首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mountney  & Howell 《Sedimentology》2000,47(4):825-849
Sets of aeolian cross‐strata within the Cretaceous Etjo Formation of NW Namibia are bounded by a hierarchy of surfaces, the origin of which are ascribed to one of four processes related to aeolian bedform and erg behaviour. The base of the main aeolian succession is characterized by a basin‐wide erosional supersurface that formed in response to a period of aeolian deflation before the onset of the main phase of erg building. Interdune migration surfaces formed by draa migration are planar in sections parallel to the palaeowind and are inclined at up to 5° in an upwind direction (SW). Perpendicular to the palaeowind, interdune surfaces form 500‐m‐wide troughs, signifying crestline sinuosity within the original bedforms. Superimposition surfaces are inclined at 5–10° in a downwind direction and indicate the migration of crescentic oblique dunes over larger, slipfaceless transverse draa. Reactivation surfaces associated with minor changes in dune slipface orientation are distinct from other bounding surface types because overlying cross‐strata lie parallel to them, rather than downlap onto them. Analysis of the geometry of these bounding surfaces, together with the orientation of the cross‐strata within the sets that they bound, has enabled the detailed morphology of the original bedforms to be reconstructed. The maximum preserved thickness of individual aeolian sets varies systematically across the basin, from 52 m in the basin depocentre to only 8 m at the basin margin. The set architecture indicates that this spatial variation is primarily the result of decreased angles of bedform climb at the basin margin, rather than the presence of smaller bedforms. Similarly, a temporal reduction in the angle‐of‐climb, rather than a reduction in bedform size, is considered to be responsible for an upward decrease in preserved set thickness. Reductions in bedform climb angle reflect progressive loss of accommodation space as the accumulating erg filled the basin.  相似文献   

2.
Aeolian deposits form noteworthy reservoirs (for example, Norphlet Formation and Rotliegend Group) in hydrocarbon extraction and carbon capture and storage contexts, but stratigraphic architecture imparts significant heterogeneity. Bounding surfaces result from autogenic and allogenic controls and can represent important changes in dune-field dynamics. To further evaluate the impacts of facies heterogeneity and flow-inhibiting bounding surfaces on reservoir performance and reconstruct ancient erg evolution, the stratigraphic architecture of aeolian systems must continue to be studied at multiple scales. This study pairs traditional methods (for example, measured stratigraphic sections) with advanced technologies (for example, drone-derived outcrop models) to precisely resolve the metre to kilometre-scale three-dimensional stratigraphic architecture of wet aeolian Middle Jurassic Entrada Sandstone outcrops located at Rone Bailey Mesa near Moab, Utah, USA. Five facies are identified, primarily based on sedimentary fabrics, and are grouped into three associations named dune, sabkha and sand sheet. Statistical analyses of gamma-ray spectrometer and automated mineralogy data indicate a distinct mineralogical difference between dune (quartz-rich) and sabkha (more feldspathic) packages, suggesting that gamma-ray logs may be used to better predict facies distribution in the subsurface. Seven modelled super bounding surfaces are planar to undulatory, with no perceived spatial trends. Five modelled interdune migration surfaces are undulatory but exhibit an average 0.09° angle of climb roughly parallel to the palaeocurrent direction. Two modelled superposition surfaces are linear to sinuous in plan-view. Laterally discontinuous sabkha packages observed are interpreted to be remnants of closed, damp, interdune flats located between ca 8.5 to 17.0 m tall, sinuous, transverse bedforms or patches of such bedforms. Based on stratigraphic architecture interpretations, the Entrada Sandstone preserves signals of allogenic forcing and localized autogenic bedform cannibalization of the substrate. The findings of this study, some of which are not commonly recognized in wet aeolian facies models, enhance the understanding of erg evolution and can parameterize static models of aeolian reservoirs.  相似文献   

