首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thomas W. Thompson 《Icarus》1978,36(2):174-188
A high-resolution map of lunar radar reflectivity has been obtained using delay-Doppler interferometry techniques and the 7.5 m (40 Mhz) radar at the Arecibo Observatory in Arecibo, Puerto Rico. This new mapping, an extension of an earlier experiment, demonstrated an improvement of surface resolution to 25–40 km. The new map shows scattering behavior similar to other radar maps at 3.8 and 70 cm wavelengths. The maria backscatter less power than the terrae by factors of one-half to one-fourth, although a few terrae areas have the same low back-scatterer as the mare. The large young rayed craters like Tycho have backscatterer enhancement (over the environs) by about 1.5:1, a smaller difference than that observed at centimeter wavelengths. In addition, the mean scattering behavior of the Moon was measured for a range of angles from 10° to 67° and the new measurements differ little from previous measurements at 6 m wavelength. The radar map and mean backscatter data indicate that: (1) the average radar backscatter at 7.5 m wavelength for the large angles of incidence differs little from scatter at centimeter wavelengths; (2) the maria and terrae have a qualitatively similar scattering behavior although maria backscatter less power by factors of one-half to one quater; and (3) the large rayed craters show relatively small enhancements compared with enhancements at meter and centimeter wavelengths. Several different physical properties of the lunar surface could account for these results.  相似文献   

2.
Examples of pure lunar mountains, dark and light maria, and cratered terrae have been observed with the UBVRI stellar photometry system. Johnson's (1965) absolute calibration was used to compute brightnesses. These brightnesses were reduced using Hapke's photometric model to a standard geometry (angle of incidence 60°, emergence 40°, phase 90°), and relative albedos were then computed.The mountains, as distinct from the other regions, appear to require a wavelength dependent phase function. The albedos for the four topographic types are approximately linear functions of wavelength. The terrae are redder than the maria. Very low contrast between the topographies is predicted for full-moon at wavelengths shorter than 0.30. On the basis of laboratory studies, the lunar particles are comparable to basalt grains having sizes less than 50m. Larger particle sizes are associated with the dark maria and smaller ones with the cratered highlands.  相似文献   

3.
The lunar Orientale basin and its associated facies formed as a result of impact into lunar highland crustal rocks. The crater rim is shown to be closely represented by the position of the outer Rook Mountain ring, approximately 620 km in diam. The inner Rook Mountains form a central peak ring within the crater. The 900 km diam Cordillera ring is a fault scarp which formed in the terminal stages of the cratering event as a large portion of the crust collapsed inward toward the recently excavated crater, forming a mega-terrace. This collapse pushed the wall of the Orientale crater inward, distorting it and slightly decreasing its radius.A domical facies is almost exclusively developed between the Cordillera and outer Rook rings. The domical facies is interpreted to be radially textured ejecta which was disrupted and modified to a jumbled domical texture by seismic shaking associated with the formation of the mega-terrace. The plains and corrugated facies pre-date the mare fill and lie within the Orientale crater. These facies are interpreted to have been deposited contemporaneously with the cratering event as partial and total impact melts which collected on the floor of the crater during the terminal stages of the event. The plains facies, with an estimated thickness of 1 km and a volume of 75000 km3, represent the most thoroughly impact melted materials which collected and ponded in the central portion of the crater floor. The corrugated facies, with an estimated thickness of 1 km and a volume of 180000 km3, represent impact partial melts mixed with debris. A relatively small volume of mare material was subsequently deposited in the basin (probably less than 25000 km3 in Mare Orientale).There is little evidence that the basin has undergone major structural modifications subsequent to the terminal stages of the cratering event. The striking implication for the Orientale gravity anomaly is that mascon formation may be primarily related to crustal excavation and upwarping of a moho plug, rather than attributable to post-impact mare filling.The plains units on the floor of Orientale are similar to Cayley-like plains in other multi-ringed basins and on smaller crater floors. Impact melt deposits may therefore be a significant source of Cayley-like plains units.The volumes of impact melt associated with the Orientale basin and their mode of deposition have important implications for petrogenetic models. Multi-ringed basin formation provides a mechanism for instantaneously melting large volumes of shallow to intermediate depth lunar crustal material which is emplaced such that the differentiation and crystallization of a variety of igneous rock types and textures may occur.  相似文献   

