首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glacial meltwater and sediment at the source of the River Rhône have been analyzed to determine: 1. the partitioning of Al, Cd, Co, Cu, Cr. Fe, Mn, Ni, Pb and Zn between the water and particulate phase. 2. the particle size ranges which affect the dissolved trace metal ion composition of the meltwater and 3. the availability (potential release) of the ten trace metal ions from the sediment. Greater than 80% of the total Cd, Cu, Mn, Ni and Zn were found to be in operationally-defined (0.4 μm) dissolved forms. Fe and Al in the meltwater are primarily associated with particles in the size range 0.4–8 μm, while Cd. Cu, Mn, Ni and Zn occur with particles smaller than 0.1 μm. For the sediment, Cu, Ni and Pb were significantly present as exchangeable forms; only Cu, Ni, Pb and Zn were determined as organicallybound forms.  相似文献   

2.
Four 2–3 m sediment cores were taken at the sites on the periphery of mussel raft concentrations in the subtidal zone of the inner Ría de Vigo (Galicia, NW Spain) with a view to evaluate the potential risk to mariculture from sediment-borne trace elements (As, Cd, Cr, Cu, Mn, Ni, Pb and Zn). The distribution of each of these elements in reactive, organic, pyrite and silicate-bound fractions was determined at 64 samples, and these data were used to calculate the degree of trace metal pyritization (DTMP) of each metal/metalloid. In the top 10–20 cm, relatively oxic conditions led to As, Cd, Cu, Pb and Zn having large reactive fractions due to their association with Fe and Mn oxyhydroxides. At lower levels, anoxic conditions favoured by intense diagenesis led to the precipitation of trace metals and metalloids as sulphides, with or without association with pyrite. Particularly large pyrite fractions in the 20–100 cm layer are attributed to the organic matter of this layer being more marine in origin than that of deeper sediments. DTMP was greatest for Cu and As, and least for Pb, Zn and Cr. The risk of trace element toxicity in the event of disturbances instituting oxic conditions in these sediments is discussed.  相似文献   

3.
Surface sediment samples collected from the inner shelf region of the Bay of Bengal, were analysed for the major elements and total and acetic acid available trace elements (Al, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, Si, Zn) to evaluate geochemical processes influencing their distribution. Major elemental analysis showed that the sediments had high concentrations of Si and relatively low concentrations of Al and Fe. Both major elemental and trace metal concentrations indicated that the sediments represent weathered products of granite and charnockite. Normalization of metals to Al indicated relatively high enrichment factors for Pb, Cd, Zn and Cr. The higher proportions of nondetrital Pb (66%), Cd (41%) and Co (28%) reveal metal contamination due to anthropogenic inputs. Factor analysis (FA) identified six possible types of sedimentological and geochemical associations. The dominant factor accounting for 26.9% of the total variance identifies an anthropogenic input and accumulation of nondetrital Cd, Co, Cr, Ni and Pb. Association of these metals with CaCO3 reveals that shell fragments in the surface sediments are likely act as a carrier phase for nondetrital metals. The results are discussed in the context of the sources and pathways of elements in the Bay of Bengal.  相似文献   

4.
The concentrations of 45 elements, and the content of organic substances, amorphous inorganic substances and minerals were determined in 26 samples of Elbe River bottom sediments to determine the correlation between the element composition and the grain size in the £ \le 4, 4--8, 8--16, 16--32, 32--63 7m and bulk samples £ \le 63 7m fractions. The purpose of this study was to obtain information about the role of particle size and their mineral composition as a control of element concentrations in sediments, the potential remobilization of elements under changing environmental conditions, and the chemical speciation of the large excess concentrations of elements in this system.¶About 22--56% of the estimated element yield was associated with sediments with a grain size of less than 4 7m and 82--97% of the element yield was found in the fraction smaller than 32 7m. Sequential extraction carried out for 20 potentially reactive elements in the £ \le 63 7m bulk samples and the £ \le 4 7m fraction showed the increased importance of exchangeable ions in the order Mn = Ni < Mg < Sr < Cu < Zn < Ca < K < Cd < Na < Mo, reducible fractions Zn < Sr < Mo < Co < Cu < Ni < Pb < Mn < Cr < Be < V = Fe < As < Ag, oxidizable chemical phases As = Ca < Cd < K < Sr < Fe = Mn < Zn = Mg < Mo < Co = Ag < Pb < Li < Cu = V < Ni < Cr = Na < Be with small concentrations from lithogenic phases Mn < As < Pb < Sr < Zn = Cu = Na < Be < V < Ni < Cr < Fe < K < Mg < Li. The major accumulative phases were identified for the individual elements.  相似文献   

