avalanches, in which interacting grains ground each other and erosion occurred to produce an overriding dilute ash cloud. The maximum runout distance of the avalanches was controlled by the angle of repose of the material, and the volume and grain size of source and eroded material. Because the slope angle is close to the repose angle for this debris, granular avalanches were not able to propagate far beyond the change in slope. If, however, an avalanche had enough mass in finer grain size fractions, at least part of the flow continued beyond the break in slope and across the volcano apron, propagating in a turbulent state and depositing surge layers, or in an otherwise settling-modified state and depositing block-and-ash flow layers.Editorial responsibility: T Druitt  相似文献   

6.
On May 1st 2008 Mount Chaitén (southern Chile) interrupted a long period of quiescence, generating a sequence of explosive eruptions and causing the evacuation of Chaitén town located a few kilometers south of the volcano. The activity was characterized by several explosive events each associated with plumes which reached up to about 19 km above sea level. The products were dispersed across a wide area, with the finest ash reaching the Atlantic coast of Argentina. Our field observations in the proximal-medial area (3–25 km from the vent) indicate that the May 2008 tephra deposit consists of numerous layers, most of which can be correlated with individual eruptive events. These layers vary from extremely fine-grained ash to layers of lapilli and blocks, composed of both juvenile and lithic material. Here we describe the stratigraphy and physical characteristics of the May 2008 deposits, and propose a reconstruction of the timing of the May 2008 events. The deposits are mainly associated with the three main explosive phases which occurred on 1st–2nd May, 3rd–5th May and 6th May, with an estimated bulk tephra volume of 0.5–1.0 km3 (integration of both exponential and power-law fitting). For the 6th May event, represented by a layer composed mainly of lithic lapilli and blocks (>2 mm), an isopleth map was compiled from which a 19 km plume height was determined, which is in good agreement with satellite observations.  相似文献   

7.
Quantitative hazard assessments of active volcanoes require an accurate knowledge of the past eruptive activity in terms of eruption dynamics and the stratified products of eruption. Teide–Pico Viejo (TPV) is one of the largest volcanic complexes in Europe, but the associated eruptive history has only been constrained based on very general stratigraphic and geochronological data. In particular, recent studies have shown that explosive activity has been significantly more frequently common than previously thought. Our study contributes to characterization of explosive activity of TPV by describing for the first time the subplinian eruption of El Boquerón (5,660?yBP), a satellite dome located on the northern slope of the Pico Viejo stratovolcano. Stratigraphic data suggest complex shifting from effusive phases with lava flows to highly explosive phase that generated a relatively thick and widespread pumice fallout deposit. This explosive phase is classified as a subplinian eruption of VEI 3 that lasted for about 9–15?h and produced a plume with a height of up to 9?km above sea level (i.e. 7?km above the vent; MER of 6.9–8.2?×?105?kg/s). The tephra deposit (minimum bulk volume of 4–6?×?107?m3) was dispersed to the NE by up to 10?m/s winds. A similar eruption today would significantly impact the economy of Tenerife (e.g. tourism and aviation), with major consequences mainly for the communities around the Icod Valley, and to a minor extent, the Orotava Valley. This vulnerability shows that a better knowledge of the past explosive history of TPV and an accurate estimate of future potentials to generate violent eruptions is required in order to quantify and mitigate the associated volcanic risk.  相似文献   