4.
This paper discusses formation of pathological cases of crater morphology due to interaction of craters with molten lavas. Terrestrial observations of such a process are discussed. In lunar maria, a number of small impact craters (D < 10 km) may have been covered by thin layers of fluid lavas, or formed in molten lava. Some specific lunar examples are discussed, including unusual shallow rings resembling experimental craters deformed by isostatic filling.Paper dedicated to Professor Harold C. Urey on the occasion of his 80th birthday on 29 April 1973.  相似文献   

5.
Wenzhe Fa  Mark A. Wieczorek 《Icarus》2012,218(2):771-787
The inversion of regolith thickness over the nearside hemisphere of the Moon from newly acquired Earth-based 70-cm Arecibo radar data is investigated using a quantitative radar scattering model. The radar scattering model takes into account scattering from both the lunar surface and buried rocks in the lunar regolith, and three parameters are critically important in predicting the radar backscattering coefficient: the dielectric constant of the lunar regolith, the surface roughness, and the size and abundance of subsurface rocks. The measured dielectric properties of the Apollo regolith samples at 450 MHz are re-analyzed, and an improved relation among the complex dielectric constant, bulk density and regolith composition is obtained. The complex dielectric constant of the lunar regolith is estimated globally from this relation using the regolith composition derived from Lunar Prospector gamma-ray spectrometer data. To constrain the lunar surface roughness and abundance of subsurface rocks from radar data, nine regions are selected as calibration sites where the regolith thickness has been estimated using independent analysis techniques. For these sites, scattering from the lunar surface and buried rocks cannot be perfectly distinguished, and a tradeoff relationship exists between the size and abundance of buried rocks and surface roughness. Using these tradeoff relations as guidelines for globally representative parameters, the regolith thickness of four regions over the lunar nearside is inverted, and the inversion uncertainties caused by calibration errors of the radar data and model input parameters are analyzed. The regolith thickness of the maria is generally smaller than that of highlands, and older surfaces have thicker regolith thicknesses. Our approach cannot be applied to regions where the surface roughness is very high, such as with young rocky craters and regions in the highly rugged highlands.  相似文献   

6.
Evaluation of selenographic data obtained with use of different observational means require the formulation of rigorous algorithms connecting the systems of coordinates, which the various methods have been referred to. The lunar principal axes of inertia are suggested as most appropriate for reference in lunar mapping and selenographic coordinate catalogues. The connection between the instantaneous axis of lunar rotation (involved in laser ranging, radar studies, astronomical observations from the surface of the Moon and VLBI observations of ALSEPs), the ecliptic system of coordinates (which in reductions of observations was considered as fixed in space), the Cassini mean selenographic coordinates (to which physical libration measures were referred), the lunar principal axes of inertia and the invariable plane of the solar system is discussed.On leave from the University of Manchester, England.Lunar Science Institute Contribution No. 138.Communication presented at the Conference on Lunar Dynamics and Observational Coordinate Systems, Held January 15–17, 1973, at the Lunar Science Institute, Houston, Tex., U.S.A.  相似文献   

7.
A study of the variation of the spectral relative ratios of reflectivity of selected mare lunar grounds between wavelengths 4000 and 8000 Å is given in comparison with lunar craters. The intensities at different wavelengths of each lunar region are corrected for the angles of illumination and viewing, and they are scaled to unity at =5538Å. Distinct variety in the spectral reflectivity values of mare grounds at short wavelengths are confirmed. The Mare Tranquillitatis type grounds (similar to Apollo-11 site), have relative ratio of reflectivity at short wavelength at =4035 Å; larger than or equal to 1.03 in addition to a bigger difference in reflectivity between the short and the long wavelength. The Mare Serenitatis type grounds (similar to Apollo-12) are characterized to give relative ratio of reflectivity less than 1.03 at =4035 Å, and smaller difference in reflectivity between short and long wavelengths. This is due to the variation in the colour of the Mare Tranquillitatis and Mare Serenitatis type ground due to compositional differences. The mare type grounds are generally different in shape than that of lunar craters grounds.Presented at the IAU-COSPAR Julian Schmidt Symposium on 100 Years of Lunar Mapping held at Lagonissi, Greece, 25–27 May, 1978.  相似文献   