3.
The Permian Cedar Mesa Sandstone of south‐east Utah is a predominantly aeolian succession that exhibits a complex spatial variation in sedimentary architecture which, in terms of palaeogeographic setting, reflects a transition from a dry erg centre, through a water table‐controlled aeolian‐dominated erg margin, to an outer erg margin subject to periodic fluvial incursion. The erg margin succession represents a wet aeolian system, accumulation of which was controlled by progressive water table rise coupled with ongoing dune migration and associated changes in the supply and availability of sediment for aeolian transport. Variation in the level of the water table relative to the depositional surface determined the nature of interdune sedimentary processes, and a range of dry, damp and wet (flooded) interdune elements is recognized. Variations in the geometry of these units reflect the original morphology and the migratory behaviour of spatially isolated dry interdune hollows in the erg centre, locally interconnected damp and/or wet interdune ponds in the aeolian‐dominated erg margin and fully interconnected, fluvially flooded interdune corridors in the outer erg margin. Relationships between aeolian dune and interdune units indicate that dry, damp and wet interdune sedimentation occurred synchronously with aeolian bedform migration. Temporal variation in the rates of water‐table rise and bedform migration determined the angle of climb of the erg margin succession, such that accumulation rates increased during periods of rapidly rising water table, whereas sediment bypassing (zero angle of climb) occurred in the aftermath of flood events in response to periods of elevated but temporarily static water table. During these periods in the outer erg margin, the expansion of fluvially flooded interdunes in front of non‐climbing but migrating dunes resulted in the amalgamation of laterally adjacent interdunes and the generation of regionally extensive bypass (flood) supersurfaces. A spectrum of genetic depositional models is envisaged that accounts for the complex spatial and temporal evolution of the Cedar Mesa erg margin succession.  相似文献   

4.
The origin of bounding surfaces in ancient aeolian sandstones   总被引:4,自引:1,他引:4  
Three orders of aeolian bounding surface are arranged in a hierarchy based on their extent and regularity. First order surfaces are the most extensive. They are flat-lying bedding planes cutting across all other aeolian structures and are attributed to the passage of the largest aeolian bedforms—draas—across an area. First order surfaces cut across second order surfaces, which are gentle to moderately dipping surfaces bounding sets of cross-strata. Second order surfaces are attributed to the passage of dunes across draas, or to longitudinal dunes migrating across the lower ice slopes of draas. Third order surfaces bound bundles of laminae within coscts of cross laminae and are due either to local fluctuations in wind direction and velocity or to changes in airflow patterns caused by configurational changes in dune patterns. All these bounding surfaces could be explained by wind variations and dune migration, but the rates of dune migration relative to probable sediment deposition rates are incompatible with this general explanation of the form and spacing of the bounding surfaces. The concept of climbing bedforms of different hierarchical order together with subsidence provides a better explanation. Analogous bounding surfaces in aqueous bedforms have already been attributed to climbing bedforms of differing hierarchical order.  相似文献   

5.
《Sedimentology》2018,65(4):1301-1321
Aeolian dune fields evolve from protodunes and small dunes into a pattern of progressively fewer, larger and more widely spaced dunes within limits defined by boundary conditions. However, the allogenic boundary conditions that promote aeolian dune‐field development, accumulation of strata and preservation of accumulated strata are not the same. Autogenic processes, such as dune interactions, scour‐depth variation along migrating dunes and substrate cannibalization by growing dunes, result in removal of the stratigraphic record. Moreover, dune‐field events may be collapsed into major erosional bounding surfaces. The question is what stages of evolving dune fields are represented in the rock record? This case study of ca 60 m of Jurassic Entrada Sandstone on the Utah/Arizona border (USA) defines stratigraphic intervals by gross architecture of bounding surfaces and sets of cross‐strata. The interpreted intervals in stratigraphic order consist of: (i) a lower sabkha bed that transitions upward into erosional remnants of small sets representing an initial wet aeolian system; (ii) large, compound cross‐strata representing a mature dune field; (iii) isolated scour‐fill representing negatively climbing dunes that produced ca 25 m of palaeo‐topographic relief; (iv) downlapping sets that fill the landscape‐scale relief; (v) four intervals of stacked climbing sets that each represent short periods of time; and (vi) an upper sabkha bed that again transitions into small sets representing a wet system. Accumulations appear to be associated with sediment pulses, a rising water table, and filling of scoured troughs and landscape‐scale depressions. Preservation of the accumulations is selective and associated with a rising water table, burial and subsidence. The preserved record appears remarkably incomplete. Speculation about missing strata gravitates towards cannibalization of the record of early dune‐field construction, and strata removed during the formation of bounding surfaces. This local Entrada record is thought to represent a point in the spectrum of preservation styles in the rock record.  相似文献   