8.
The Pomici di Mercato (PdM, 8,010 ± 40 a), also known in the literature as Pomici Gemelle or Pomici di Ottaviano, is one of the oldest Plinian eruptions of Somma-Vesuvius. This eruption occurred after the longest (7 ka) quiescence period of the volcano and was followed by more than 4 ka of repose. The erupted magma is phonolitic in composition. All the products have very low phenocrysts content (less than 3%) and show evidence of mineralogical disequilibria. They contain K-feldspar ± clinopyroxene (salite and diopside) ± plagioclase ± garnet ± biotite ± amphibole ± apatite ± Fe-Ti oxides. Pumice fragments collected at different stratigraphic heights are slightly less evolved and more enriched in radiogenic Sr composition upsection. The glass composition is fairly homogeneous in single pumice fragment and among pumice fragments from different layers. Glass separated from pumice fragments collected at different stratigraphic heights is homogeneous in the Sr-isotope composition (around a value of 0.70717). Glass is in isotopic equilibrium with salite throughout the entire sequence and with diopside at the base of the sequence. Diopside becomes more radiogenic upsection, reaching a value of 0.707458 ± 7, whereas feldspar is consistently slightly less radiogenic than glass. Nd-isotope composition is fairly uniform (ca. 0.51247) through the whole sequence. The isotopic disequilibria among glass, feldspar and diopside, together with the homogeneous isotopic composition of pumice glass in equilibrium with salite, and the mineralogical disequilibria between plagioclase and K-feldspar, imply that most of the diopside and plagioclase crystals are xenocrysts incorporated into the phonolitic magma during residence in a magma chamber and/or during ascent towards the surface. The PdM Tephra are compositionally and isotopically similar to the phonolitic, first-erupted products of the subsequent Pomici di Avellino Plinian eruption. On the basis of this similarity, we suggest that the magma feeding both eruptions resulted from the tapping of a unique magma chamber. Prior to the PdM eruption, this chamber was formed by a large and homogeneous phonolitic magma body. After the PdM eruption, as a consequence of new arrivals of more radiogenic in Sr, less-differentiated magma batches, the magma chamber progressively developed a slightly stratified phonolitic uppermost portion, capping a tephriphonolitic layer, both emitted during the subsequent Pomici di Avellino eruption.  相似文献   

9.
After decades of repose, Puyehue-Cordón Caulle Volcano (Chile) erupted in June 2011 following a month of continuously increasing seismic activity. The eruption dispersed a large volume of rhyolitic tephra over a wide area and was characterized by complex dynamics. During the initial climactic phase of the eruption (24–30 h on 4–5 June), 11–14-km-high plumes dispersed most of the erupted tephra eastward towards Argentina, reaching as far as the Atlantic Ocean. This first eruptive phase was followed by activity of lower intensity, leading to the development of a complex stratigraphic sequence, mainly due to rapid shifts in wind direction and eruptive style. The resulting tephra deposits consist of 13 main layers grouped into four units. Each layer was characterized based on its dispersal direction, sedimentological features, and on the main characteristics of the juvenile fraction (texture, density, petrography, chemistry). The lowest part of the eruptive sequence (Unit I), corresponding to the tephra emitted between 4 and 5 June, is composed of alternating lapilli layers with a total estimated volume of ca. 0.75 km3; these layers record the highest intensity phase, during which a bent-over plume dispersed tephra towards the southeast-east, with negligible up-wind sedimentation. Products emitted during 5–6 June (Unit II) signaled an abrupt shift in wind direction towards the north, leading to the deposition of a coarse ash deposit in the northern sector (ca. 0.21 km3 in volume), followed by a resumption of easterly directed winds. A third phase (Unit III) began on 7 June and resulted in tephra deposits in the eastern sector and ballistic bombs around the vent area. A final phase (Unit IV) started after 15 June and was characterized by the emission of fine-grained white tephra from ash-charged plumes during low-level activity and the extrusion of a viscous lava flow. Timing and duration of the first eruptive phases were constrained based on comparison of the dispersal of the main tephra layers with satellite images, showing that most of the tephra was emitted during the first 72 h of the event. The analyzed juvenile material tightly clusters within the rhyolitic field, with negligible chemical variations through the eruptive sequence. Textural observations reveal that changes in eruption intensity (and consequently in magma ascent velocity within the conduit) and complex interactions between gas-rich and gas-depleted magma portions during ascent resulted in vesicular clasts with variable degrees of shear localization, and possibly in the large heterogeneity of the juvenile material.  相似文献   