5.
The concentration and areal distribution of selected trace metals (Cu, Zn, Pb, Cd, Mo, Ni, Mn and Hg) in surficial sediments of Saint John Harbour, New Brunswick, Canada, were studied to determine the extent of anthropogenic input and to estimate the effects of dumping dredged material in the outer harbour. Hg and Cd are of especial concern, since the disposal of dredge material containing these two elements is regulated under the Ocean Dumping Control Act.The concentrations of all metals are low: Cu 16, Zn 53, Pb 24, Cd 0.16, Mo 3, Ni 16, Mn 296 and Hg 0.04 μg g?1. Hg and Cd levels in sediments are well below the permissible limits of 0.75 and 0.6 μg g?1, respectively, set by the Ocean Dumping Control Act.The mean concentrations of trace elements are similar to the low mean values in the unpolluted Bay of Fundy. There is an overall decline in concentrations of metals in the sediments from the inner to the outer harbour. Comparison of the metal levels in the sediments from different areas within the harbour indicate that there is a detectable anthropogenic input in the Courtenay Bay area. Trace metal levels at the dumpsite are significantly lower than in the Courtenay Bay area, where the bulk of the dredged material originates.  相似文献   

6.
This study focuses on the trace and rare earth elements(REE) geochemistry of the Nkporo and Ekenkpon Shales of the Calabar Flank.The main aim is to infer their depositional environment and the degree of their metal enrichment.The shale samples were analyzed using inductively coupled plasma mass spectrometry.The results indicated that the mean concentrations of K,Na,and Fe in Nkporo and Ekenkpon Shales are 1.45,0.4,and 4.17 wt%,and 1.11,0.44,and 5.42 wt%;respectively.The Nkporo Shale is enriched with the following trace elements;PMn Sr Ba Zn Ce Rb Zr VCr Ni and depleted in the following trace elements;Ta GeSb Bi Cd Ag Te In Hg.While the Ekenkpon Shale is enriched with the following trace elements;P Mn Ba Sr VCe Zr Rb Cr Zn Ni and depleted in;Sb Ge Bi Ag Ce Te InHg.The concentration of redox-sensitive elements such as V,Ni,Mo,U,Cu,Cr,Re,Cd,Sb,Ti,Mn,and their ratio V/Mo and U/Mo in the black and grey shale samples show different patterns.The REE obtained from the Nkporo and Ekenkpon Shales were PAAS normalized.The Nkporo Shale showed a slightly flat light rare-earth element(LREE),middle rare-earth element(MREE),and heavy rare earth element(HREE) pattern enrichment.Ce/Ce*ranges from 0.95 to 1.09 in Nkporo Shale and 0.67 to 1.40 in Ekenkpon Shale.The Ekenkpon Shale showed a slight LREE,MREE enrichment,and depleted HREE patterns.The Mn contents and U/Mo ratio in Nkporo and Ekenkpon Shales suggests a poor oxygen transitional environment.The V/Mo and V/(V+Ni) ratios indicated that the Nkporo shales were deposited in an anoxic to suboxic conditions and Ekenkpon shales were also deposited under an anoxic to suboxic conditions.The V/Ni ratio indicated that the organic matter in the Nkporo shale is terrigenous while that of the Ekenkpon shales are both terrigenous and marine in origin.  相似文献   