6.
The Late Proterozoic Bakoye 3 Formation is a predominantly aeolian unit deposited in the glacially influenced cratonic Taoudeni Basin of western Africa. The Bakoye 3 can be divided into five distal units, two proximal units, and a local upper massive sandstone. The basal Unit 1 shows a complex interfingering of aeolian and subaqueous structures, and is interpreted as the precursor of the overlying erg sequences. Unit 2 consists of compound, trough cosets of aeolian cross-strata dominated by grain-flow strata. The unit is interpreted to represent draas with superimposed, small, crescentic dunes. A super bounding surface marks the termination and planation of the erg. Unit 3 is distinguished from the underlying Unit 2 by its larger, overall simple sets of trough cross-strata, interpreted to represent simple, large, crescentic dunes. Unit 4 occurs only locally in laterally discontinuous, large troughs. In one case the trough is filled by small sets of tabular cross-strata dominated by grain-flow deposits. At another section, wedges of coarse-grained wind-ripple strata fill the trough. Unit 4 may represent remnants of ergs or, more likely, local deposition in depressions. The depressions, in the latter scenario, formed with the development of a second super surface that truncates Unit 3. Unit 5 consists of very large sets of wind-ripple cross-strata with less common sets of grain-flow deposits. These deposits are believed to represent enormous dunes with large plinths and subordinate slip face development. A third super surface separates Unit 5 from overlying marine deposits. Together, Units 1–5 represent the core of the ergs in a distal position relative to adjacent upland source areas. Proximally, aeolian deposits are simple, smaller, trough sets interpreted as moderate sized crescentic dunes. Coarse-grained braided stream deposits are prominent. Locally, the top of the Bakoye 3 is marked by channelized mass-flow deposits containing aeolian blocks, and is believed to have resulted from iceberg grounding. An overall environment for the Bakoye 3 is one of uplands marked by ice sheets, with outwash plains extending distally to aeolian ergs. Super surfaces, all marked by polygonal fractures and coarsegrained sediment, represent periods of erg termination that may be linked to glacial-fluvial-aeolian cycles.  相似文献   

7.
The Algodones dune field of southeastern California is one of the largest active dune fields in North America. The dune field is migrating in an easterly direction, oblique to the resultant sand flow direction (S 24° E). The migration of the Algodones results from an interaction between regional winds and the dune field. This interaction generates a localized secondary flow that has caused the dune field to migrate in a direction oblique to the resultant sand flow direction. Four lines of evidence suggest that the Algodones has migrated in an easterly direction: (1) A ramp, interpreted as the trailing edge of the dune field, 35 m thick and 500 m wide composed of aeolian deposits that borders the western edge of the dune field. No similar deposits are found on the eastern (leading edge) margin of the dune field. (2) Leading-edge sand-sheet deposits are exposed in interdune areas within the dune field. These deposits are west of the modern leading-edge sand sheet. (3) Across the breadth of the dune field sands are consistently coarser and more poorly sorted in the west and finer and better sorted in the east. This observation suggests that sand is transported from west to east. (4) Eastward migration of a large compound-complex crescentic dune. If the dune field continues to migrate it will deposit a vertical sequence consisting of: a basal sand-sheet deposit consisting of wind and water-ripple laminae, small-scale aeolian cross-strata, and ephemeral stream (wadi) deposits; aeolian dune deposits consisting of medium-scale aeolian compound cross-strata; small-scale simple sets of aeolian cross-strata with highly variable dip directions; a sand sheet containing low-angle wind-ripple cross-strata capped by a coarse sand lag super bounding surface.  相似文献   

8.
The Middle Jurassic Todilto Member of the Wanakah Formation is a carbonate and gypsum unit inset into the underlying aeolian Entrada Sandstone in the San Juan Basin. Field and thin section study of the uppermost Entrada and Todilto at Ghost Ranch, New Mexico, identified Todilto facies and their relationship to remnant Entrada dune topography. Results support the previous interpretation that the Entrada dunes, housed in a basin below sea level, were rapidly flooded by marine waters. Mass wasting of the dunes gave rise to sediment‐gravity flows that largely buried remnant dune topography, leaving ca 12 m of relief that defined the antecedent condition for Todilto deposition. Previously interpreted as seasonal varves deposited in a stratified water body, the Todilto is reinterpreted as a microbial biolaminite. Most diagnostic are organic‐rich laminae with structures characteristic of filamentous microbes and containing trapped aeolian silt, and clotted‐texture laminae with a fabric associated with calcification of extracellular polymeric substances. The spatial arrangement of Todilto facies is controlled by the dune palaeotopography. A continuous basal laminated mudstone thickens over the dune crest, reflecting the optimum conditions for microbial mat development, and is interpreted to have been deposited when marine waters submerged the topography. Subsequent drying caused emergence of the crestal area, and formation of tepee structures and a dissolution breccia. Gypsiferous mudflats and periodic ponds occupied the dune flanks and interdune area, with gypsum concentrated within the interdune area. Entrada sands remained unstable during Todilto deposition with common injection structures into the Todilto, and a remnant slope caused the downslope movement and folding of Todilto strata on the upper lee face. Although some expansion of the gypsum occurred in the subsurface, facies architecture fostered development of a dissolution front adjacent to the interdune gypsum body with section collapse of gypsiferous limestone on the dune flanks.  相似文献   