10.
11.
12.
Triggering mechanisms of large silicic eruptions remain a critical unsolved problem. We address this question for the ~2.08-Ma caldera-forming eruption of Cerro Galán volcano, Argentina, which produced distinct pumice populations of two colors: grey (5%) and white (95%) that we believe may hold clues to the onset of eruptive activity. We demonstrate that the color variations correspond to both textural and compositional variations between the clast types. Both pumice types have bulk compositions of high-K, high-silica dacite to low-silica rhyolite, but there are sufficient compositional differences (e.g., ~150?ppm lower Ba at equivalent SiO2 content and 0.03?wt.% higher TiO2 in white pumice than grey) to suggest that the two pumice populations are not related by simple fractionation. Trace element concentrations in crystals mimic bulk variations between clast types, with grey pumice containing elevated Ba, Cu, Pb, and Zn concentrations in both bulk samples (average Cu, Pb, and Zn concentrations are 27, 35, and 82 in grey pumice vs. 11, 19, and 60 in white pumice) and biotite phenocrysts and white pumice showing elevated Li concentrations in biotite and plagioclase phenocrysts. White and grey clasts are also texturally distinct: White pumice clasts contain abundant phenocrysts (44?C57%), lack microlites, and have highly evolved groundmass glass compositions (76.4?C79.6?wt.% SiO2), whereas grey pumice clasts contain a lower percentage of phenocrysts/microphenocrysts (35?C49%), have abundant microlites, and have less evolved groundmass glass compositions (69.4?C73.8?wt.% SiO2). There is also evidence for crystal transfer between magma producing white and grey pumice. Thin highly evolved melt rims surround some fragmental crystals in grey pumice clasts and appear to have come from magma that produced white pumice. Furthermore, based on crystal compositions, white bands within banded pumice contain crystals originating in grey magma. Finally, only grey pumice clasts form breadcrusted surface textures. We interpret these compositional and textural variations to indicate distinct magma batches, where grey pumice originated from an originally deeper, more volatile-rich dacite recharge magma that ascended through and mingled with the volumetrically dominant, more highly crystalline chamber that produced white pumice. Shortly before eruption, the grey pumice magma stalled within shallow fractures, forming a vanguard magma phase whose ascent may have provided a trigger for eruption of the highly crystalline rhyodacite magma. We suggest that in the case of the Cerro Galán eruption, grey pumice provides evidence not only for cryptic silicic recharge in a large caldera system but also a probable trigger for the eruption.  相似文献   

13.
Introduction From the records of Wudalianchi volcanic group eruption in 1720~1721 obtained from the Man ethnic group files of Heilongjiang General Yamen in Qing Dynasty (WU, 1998; CHEN, WU, 2003), we have discovered the eruption time, state, material and scale of Laoheishan and Hu-oshaoshan volcanoes, as well as numerous seismic records. These historical materials are discov-ered for the first time although the study on Wudalianchi volcanic group has a long history. These earthquakes co…  相似文献   

14.
15.
1783/4 has been recognised as a mortality crisis year in the population history of England. This demographic incident coincides with the Laki Craters eruption, Iceland, which began in June 1783 and fumigated many parts of Europe with volcanic gases and particles. Many reports and proxy climate records implicate the volcanic cloud in meteorological anomalies, including notably hot 1783 summer conditions in England and a severe subsequent winter. We present here a detailed analysis of the geographical and temporal trends in English mortality data, and interpret them in the light of the climatological records and observations of the pollutant cloud. We show that there were two distinct crisis periods: in August-September 1783, and January-February 1784, which together accounted for ~20,000 extra deaths. In both cases, the East of England was the worst affected region. Possible causes for the two crisis periods are considered and we conclude that the timing and magnitude of the winter mortality peak can be explained by the severe cold of January 1784. The late summer mortality followed 1–2 months after the very hot July of 1783 and may also have been related to the weather, with the time lag reflecting the relatively slow spread of enteric disease or the contraction of malaria. However, it is hard to explain the entire late summer anomaly by these high temperature causes. We therefore consider that fine acid aerosol and/or gases in the volcanic haze may also have contributed to the unusual August-September mortality. Given that complex radiative and dynamical effects of the volcanic cloud are implicated in the climatic anomalies in 1783–4, it is likely that the Laki Craters eruption did play a role in the English mortality crises of the same period.Editorial responsibility: R. Cioni  相似文献   

16.
Understanding explosive volcanic eruptions, especially phreatomagmatic eruptions, their intensities and energy budgets is of major importance when it comes to risk and hazard studies. With only a few historic occurrences of phreatomagmatic activity, a large amount of our understanding comes from the study of pre-historic volcanic centres, which causes issues when it comes to preservation and vegetation. In this research, we show that using 3D geometrical modelling it is possible to obtain volume estimates for different deposits of a pre-historic, complex, monogenetic centre, the Mt. Gambier Volcanic Complex, south-eastern Australia. Using these volumes, we further explore the energy budgets and the magnitude of this eruption (VEI 4), including dispersal patterns (eruption columns varying between 5 and 10 km, dispersed towards north-east to south), to further our understanding of intraplate, monogenetic eruptions involving phreatomagmatic activity. We also compare which thermodynamic model fits best in the creation of the maar crater of Mt. Gambier: the major-explosion-dominated model or the incremental growth model. In this case, the formation of most of the craters can best be explained by the latter model.  相似文献   