8.
The intensity distribution of lunar radar echoes has been mapped for two-thirds of the earth-visible lunar surface at a wavelength of 70 cm. The depolarizing effects of the lunar surface were observed by simultaneously receiving the radar echoes in opposite polarizations. These echoes were mapped with areal resolutions of 25–100 km2. Mappings with this resolution confirmed that the young craters have enhanced returns. A few craters were found to have enhanced echoes only from their rims. Backscattering differences were also observed between various areas within a mare, between different highland areas, and between maria and adjacent highlands. These scattering differences were interpreted with a simple model, which assumed that the surface backscattered with varying amounts of quasi-specular and diffuse power. Only an increase in the diffuse power was needed to give the numerical values of the enhancements.  相似文献   

9.
The first part of the paper describes the relationship between the erosional stage of craters and the crater areal density. It is shown that class-2 and -3 craters are progressively more abundant as the crater areal density increases, while craters of class 4 and 5 are more abundant with decreasing crater areal densities. A geological model is proposed, in which the class of a newly foormed crater is 1. As time progresses, erosional agents will increase the class of the crater to class 2, then 3, and, in some cases, to 4. The length of time between classification steps is not known in terms of years, but is equivalent to the time necessary for the crater density to increase by 2 to 8 craters per unit area for creaters larger than 10 km, and by 10 to 20 for craters larger than 3.5 km. Craters of class 5 and some of class 4 are not formed by the same erosional agents, but are catastrophic, caused either by a mare-producing impact or by flooding of mare material.The second part of the paper presents a method for relatively dating large lunar areas. The method uses the model previously developed. A relative time sequence is constructed using the density of craters of classes 1, 2, and 3 and the percentage of these which is of class 1. As an example, 18 large areas are defined on the lunar near side and are put in temporal order. Mare Serenitatis appears to have the youngest terrain, and an area southwest of the Rupes Altai appears to have the oldest.In the final part of the paper a geological model is developed in order to explain age differences in the terrae. The model calls for rejuvenation of lunar terrains, caused by the seismic waves and ballistic sedimentation resulting from large impacts. The area surrounding Mare Orientale is cited as an example of a terrain so affected. A similar effect on the terrae of the near side could explain the apparent age relationships measured.  相似文献   

10.
We present results of a campaign to map much of the Moon’s near side using the 12.6-cm radar transmitter at Arecibo Observatory and receivers at the Green Bank Telescope. These data have a single-look spatial resolution of about 40 m, with final maps averaged to an 80-m, four-look product to reduce image speckle. Focused processing is used to obtain this high spatial resolution over the entire region illuminated by the Arecibo beam. The transmitted signal is circularly polarized, and we receive reflections in both senses of circular polarization; measurements of receiver thermal noise during periods with no lunar echoes allow well-calibrated estimates of the circular polarization ratio (CPR) and the four-element Stokes vector. Radiometric calibration to values of the backscatter coefficient is ongoing. Radar backscatter data for the Moon provide information on regolith dielectric and physical properties, with particular sensitivity to ilmenite content and surface or buried rocks with diameter of about one-tenth the radar wavelength and larger.Average 12.6-cm circular polarization ratio (CPR) values for low- to moderate-TiO2 mare basalt deposits are similar to those of rough terrestrial lava flows. We attribute these high values to abundant few-centimeter diameter rocks from small impacts and a significant component of subsurface volume scattering. An outflow deposit, inferred to be impact melt, from Glushko crater has CPR values near unity at 12.6-cm and 70-cm wavelengths and thus a very rugged near-surface structure at the decimeter to meter scale. This deposit does not show radar-brightness variations consistent with levees or channels, and appears to nearly overtop a massif, suggesting very rapid emplacement. Deposits of similar morphology and/or radar brightness are noted for craters such as Pythagoras, Rutherfurd, Theophilus, and Aristillus. Images of the north pole show that, despite recording the deposition of Orientale material, Byrd and Peary craters do not have dense patterns of radar-bright ejecta from small craters on their floors. Such patterns in Amundsen crater, near the south pole, were interpreted as diagnostic of abundant impact melt, so the fraction of Orientale-derived melt in the north polar smooth plains, 1000 km farther from the basin center, is inferred to be much lower.  相似文献   