9.
Aeolian dune fields characterized by partly vegetated bedforms undergoing active construction and with interdune depressions that lie at or close to the water table are widespread on Skei?arársandur, Southern Iceland. The largest aeolian dune complex on the sandur covers an area of 80 km2 and is characterized by four distinct landform types: (i) spatially isolated aeolian dunes; (ii) extensive areas of damp and wet (flooded) interdune flat with small fluvial channels; (iii) small aeolian dune fields composed of assemblages of bedforms with simple morphologies and small, predominantly damp, interdune corridors; and (iv) larger aeolian dune fields composed of assemblages of complex bedforms floored by older aeolian dune deposits that are themselves raised above the level of the surrounding wet sandur plain. The morphology of each of these landform areas reflects a range of styles of interaction between aeolian dune, interdune and fluvial processes that operate coevally on the sandur surface. The geometry, scale, orientation and facies composition of sets of strata in the cores of the aeolian dunes, and their relationship to adjoining interdune strata, have been analysed to explain the temporal behaviour of the dunes in terms of their mode of initiation, construction, pattern of migration, style of accumulation and nature of preservation. Seasonal and longer‐term flooding‐induced changes in water table level have caused episodic expansion and contraction of the wet interdune ponds. Most of the dunes are currently undergoing active construction and migration and, although sediment availability is limited because of the high water table, substantial aeolian transport must occur, especially during winter months when the surface of the wet interdune ponds is frozen and sand can be blown across the sandur without being trapped by surface moisture. Bedforms within the larger dune fields have grown to a size whereby formerly damp interdune flats have been reduced to dry enclosed depressions and dry aeolian system accumulation via bedform climb is ongoing. Despite regional uplift of the proximal sandur surface in response to glacial retreat and unloading over the past century, sediment compaction‐induced subsidence of the distal sandur is progressively placing aeolian deposits below the water table and is enabling the accumulation of wet aeolian systems and increasing the likelihood of their long‐term preservation. Wet, dry and stabilizing aeolian system types all co‐exist on Skei?arársandur and the dunes are variously undergoing coeval construction, accumulation, bypass, stabilization and destruction as a result of interactions between localized factors.  相似文献   

10.
An empirical model of aeolian dune lee-face airflow   总被引:12,自引:0,他引:12  
Airflow data, gathered over dunes ranging from 60-m tall complex-crescentic dunes to 2-m tall simplecrescentic dunes, were used to develop an empirical model of dune lee-face airflow for straight-crested dunes. The nature of lee-face flow varies and was found to be controlled by the interaction of at least three factors (dune shape, the incidence angle between the primary wind direction and the dune brinkline and atmospheric thermal stability). Three types of lee-face flow (separated, attached and deflected along slope, or attached and undeflected) were found to occur. Separated flows, characterized by a zone of low-speed (0–3O% of crestal speed) back-eddy flow, typically occur leeward of steep-sided dunes in transverse flow conditions. Unstable atmospheric thermal stability also favours flow separation. Attached flows, characterized by higher flow speeds (up to 84% of crestal speed) that are a cosine function of the incidence angle, typically occur leeward of dunes that have a lower average lee slope and are subject to oblique flow conditions. Depending on the slope of the lee face, attached flow may be either deflected along slope (lee slopes greater than about 20°), or have the same direction as the primary flow (lee slopes less than about 20°). Neutral atmospheric thermal stability also favours flow attachment. As each of the three types of lee-face flow is defined by a range of wind speeds and directions, the nature of lee-face flow is intimately tied to the type of aeolian depositional process (i.e. wind ripple or superimposed dune migration, grainflow, or grainfall) that occurs on the lee slope and the resulting pattern of dune deposits. Therefore, the model presented in this paper can be used to enhance the interpretation of palaeowind regime and dune type from aeolian cross-strata.  相似文献   