7.
To assess the potential ecological and health risks of trace elements(Hg,Cd,As,Mn,Sb,Pb,Cu,Ni,Cr,and Zn),a total of 138 soil samples from rice paddies were collected during the rice harvest season in the Wanshan mining area,Guizhou Province,Southwest China.Factors of the pollution load index(PLI),geo-accumulation index(I-Geo),enrichment factor(EF),and risk index(RI)were determined.High concentrations of Hg,Sb,As,Zn,Cd,Cu,and Mn were observed in the soils.The PLI,I-Geo,and EF results all showed high levels of contamination by Hg and Sb and moderate levels of contamination by As,Pb,Zn,Cu,Cd,and Mn.There was no significant contamination from Ni and Cr.The RI was very high,with Hg as the dominant pollutant,as expected,indicating that the historical large-scale Hg mining,as well as artisanal mining,has had a significant impact on the Wanshan area.Moreover,coal combustion,manganese factories,and the use of agrochemicals by the local population could also have an impact on the soil through the introduction of heavy metal loads.To address the current state of contamination,pollutant remediation and the regulation control of the anthropogenic activities in Wanshan are urgently needed.  相似文献   

8.
Dust, as a source of trace metal elements, affects the health of society. The spatial and temporal concentrations of dust‐bound trace metals (Cd, Pb, Ni, Zn, Cu, and Mn) in Kuhdasht watershed (456 km2), Lorestan Province, Iran, is investigated. Dust is collected using glass traps placed in ten research stations in the region. The spatial and temporal distribution of dust trace metals are plotted using ARC‐GIS. The highest and the lowest concentrations of Zn (9751150 mg kg?1), Pb (46.352.9 mg kg?1), and Cd (2.443.30 mg kg?1) are obtained in winter, of Ni (98110 mg kg?1) and Cu in autumn (16.053.5 mg kg?1), and of Mn in summer (385505 mg kg?1). The spatial concentrations of dust‐bound trace metals indicate all, except Cu, show a decreasing trend from the mountains toward the plains, similar to that of soil and of dust, except for Zn, which shows higher concentrations in dust than in soil. The potential sources of dust‐bound trace metals and their rate of contamination are also investigated using the enrichment and contamination factors. The major sources of Cd and Zn in the dust of watershed are due to anthropogenic activities or from activities outside the borders.  相似文献   

9.
Concentrations of 13 trace elements (V, Mn, Cr, Co, Cu, Zn, Se, Mo, Ag, Cd, Hg, Tl and Pb) were determined in muscle of bony fishes collected from coastal areas of the Caspian Sea (Kazakhstan, Azerbaijan, Turkmenistan and Iran). In all the fishes, Zn concentration was highest, followed by Cu, Se, Mn and Co, while levels of toxic elements (Ag, Cd, Cd, Tl and Pb) were relatively low. Concentrations of several elements were significantly varied between the species in each sampling area. For most of the trace elements examined, the concentrations decreased significantly with body weight of fishes. In contrast, a positive correlation with body weight was found for Co, Se and Pb concentrations in one fish species, and Hg in 2 fish species. Geographical difference in the concentrations of trace elements was examined using the Caspian roach collected from five stations of Iranian coastal waters. The concentrations of Co, Mo, Ag, Cd and Tl were higher in fishes from western stations than those from eastern stations, whereas the opposite trend was observed for Hg, indicating that local sources of trace metal pollution may be present in the Iranian coastal areas of the Caspian Sea. Levels of trace elements in Caspian fishes were relatively low in comparison to those of other regions, but Zn and Hg levels in some specimens exceeded the guideline values for food.  相似文献   