11.
Abstract— Clementine UV/VIS multi‐spectral data were used to map mare deposits in the eastern lunar nearside region (Mare Tranquillitatis, Mare Fecunditatis, Mare Serenitatis, Mare Crisium, Mare Nectaris) to understand the volcanic history of this region. An array of Clementine and Clementine‐derived data were used to classify mare basalts; these include: 750 nm albedo, UV/VIS ratio, 1 μm absorption signatures, and Clementine derived FeO and TiO2 contents. We have successfully identified several new geological units and have determined their spectral characteristics. For example, the relatively younger low‐Ti basalts were recognized in the eastern part of Mare Tranquillitatis. The central low‐Ti basalts in Mare Serenitatis, which had been classed as mISP, were divided into 2 groups. In Mare Nectaris, 2 types of mare basalts were identified, while only 1 group was recognized in the previous study. The stratigraphy constructed from the spectral analysis indicates that the mare deposits tend to become younger in the northern maria, including Serenitatis and Crisium, and older in the southern maria, including Tranquillitatis, Fecunditatis, and Nectaris. According to the relationship between the titanium contents of the mare units and their stratigraphy, the titanium content decreases with time in the early stage but increases toward the end of volcanism in the Serenitatis and Crisium region, while it increases with time but finally decreases in the Tranquillitatis and Fecunditatis region. In connection with the distribution of mare basalts, a large amount of high‐Ti mare basalts are found in Mare Tranquillitatis, especially in the western part, while other maria are covered by low‐Ti basalts. The iron contents show a similar distribution to that of titanium.  相似文献   

12.
Denker  C.  Johannesson  A.  Marquette  W.  Goode  P.R.  Wang  H.  Zirin  H. 《Solar physics》1999,184(1):87-102
The Big Bear Solar Observatory (BBSO) has a long tradition of synoptic full-disk observations. Synoptic observations of contrast enhanced full-disk images in the Caii K-line have been used with great success to reproduce the Hi L irradiance variability observed with the Upper Atmosphere Research Satellite (UARS). Recent improvements in data calibration procedures and image- processing techniques enable us now to provide contrast enhanced H full-disk images with a spatial resolution of approximately 2 and a temporal resolution of up to 3 frames min–1.In this first paper in a series, we describe the instruments, the data calibration procedures, and the image-processing techniques used to obtain our daily H full-disk observations. We also present the final data products such as low- and high-contrast images, and Carrington rotation charts. A time series of an erupting mini- filament further illustrates the quality of our H full-disk observations and motivate one of the future research projects. This lays a solid foundation for our subsequent studies of solar activity and chromospheric fine structures. The high quality and the sunrise- to-sunset operation of the H full-disk observations presented in this paper make them an ideal choice to study statistical properties of mini-filament eruptions, chromospheric differential rotation, and meridional flows within the chromosphere, as well as the evolution of active regions, filaments, flares, and prominences.  相似文献   

13.
A new method for determining the early history of the Earth-Moon system is described. Called the study of lunar paleotides, it describes a method for explaining features of the remnant lunar gravity field, and the generation of the lunar mascons. A method for the determination of Earth-Moon distances compared with the radiometric ages of the maria is developed. It is shown that the Moon underwent strong anomalous gravitational tidal forces, for a durationt<106yr, prior to the formation of the mascon surfaces. As these tidal forces had not been present at the time of the formation of the Moon, this shows that the Moon could not have been formed in orbit about the Earth.There are tides in the affairs of men which, taken at the flood, lead on to fortune... William Shakespeare 1564–1616  相似文献   