11.
The Lower Jurassic erg (aeolian sand sea) deposits of the Wingate Sandstone on the Colorado Plateau are beautifully exposed near Many Farms, Arizona. These 3-D outcrops allow a detailed study of structures and sequenses in the erg body. The erg sequence comprises chiefly oblique dune deposits. The dune facies are in most cases characterized by a well-developed tripartite upbuilding. Each dune coset contains unusually thick and intricate bottomsets, medial low-angle dipping toesets, and upper steeply dipping foresets. The foresets reveal significant across-crest transport of sand and dip within a narrow range of directions towards the ESE. The bottomset beds are composed of compound cross-bedding that documents strong along-crest transport towards the SSW, whereas the toeset beds reveal upslope, downslope, and along-crest transport of sand. The ancient dunes apparently formed in a directionally varying wind flow with prevailing winds (early summer) from the NW and periodic strong winds (late summer) from the SW. The dunes were oblique not only to seasonal transport directions, but also to the resultant annual transport direction and dune migration direction. This was caused by the interaction of the dune system with the primary winds which resulted in secondary airflow and significant along-crest transport of sand. The erg deposits at Many Farms are separated by a number of super bounding surfaces suggesting several episodes of erg formation and destruction. The initial erg system was dominated by transverse dunes, but overlying ergs only contained oblique dunes. All erg systems were bounded to the SW by wide regions of erg margin environments in which aeolian sand sheet, fluvial, and lacustrine facies were deposited. Even though fluvial deposits are absent from the main part of the sequence at the study area, the effects of this system are reflected within the erg deposits at Many Farms.  相似文献   

12.
Abstract New and previously published models of wet aeolian system evolution form a spectrum of types that may be explained in terms of aeolian dune dynamics, rate of water table rise and/or periodicity of interdune flooding. This is illustrated with an example from the Mid‐Triassic (Anisian) Helsby Sandstone Formation, Cheshire, UK. Lenses of damp and wet interdune strata exhibit an intertonguing, transitional relationship with the toe‐sets of overlying aeolian dune units. This signifies dune migration that was contemporaneous with water table‐controlled accumulation in adjacent interdunes. Downwind changes in the geometry and facies of the interdune units indicate periodic expansion and contraction of the interdunes in response to changes in the elevation of the groundwater table and episodic flooding, during which accumulation of dune strata continued relatively uninterrupted. This contrasts with other models for accumulation in wet aeolian systems where interdune flooding is associated with a cessation in aeolian bedform climbing and the formation of a bypass or erosional supersurface. Architectural panels document the detailed stratigraphy in orientations both parallel and perpendicular to aeolian transport direction, enabling a quantitative three‐dimensional reconstruction of genetically related aeolian dune and interdune elements. Sets of aeolian dune strata are composed of grainflow and translatent wind‐ripple strata and are divided by a hierarchy of bounding surfaces originating from oblique migration of superimposed dunes over slipfaceless, sinuous‐crested parent bedforms, together with lee‐slope reactivation under non‐equilibrium flow conditions. Silty‐mudstone and sandstone interdune units are characterized by wind ripple‐, wavy‐ and subaqueous wave ripple‐laminae, desiccation cracks, mud flakes, raindrop imprints, load casts, flutes, intraformational rip‐up clasts and vertebrate and invertebrate footprint impressions and trackways. These units result from accumulation on a substrate that varied from dry‐ through damp‐ to wet‐surface conditions. Interdune ponds were flooded by either fluvial incursions or rises in groundwater table and were periodically subject to gradual desiccation and reflooding. Red silty‐mudstone beds of subaqueous origin pass laterally into horizontally laminated wind‐ripple beds indicating a progressive transition from wet‐ through damp‐ to dry‐surface conditions within a single interdune.  相似文献   

13.
沙丘背风侧气流及其沉积类型与意义   总被引:6,自引:2,他引:6  
哈斯  王贵勇  董光荣 《沉积学报》2001,19(1):96-100,124
在腾格里沙漠东南缘对现代沙丘表面气流、沉积过程的野外观测结果表明,由于区域气流、沙丘形态及其相互作用等的不同使沙丘背风坡气流发生变化,在此发现三种背风坡次生气流 :分离流、附体未偏向流和附体偏向流。前者以弱的反向流为特征多发生在横向气流条件下坡度较陡的背风坡;后二者具有相对高的风速,其中附体流多发生在坡度缓和的背风坡,其方向在横向气流条件下保持原来的方向,而在斜向气流作用下发生偏转且其强度为原始风入射角的余弦函数。根据背风坡气流方向及强度,作者阐述了不同区域气流环境中沙丘背风坡沉积过程、层理类型及特征,探讨了交错层产状与区域气流方向之间的关系.  相似文献   