10.
Concentrations of dissolved metals (Cd, Cu, Ni, Mn and Zn) were determined for summer and winter, under low-flow conditions in Port Jackson, a microtidal, well-mixed estuary in south-east Australia. Mean concentrations of Cd (0.04+/-0.02 microg/l), Ni (0.86+/-0.40 microg/l), Mn (20.0+/-25 microg/l) and Zn (6.47+/-2.0 microg/l) were below water quality guidelines. Concentrations of Cu (1.68+/-0.37 microg/l), however, slightly exceeded recommended values. Dissolved Ni and Mn behaved mostly conservatively, whereas Cd, Cu and Zn showed mid-estuarine maxima. Peaks in Cd, Cu and Zn concentrations were located in the upper estuary, independent of the salinity and suspended particulate matter loading, and were consistent with anthropogenic inputs of metals in the estuary. Concentrations of dissolved Cu were highest in summer, whereas concentrations of Cd, Ni and Mn were significantly lower in summer than winter (P< or =0.05). The increase in temperature and biological activity during summer explained the seasonal variation. The sequence of log K(d) values (20-30 salinity) was Mn>Zn>Cu>Ni. These results give unique information concerning the contemporaneous distribution of dissolved trace metals in the Port Jackson estuary and they provide a data set against which the long-term contamination may be assessed.  相似文献   

11.
Removal of Al, As, Cd, total Cr (Tot. Cr), Cu, Total Fe (Tot. Fe), Mn, Ni, Pb, Sb, Sn, and Zn from urban effluent by wastewater treatment plants (WWTPs) operated under five‐stage Bardenpho® process were investigated and water soluble metals in the dewatered sludge were quantified. Samples were collected from two WWTPs on a weekly basis over an approximately 2.5‐year time span. Tot. Fe and Al were the most abundant, As, Pb, Ni, Cu, and Cd were the least abundant metals in the influents of both WWTPs. Removal efficiencies above 75% were achieved for Tot. Cr, Tot. Fe, Al, and Cu, whereas, no significant removal was observed for As, Cd, Pb, Sb, and Sn. Removal of Tot. Cr, Cu, Tot. Fe, Zn, Al, Mn, and Ni were influenced by influent suspended solids concentrations, and of Tot. Cr, Zn, and Cd were influenced by their initial content in the influent. Zn removal efficiency of biological nutrient removal (BNR) system in this study was higher and Cd removal efficiency was lower than that of conventional activated sludge reported in the literature. No remarkable difference for metals such as Cu, Mn, Ni, and Pb was observed between the removal efficiencies of conventional system and BNR system.  相似文献   

12.
Baseline levels of a number of trace metals have been determined in samples of water and sediment from Baffin Bay. Concentrations of Cr, Mn, Fe, Ni, Cu and Cd in the waters of Baffin Bay are generally lower than those observed in eastern Canadian coastal waters, levels being close to reported open ocean concentrations. Nearshore sediment samples, analysed for Cr, V, Mn, Ni, Co, Cu, Zn, Hg and Pb, display comparable concentrations to unpolluted muds in eastern Canadian coastal regions. Concentrations of these elements in the deep sediments of central Baffin Bay closely resemble levels in Atlantic Ocean deep-sea clays.  相似文献   

13.
In this paper, the vertical variations of heavy metal elements (including Cd, Cr, Cu, Hg, Mn, Ni, Pb, and Zn) in the sediments of Songhua Lake are analyzed using sediment cores. A 70‐year evolutionary history of these heavy metal elements in Songhua Lake is described and the sources of the heavy metals in the sediments are investigated by evaluating the pollution characteristics of the metals in terms of their enrichment coefficients and geoaccumulation indexes. The results indicate that Cr, Cu, Mn, Ni, Pb, and Zn in the sediments originated mainly from basin erosion and were transported to the lake by rivers. Cd and Hg in the sediments also originated from basin erosion that occurred prior to the mid‐1990s, and these sediments have since been overlaid by artificial pollution. The distribution of heavy metals in the sediments of Songhua Lake is influenced by many factors, including sediment composition, the relative importance of fluvial input, and artificial pollution.  相似文献   