17.
Continuous tilt changes during the 2004–2005 effusive-explosive episodes at Volcán de Colima (México) were recorded simultaneously by two tiltmeters installed on opposite sides of the volcano at elevations of 2200 m and 3060 m above sea level. Data indicate that the 2004 lava extrusion was preceded by an inflation accompanied by a deflation. The 2005 explosion sequences were associated with a deflationary–inflationary tilt. The period between the 2004 extrusion and the 2005 explosions was characterized by an inflationary tilt during a 3 month period. Two deformation sources were located. The first was situated at a depth between 300 m and 1800 m beneath the crater at the northern flank of the volcano and was responsible for volcano deformation during the preliminary September 2004 stage, the October 2004 extrusion, and the initial stage of the transition period and the March 2005 explosion sequence. The second source was located at a depth between 1800 m and 2800 m beneath the crater at the southern flank of the volcano and was responsible for volcano deformation during the final stage of the transition period and the May–June 2005 explosion sequence.  相似文献   

18.
19.
Sierra Negra volcano began erupting on 22 October 2005, after a repose of 26 years. A plume of ash and steam more than 13 km high accompanied the initial phase of the eruption and was quickly followed by a ~2-km-long curtain of lava fountains. The eruptive fissure opened inside the north rim of the caldera, on the opposite side of the caldera from an active fault system that experienced an mb 4.6 earthquake and ~84 cm of uplift on 16 April 2005. The main products of the eruption were an `a`a flow that ponded in the caldera and clastigenic lavas that flowed down the north flank. The `a`a flow grew in an unusual way. Once it had established most of its aerial extent, the interior of the flow was fed via a perched lava pond, causing inflation of the `a`a. This pressurized fluid interior then fed pahoehoe breakouts along the margins of the flow, many of which were subsequently overridden by `a`a, as the crust slowly spread from the center of the pond and tumbled over the pahoehoe. The curtain of lava fountains coalesced with time, and by day 4, only one vent was erupting. The effusion rate slowed from day 7 until the eruption’s end two days later on 30 October. Although the caldera floor had inflated by ~5 m since 1992, and the rate of inflation had accelerated since 2003, there was no transient deformation in the hours or days before the eruption. During the 8 days of the eruption, GPS and InSAR data show that the caldera floor deflated ~5 m, and the volcano contracted horizontally ~6 m. The total eruptive volume is estimated as being ~150×106 m3. The opening-phase tephra is more evolved than the eruptive products that followed. The compositional variation of tephra and lava sampled over the course of the eruption is attributed to eruption from a zoned sill that lies 2.1 km beneath the caldera floor.  相似文献   

20.
Popocatépetl Volcano is located in the central Mexican Volcanic Belt, within a densely populated region inhabited by over 20 million people. The eruptive history of this volcano indicates that it is capable of producing a wide range of eruptions, including Plinian events. After nearly 70 years of quiescence, Popocatépetl reawakened in December 21, 1994. The eruptive activity has continued up until the date of this submission and has been characterized by a succession of lava dome growth-and-destruction episodes, similar to events that have apparently been typical for Popocatépetl since the fourteenth century. In this regime, the episodes of effusive and moderately explosive activity alternate with long periods of almost total quiescence. In this paper we analyze five years of volcano-tectonic seismicity preceding the initial eruption of the current episode. The evolution of the V-T seismicity shows four distinct stages, which we interpret in terms of the internal processes which precede an eruption after a long period of quiescence. The thermal effects of a magma intrusion at depth, the fracturing related to the slow development of magma-related fluid pathways, the concentration of stress causing a protracted acceleration of this process, and a final relaxation or redistribution of the stress shortly before the initial eruption are reflected in the rates of V-T seismic energy release. A hindsight analysis of this activity shows that the acceleration of the seismicity in the third stage asymptotically forecast the time of the eruption. The total seismic energy release needed to produce an eruption after a long period of quiescence is related to the volume of rock that must be fractured so imposing a characteristic threshold limit for polygenetic volcanoes, limit that was reached by Popocatépetl before the eruption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号