14.
Reappraisal of the Late Proterozoic Venkatpur Sandstone indicates that the bulk of the sandstone is aeolian in origin. Aeolian stratification types, namely (i) inverse graded translatent strata, (ii) adhesion laminae, (iii) grainflow strata and (iv) grainfall strata, are present throughout the outcrop belt. Nine facies have been identified that represent both aeolian and related aqueous environments within a well-developed erg. Cosets of large cross-beds at the Bellampalli section in the NW of the study area record dune fields in the interior of the sand sea. To the SE, at the Godavari River and Ramgundam sections, a progressive increase in the relative proportion of the flat-bedded to cross-bedded facies and intercalated non-aeolian facies delineates the transition from the dune-field to sand-sheet environment. An alternating sequence of aeolian and marine sediments at Laknavaram, in the extreme SE, marks the termination of the sand sea. Palaeocurrent data suggest that the NW-SE trend of the sections represents a transect across the sand sea in a direction normal to the resultant primary palaeowind direction. Abundant horizontally stratified units in the Vankatpur Sandstone do not always represent the interdune sediments. On the basis of the thickness and geometry of the units, nature of bounding surfaces and associated facies sequence, the facies is variously interpreted to represent interdune, inland sabkha, sand sheet and coastal sand flat deposits.  相似文献   

15.
The existence of a mid‐Cretaceous erg system along the western Tethyan margin (Iberian Basin, Spain) was recently demonstrated based on the occurrence of wind‐blown desert sands in coeval shallow marine deposits. Here, the first direct evidence of this mid‐Cretaceous erg in Europe is presented and the palaeoclimate and palaeoceanographic implications are discussed. The aeolian sand sea extended over an area of 4600 km2. Compound crescentic dunes, linear draa and complex aeolian dunes, sand sheets, wet, dry and evaporitic interdunes, sabkha deposits and coeval extradune lagoonal deposits form the main architectural elements of this desert system that was located in a sub‐tropical arid belt along the western Tethyan margin. Sub‐critically climbing translatent strata, grain flow and grain fall deposits, pin‐stripe lamination, lee side dune wind ripples, soft‐sediment deformations, vertebrate tracks, biogenic traces, tubes and wood fragments are some of the small‐scale structures and components observed in the aeolian dune sandstones. At the boundary between the aeolian sand sea and the marine realm, intertonguing of aeolian deposits and marine facies occurs. Massive sandstone units were laid down by mass flow events that reworked aeolian dune sands during flooding events. The cyclic occurrence of soft sediment deformation is ascribed to intermittent (marine) flooding of aeolian dunes and associated rise in the water table. The aeolian erg system developed in an active extensional tectonic setting that favoured its preservation. Because of the close proximity of the marine realm, the water table was high and contributed to the preservation of the aeolian facies. A sand‐drift surface marks the onset of aeolian dune construction and accumulation, whereby aeolian deposits cover an earlier succession of coastal coal deposits formed in a more humid period. A prominent aeolian super‐surface forms an angular unconformity that divides the aeolian succession into two erg sequences. This super‐surface formed in response to a major tectonic reactivation in the basin, and also marks the change in style of aeolian sedimentation from compound climbing crescentic dunes to aeolian draas. The location of the mid‐Cretaceous palaeoerg fits well to both the global distribution of other known Cretaceous erg systems and with current palaeoclimate data that suggest a global cooling period and a sea‐level lowstand during early mid‐Cretaceous times. The occurrence of a sub‐tropical coastal erg in the mid‐Cretaceous of Spain correlates with the exposure of carbonate platforms on the Arabian platform during much of the Late Aptian to Middle Albian, and is related to this eustatic sea‐level lowstand.  相似文献   