14.
A program of ALSEP-Quasar Very Long Baseline Interferometry (VLBI) is being carried out at the Jet Propulsion Laboratory. These observations primarily employ a 4-antenna technique whereby simultaneous observations with two antennas at each end of an intercontinental baseline are used to derive the differential interferometric phase between a compact extragalactic radio source (usually a quasar) and a number of ALSEP transmitters on the lunar surface. A continuous ALSEP-quasar differential phase history over a few hour period will lead to milliarcsecond angular accuracy in measuring the lunar position against the quasar reference frame if suitable calibration measurements are obtained. Development of this application of the 4-antenna technique has been underway at JPL for more than a year and is now producing high quality data utilizing Deep Space Network (DSN) stations in Australia, Spain, and Goldstone, California as well as the STDN Apollo station at Goldstone. These high accuracy observations are of value to tie the lunar ephemeris to a nearly inertial extragalactic reference frame, to test gravitational theories, and to measure the Earth-Moon tidal friction interaction.This paper presents the results of one phase of research carried out at the Jet Propulsion Laboratory, California Institute of Technology, under Contract No. NAS 7-100, sponsored by the National Aeronautics and Space Administration.  相似文献   

15.
Using the asymmetric theory of lunar induction derived by Schubertet al. (1973a), we have obtained the total and induced magnetic field line structure within the Moon and the diamagnetic cavity. Total field distributions are shown for orientations of the oscillating interplanetary field parallel, perpendicular and at 45° to the cavity axis. Induced field lines are shown only for the orientations of the interplanetary field parallel and orthogonal to the cavity axis. When compared with the field lines derived using the long wavelength limit of spherically symmetric vacuum induction theory, the configurations obtained using the asymmetric theory exhibit significant distortion. For all orientations of the interplanetary field, the field lines are strongly compressed on the sunlit hemisphere because of the confining solar wind pressure at the lunar surface and the exclusion of the field by the lunar core. Field line compression is also observed in the antisolar region in agreement with the experimental observations of Schubertet al. (1973b). and Smithet al. (1973). For the parallel orientation of the interplanetary field, antisolar compression is caused by cavity confinement of the induced field. For the interplanetary field perpendicular to the cavity axis there is, in addition to compression by the cavity boundary, redistribution of field lines from the sunlit to the night side. In this case field lines entering the Moon just forward of the limb pass through the lunar crust on the night side and then exit forward of the limb. This phenomenon manifests itself as a displacement of the null in the induced magnetic field at the surface sunward of the limb, in striking similarity to the magnetospheric field lines of the Earth.Paper dedicated to Professor Harold C. Urey on the occasion of his 80th birthday on 29 April, 1973.  相似文献   

16.
By combining two two-dimensional subspaces, closed into themselves due to curvature, it is possible to create a model of three-dimensional space of the same properties. If the Universe is a space of this type, its effect is that of a monstrous lens. Close objects are observed to diminish according to the normal law of perspective; however, the remote galaxies are seen to be very highly magnified.The apparent angular size2 of a galaxy is more than the size1 in flat space according to relation:2 =1 cosec , where is the angular distance from the observer to the galaxy. The diameter2 d of a galaxy in curved space must be in the same relation to a diameter1 d with no curvature of space:2 d=1 d cosec . The apparent angular size2 and diameter2 d are distorted shapes in consequence of an optical illusion caused by the spatial curvature.It is necessary to distribute the multitude of galaxies into two parts in accordance with their location on the close or reverse hemihypersphere of the Universe. The minimum of apparent angular size2 of a galaxy of diameter1 d is at the equatorial zone.The most likely candidates for location in the reverse hemi-hypersphere are cD's of apparent supergiant sizes due, probably, to the curvature of space. The existence of supergiant sizes of galaxies is the second indirect proof, besides superluminal velocities, that the Universe is closed into itself through curvature. The third indirect evidence, i.e., inductive confirmation of the same fact, is the superposition of galaxies which need not inevitably be a new alternative to the present theories of collisions, cannibalism, merger, etc.The fourth indirect proof of the positive curvature of the Universe is the occurrence of background radiation, because that must vanish in hyperbolic space irrespective of its origin. The gravitational lens effect acquires another theoretical form, as usual, in the case of remote galaxies, because it is impossible to distinguish between gravitator and lensing image.  相似文献   