14.
Estuarine environments are particularly vulnerable to human impacts. In this study, trace elements in Ruppia megacarpa, Halophila ovalis, sediment and porewater were analysed to assess the potential contamination of the Leschenault Estuary, Western Australia, from a primarily agricultural drain. Sediment concentrations of Cd, Cu, Mn, and Ni and were highest nearest the drain while Al, As, Cr, Fe and Zn and were highest further from the drain. H. ovalis showed greater accumulation of Fe, Al, and As than R. megacarpa. Concentrations of Fe, Al, As, and Ni were generally higher in below-ground plant parts than above, suggesting uptake of these trace elements via the sediment-route pathway. This study suggested that the drain was a source of Cu and Mn, with these elements entering the estuary through water inflows. As and Fe, were highest furthest from the drain suggesting input of trace elements from sources other than the drain under study.  相似文献   

15.
The particulate concentrations of 17 trace metals, Al, Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Ag, Sb, Au, Hg, Pb and Th have been measured in the marine atmosphere (58 samples) and in the deep waters (35 samples) of the Tropical North Atlantic. For oceanic suspended matter, our results are similar to those in samples from the Atlantic and the Pacific Oceans collected during the GEOSECS Program. Based on these results, we have made a flux balance for the mixed layer between input via the atmosphere and removal through small and large particles. These data show that the primary flux of suspended aluminosilicates in the Tropical North Atlantic is attributable to the atmospheric input. Elements Sc, Th, Fe, V, Mn, Co and Cr show high correlation with Al in the marine atmosphere. Of these elements, Fe, Mn, V, Co and Cr are influenced by additional processes such as biological, in the marine environment. For elements Ni, Cu, Zn, Se, Ag, Sb, Au, Hg and Pb, we observe high enrichments (relative to average crustal material) in the marine atmosphere which may be due, at least partially, to the influence of anthropogenic sources. These metals also show similar enrichments in deep ocean suspended matter. Model calculations indicate that the atmospheric flux may not control the deep ocean particulate chemistry of Ni, Cu, Zn, Ag, Sb, Au and Hg. Hence it is likely that, for these elements, the enrichment in the ocean is due to processes within the marine regime, for example their involvement in the biological cycle of the ocean. For Se and Pb, the atmospheric source looks to be the dominant contribution to their particulate concentration in seawater. In the deep North Atlantic, particulate Pb appears to be mostly of anthropogenic origin, which is not the case for Se.  相似文献   

16.
Concentrations of trace elements (V, Cr, Mn, Co, Cu, Zn, Ga, Se, Rb, Sr, Mo, Ag, Cd, Sn, Sb, Cs, Ba, Hg, Tl, Pb and Bi) were determined in muscle and liver of 12 species of marine fish collected from coastal areas in Malaysia. Levels of V, Cr, Mn, Co, Cu, Zn, Ga, Sr, Mo, Ag, Cd, Sn, Ba and Pb in liver were higher than those in muscle, whereas Rb and Cs concentrations showed the opposite trend. Positive correlations between concentrations in liver and muscle were observed for all the trace elements except Cu and Sn. Copper, Zn, Se, Ag, Cd, Cs and Hg concentrations in bigeye scads from the east coast of the Peninsular Malaysia were higher than those from the west, whereas V showed the opposite trend. The high concentration of V in the west coast might indicate oil contamination in the Strait of Malacca. To evaluate the health risk to Malaysian population through consumption of fish, intake rates of trace elements were estimated on the basis of the concentrations of trace elements in muscle of fish and daily fish consumption. Some specimens of the marine fish had Hg levels higher than the guideline value by US Environmental Protection Agency (EPA), indicating that consumption of these fish at the present rate may be hazardous to Malaysian people. To our knowledge, this is the first study on multielemental accumulation in marine fish from the Malaysian coast.  相似文献   