16.
Surveyed outcrops of the Middle Jurassic Entrada Sandstone at Ghost Ranch, New Mexico, show the unusual occurrence of preserved aeolian dune palaeotopography buried beneath subaqueous strata. The preserved dune remnants have relief up to 35 m, trend NNW, and show internal scalloped cross-strata dipping to the WSW, with small sets occurring as both topsets and bottomsets. Outcrop data are best satisfied in computer models by 50 m high, sinuous bedforms that migrated to the WSW, while the sinuosity migrated alongcrest to the NNW. Superimposed small dunes occurred upon the stoss slope, and at the basal lee of the main bedform where they migrated alongslope to the NNW. Remnant dune palaeotopography is buried by onlapping, subaqueous, largely structureless sandstones believed to be derived by mass wasting of the upper portions of the dunes and deposited as sediment-gravity flows that infilled between the dunes. Preservation of dune palaeotopography beneath mass-flow deposits, with no evidence for gradually rising water, argues that flooding of the Entrada dune field was geologically instantaneous. The thickness and lithology of the overlying Todilto Formation conform to slight remnant palaeotopography on the Entrada surface. The Todilto is a laminated limestone and thinnest over remnant dune crestal areas, but thickens and increases in gypsum content downslope until it abruptly yields to a gypsum mound positioned over a remnant interdune hollow. The Todilto laminations are interpreted as seasonal varves deposited below wave base in a density-stratified water body. The flooding event that gave rise to the controversial Todilto water body occurred during Entrada time, with Todilto deposition occurring within an already substantial water body.  相似文献   

17.
Basic types of stratification in small eolian dunes   总被引:5,自引:0,他引:5  
The thinnest recognizable strata in modern eolian dune sands can be grouped into six classes. They are herein named planebed laminae, rippleform laminae, ripple-foreset crosslaminae, climbing translatent strata, grainfall laminae, and sandflow cross-strata. Planebed laminae are formed by tractional deposition on smooth surfaces at high wind velocities. They are very rare in the deposits studied. Grainfall laminae are also formed on smooth surfaces, largely by grainfall deposition in zones of flow separation. They are much more common than planebed laminae, which they closely resemble. Eolian climbing-ripple structures are composed primarily of climbing trans-latent strata, each of which is the depositional product of a single climbing ripple. Climbing translatent strata that formed at relatively high or supercritical angles of ripple climb are typically accompanied by rippleform laminae, which are wavy layers parallel to the rippled depositional surfaces. Ripple-foreset crosslaminae, which are incomplete rippleform laminae produced when the angle of ripple climb is relatively low or subcritical, are rarely visible in eolian sands. Sandflow cross-strata are formed by the avalanching of noncohesive sand on dune slipfaces. Their form varies with slipface height and with other factors.  相似文献   

18.
Wet aeolian systems, in which the water table or its capillary fringe are in contact with the accumulation surface, such that moisture influences sedimentation, are well‐known from modern aeolian systems and several ancient preserved successions are recognized from outcrop. One common mechanism by which accumulation of wet aeolian system deposits occurs is via a progressive rise in the relative water‐table level that is coincident with ongoing dune and interdune migration, the angle of dune climb being determined by the ratio between the rate of relative water‐table rise and the rate of downwind migration of the bedforms. Accumulations of wet aeolian system deposits tend to be characterized by units of climbing dune strata separated by units of damp or wet interdune strata. For simple geometric configurations, where the size of the dune and interdune units, the rate of bedform migration and the rate of aggradation all remain constant over space and time, the resulting accumulation has a simple architecture characterized by sets of uniform thickness inclined at a constant angle. However, the dynamic nature of most aeolian dune systems means that such simple configurations are unlikely in nature. The complexity inherent in these systems is accounted for here by a numerical model in which key controlling parameters, including dune and interdune wavelength and spacing, migration rate and aggradation rate, are allowed to vary systematically both spatially (from a dune‐field centre to its margin) and temporally (in response to changes in sediment availability or water‐table level). The range of synthetic stratigraphic architectures generated by the model accounts for all the best‐known examples of aeolian dune and interdune stratigraphic configurations documented from the stratigraphic record. Modelling results have enabled the erection of a scheme for the classification of dune system type whereby the many elaborate stratal architectures known to exist in nature can effectively be accounted for by only four parameters that are allowed to vary over space and time: dune and interdune wavelength and spacing, rate of bedform migration and rate of accumulation. Results have applied implications, including the modelling of reservoir heterogeneity and the prediction of fluid flow pathways of hydrocarbons, water, CO2 and contaminants in subsurface reservoirs and aquifers, in which low permeability interdune units might act as baffles or barriers.  相似文献   