17.
The apparently common source heights of type III fundamental and harmonic components and the source height of the solar 38 MHz radar echoes may all refer to scattering at a coronal level where (radio wavenumber) × (electron gyroradius) 1, that is, where radio frequency = (2 to 5) × plasma frequency.  相似文献   

18.
We study a theory for the ninth satellite of Saturn, Phoebe, based on the literal solution we have obtained in the main problem of the lunar theory.These series were computed by solving, by successive approximations, the Lagrange's equations expressed in variables, functions of the elliptic elements.We may consider the case of Phoebe simpler than a lunar case because we seek less precision (1/10 geocentric) than in the Lunar case, although the eccentricity of Phoebe is stronger.Main problem: our series are computed to the complete seventh order and a great part of the perturbations of the eighth and ninth order, where we have attributed to the small lunar parameters the order 1 tom 0=n/n 0,e 0,e, sin (i 0/2), the order 2 to 0=(a 0/a)((M 1–)/(M 1+M)) and the order 4 toµ 0(a 0/a)M 1 M/M 1 2M 2.In the case of Phoebe,µ 0 equal zero and ±0 is the ratioa 0/a.We study the further development of these series by using, instead of parameterm 0, the quantity m 0=n/n 0m 1 wherem 1 is an approached value ofm 0, in order to accelerate the convergence of the series with respect tom 0.Comparison with a numerical integration we are adjusting a numerical integration to the observations. We have already more than 100 observations, for the period 1900–1957.At first, we compare the series of the main problem to a numerical integration of the Keplerian problem.

Proceedings of the Conference on Analytical Methods and Ephemerides: Theory and Observations of the Moon and Planets. Facultés universitaires Notre Dame de la Paix. Namur, Belgium, 28–31 July, 1980.  相似文献   

19.
The heliometer has been the only instrument for the measurement of the lunar physical libration for more than a century. Bessel (1839), who introduced the use of the heliometer for the systematic measurement of the relative positions of craters on the lunar disc, has also developed the necessary formulation for the calculation of the lunar physical libration from the heliometric measurements. That methodology is presented, and results obtained by Bessel's students and other investigators who followed Bessel's method, are discussed.Communication presented at the International Conference on Astrometric Binaries, held on 13–15 June, 1984, at the Remeis-Sternwarte Bamberg, Germany, to commemorate the 200th anniversary of the birth of Friedrich Wilhelm Bessel (1784–1846).  相似文献   

20.
The lunar maria reflect two to five times less Earth-based radar power than the highlands, the spectrally blue maria surfaces returning the lowest power levels. This effect of weakening signal return has been attributed to increased signal absorption related to the electrical and magnetic characteristics of the mineral ilmenite (FeTiO3). The surface of Mare Imbrium contains some of the most distinct red-blue colorimetric boundaries and depolarized 70 cm wavelength reflectivity variations on the near side of the Moon. The weakest levels of both 3.8 cm and 70 cm reflectivity within Imbrium are confined to regional mare surfaces of the blue spectral type that can be recognized as stratigraphically unique flow surfaces. Frequency distributions of the 70 cm polarized and depolarized radar return power for five mare surfaces within the basin indicate that signal absorption, and probably the ilmenite content, increases generally from the beginning of the Imbrian Period to the end of the Eratosthenian Period with slight reversal between the end of the Imbrian and beginning of the Eratosthenian. TiO2 calibrated radar reflectivity curves can be utilized for lunar maria geochemical mapping in the same manner as the TiO2 calibrated spectral reflectivity curves of Charetteet al. (1974). The long wavelength radar data may be a sensitive indicator of mare chemical variations as it is unaffected by the normal surface rock clutter that includes ray materials from large impact craters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号