17.
The values for the partition coefficient (Kd) were calculated for Ca, Mg, Cd, Cr, Cu, Fe, Mn, Pb, Ni, and Zn at 19 sites in the Capivara hydroelectric reservoir in Brazil. It was found that the relative values of Kd follow the order: Cr > Mn > Fe > Cu > Zn > Ni > Pb > Ca > Cd, differing from the values reported for Kd in aquatic systems in the northern hemisphere. A hierarchical cluster analysis and linear correlations showed that Cr is strongly associated with Fe and Cu, and that Cd is the only metal found in complexation with organic matter, explaining its higher solubility.  相似文献   

18.
Pollution resulting from terrestrial and aquatic trace elements has become a severe problem across the world. Organic carbon(OC) content has a high affinity for metallic contaminants and it acts as a significant sink for trace elements. The decomposition of OC content directly influences the bioavailability of trace elements. The decomposition of OC content and OC distribution vary spatially, these processes affect the release of trace elements and need further research. In the current study, se...  相似文献   

19.
We evaluated the application of DGT (diffusion gradients in thin films) as a tool to determine Cu, Zn, Ni, Cd, Pb and Mn concentrations and speciation in a hardwater eutrophic lake. This technique was used in situ during six sampling periods over one year in Lake Greifen. The DGT-labile species of Cu and Ni amounted to 15-25% of the total dissolved concentrations. Speciation by ligand-exchange/DPCSV indicated that Cu and Ni were predominantly organically complexed (>99%). Thus, the DGT-labile species for Cu and Ni were much more abundant than the free ionic and inorganic species determined by ligand-exchange/DPCSV. The results can be explained by incomplete metal exchange of very strong complexes with the chelating resin in the DGT devices, metal exchange of less abundant weaker complexes, and by slow diffusion of exchangeable organic complexes. For Zn (36 to >90% DGT-labile) and Mn (50 to 100% DGT-labile), the results indicated that these metals are less strongly organically complexed. A larger fraction of Zn occurred in DGT-labile species in the hypolimnion than it did in the surface water, probably due to a larger concentration of strong ligands in the productive surface water. DGT-labile Cd- (0.01-0.02 nM) and Pb-species (0.03-0.06 nM) were detected at very low levels. The combination of measurements of dissolved and DGT-labile species showed a decrease of Cu, Zn, Cd and Mn concentration at 2.5 m from June to August, which was probably linked to intensive sedimentation of organic matter during summer stagnation. Mixing and oxygenation of the lake in winter-spring led to an increase in dissolved and DGT-labile Ni, Zn and Cd, whereas Mn decreased in the hypolimnion.  相似文献   

20.
Several coastal rocky shores in northern Chile have been affected by the discharges of copper mine tailings. The present study aims to analyze the chemical speciation of heavy metals in relation to the diversity of sessile species in the rocky intertidal benthic community on the northern Chilean coast, which is influenced by the presence of copper mine tailings. In particular, the chemical forms of Cd, Cu, Fe, Mn, Ni, Pb and Zn in beach sediment samples collected in the area influenced by El Salvador mine tailings were studied using a sequential chemical extraction method. In general, all the elements present a maximum concentration in the area near the actual discharge point (Caleta Palito). With regard to Cu and Mn, the concentrations range between 7.2-985 and 746-22,739 microg/g respectively, being lower than background levels only in the control site of Caleta Zenteno. Moreover, the correlation coefficients highlight that Fe, Mn and Ni correlate significantly and positively in the studied area, showing a possible common, natural origin, whilst Cu shows a negative correlation with Fe, Mn and Ni. It could be possible that Cu has an anthropogenic origin, coming from mining activity in the area. Cd, Fe, Mn, Ni, Pb and Zn are mostly associated with the residual phase, whilst Cu presents a different speciation pattern, as resulted from selective extractions. In fact, Cu is highly associated with organic and exchangeable phases in contaminated localities, whilst it is mainly bound to the residual phase in control sites. Moreover, our results, compared to local biological diversity, showed that those sites characterized by the highest metal concentrations in bioavailable phase had the lowest biodiversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号