19.
ABSTRACT Permian aeolian sediments on the island of Arran are divisible into dune (including draa) and interdune deposits. Both types display a distinctive and unusually wide variation in grain size. The dominant features of the dune deposits are grainfall lamination, sandflow lamination, and inverse graded lamination associated with ripple-form lamination and normal graded lamination. The flat-lying aeolian interdune deposits are characterised by granule and sand ripples, horizontal lamination in coarse sand and granules, plane bed lamination and inverse graded lamination. Associated structures include ripple-form lamination and deflation lags. Three types of trace fossil associated with completely bioturbated horizons occur in some low-angle dune and interdune deposits.
The aeolian facies interfinger with alluvial fan deposits giving rise to three recognizable facies belts. Marginal aeolian deposits are associated with fluvial conglomerates and are dominated by interdune deposits and occasionally very thin barchan deposits (set height 3-37 cm). Intermediate aeolian deposits are characterized by interbedded crescentic dune, small draa (dune set height 5 cm-4.5 m) and interdune deposits, and rare fluvial and lake sediments. Basinal aeolian deposits are dominated by draa deposits (dune set height 0.2-28 m) associated with rare interdune sediments. Transverse dunes and draas were moved by north-eastern palaeowinds towards the foot of the alluvial fans. The aeolian sediments were deposited in a fault-bounded desert basin.  相似文献   

20.
Aeolian processes and ephemeral water influx from the Variscan Iberian Massif to the mid‐Cretaceous outer back‐erg margin system in eastern Iberia led to deposition and erosion of aeolian dunes and the formation of desert pavements. Remains of aeolian dunes encased in ephemeral fluvial deposits (aeolian pods) demonstrate intense erosion of windblown deposits by sudden water fluxes. The alternating activity of wind and water led to a variety of facies associations such as deflation lags, desert pavements, aeolian dunes, pebbles scattered throughout dune strata, aeolian sandsheets, aeolian deposits with bimodal grain‐size distributions, mud playa, ephemeral floodplain, pebble‐sand and cobble‐sand bedload stream, pebble–cobble‐sand sheet flood, sand bedload stream, debris flow and hyperconcentrated flow deposits. Sediment in this desert system underwent transport by wind and water and reworking in a variety of sub‐environments. The nearby Variscan Iberian Massif supplied quartzite pebbles as part of mass flows. Pebbles and cobbles were concentrated in deflation lags, eroded and polished by wind‐driven sands (facets and ventifacts) and incorporated by rolling into the toesets of aeolian dunes. The back‐erg depositional system comprises an outer back‐erg close to the Variscan highlands, and an inner back‐erg close to the central‐erg area. The inner back‐erg developed on a structural high and is characterized by mud playa deposits interbedded with aeolian and ephemeral channel deposits. In the inner back‐erg area ephemeral wadis, desiccated after occasional floods, were mud cracked and overrun episodically by aeolian dunes. Subsequent floods eroded the aeolian dunes and mud‐cracked surfaces, resulting in largely structureless sandstones with boulder‐size mudstone intraclasts. Floods spread over the margins of ephemeral channels and eroded surrounding aeolian dunes. The remaining dunes were colonized occasionally by plants and their roots penetrated into the flooded aeolian sands. Upon desiccation, deflation resulted in lags of coarser‐grained sediments. A renewed windblown supply led to aeolian sandsheet accumulation in topographic wadi depressions. Synsedimentary tectonics caused the outer back‐erg system to experience enhanced generation of accommodation space allowing the accumulation of aeolian dune sands. Ephemeral water flow to the outer back‐erg area supplied pebbles, eroded aeolian dunes, and produced hyperconcentrated flow deposits. Fluidization and liquefaction generated gravel pockets and recumbent folds. Dune damming after sporadic rains (the case of the Namib Desert), monsoonal water discharge (Thar Desert) and meltwater fluxes from glaciated mountains (Taklamakan Desert) are three potential, non‐exclusive analogues for the ephemeral water influx and the generation of hyperconcentrated flows in the Cretaceous desert margin system. An increase in relief driven by the Aptian anti‐clockwise rotation of Iberia, led to an altitude sufficient for the development of orographic rains and snowfall which fed (melt)water fluxes to the desert margin system. Quartzite conglomerates and sands, dominantly consisting of quartz and well‐preserved feldspar grains which are also observed in older Cretaceous strata, indicate an arid climate and the mechanical weathering of Precambrian and Palaeozoic metamorphic sediments and felsic igneous rocks. Unroofing of much of the cover of sedimentary rocks in the Variscan Iberian Massif must therefore have taken place in pre‐Cretaceous times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号