首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The S receiver functions: synthetics and data example   总被引:12,自引:0,他引:12  
Recently, the S receiver function method has been successfully developed to identify upper mantle interfaces. S receiver functions have the advantage of being free of S -wave multiple reflections and can be more suitable than P receiver functions for studying mantle lithosphere. However, because of specific ray geometry and interference of diverse phases, the S receiver function method has some technical difficulties and limitations. We use synthetic seismograms to demonstrate the feasibility and limitations of S receiver functions for studying mantle structures. Full-wavefield seismograms were calculated using the reflectivity method and processed to generate synthetic S receiver functions for S , SKS and ScS waves. Results show that S receiver functions can be obtained from waveforms of S , SKS and ScS waves. The synthetic S receiver functions for these incident waves show S -to- P converted phases at all discontinuities in the crust and upper mantle. Useful ranges of epicentral distances for calculation of S receiver functions are: 55°–85° for S , >85° for SKS and 50°–75° for ScS waves. We apply both the S and P receiver function methods to data recorded at broadband station YKW3 in Northwest Canada. The study shows that there is significant agreement among different receiver function methods, and demonstrates the usefulness of S receiver functions for imaging the mantle lithosphere.  相似文献   

2.
Summary. A two-channel MESA or maximum entropy spectrum analysis (Morf et al. 1978) between Δ T °= ET – UT (Morrison 1973) and sunspot numbers spanning 1832–1975 yields the following results over a bandwidth 2–20yr: (1) The spectra of Δ T ° and sunspot numbers are both dominated by a narrow band signal at 11.0 yr; (2) On average the coherency over the continuum is 0.14 while at 11.0yr it peaks at 0.83; (3) The 11-yr sunspot cycle signal in length of day (lod) has an amplitude of 0.16 ms, and in time lags that in sunspot numbers by 3.4yr. Estimates obtained from segmenting the series yield extremal values which grossly bound the above estimates: The narrow band signal has period range (10.5–11.4yr) coherency (0.8–1.0), amplitude (0.06–0.31 ms), and time lag (3.0–3.Syr). In addition, a two channel analysis of sunspot numbers with a new Δ T n series from 1861–1978 (Morrison 1979) and an earlier segment of Δ T °, as well as a single-channel analysis of Δ T ° and Δ T n individually, further support the conclusion that the solar sunspot cycle in Earth rotation has been detected. These experimental results have implications in astronomy, solar physics, meteorology and climatology.  相似文献   

3.
A detailed and extensive record section constructed from recordings at the NORSAR array of presumed explosions in continental Russia exhibits two distinct ( T , Δ) triplications. The reliable identification of these upper mantle travel-time branches is possible because of the dense areal sampling of the NORSAR configuration. A simple upper mantle P- velocity model which can account adequately for the data involves velocity discontinuities at depths of 420 km and 690 km, and fairly uniform velocity gradients elsewhere. For this model, the first arrival branch for Δ≤ 21° extends as a second arrival to a distance of about 33°, at which distance it is terminated by the 420-km discontinuity. Rays bottoming between depths of 420 and 690 km span the distance range 16°≤Δ≤ 28°, and give first arrivals in the range 21°≤, Δ, 24°. Rays which penetrate the 690-km discontinuity give rise to secondary arrivals in the range 19°≤Δ≤ 25°, and first arrivals for distances Δ≤ 25°.  相似文献   

4.
Blockage of regional seismic waves by the Teisseyre-Tornquist zone   总被引:1,自引:0,他引:1  
During the Group of Scientific Experts Technical Test (GSETT, second experiment, 22 April-2 June 1991), several hundred seismic events were located in Europe. Associating these events with the detecting stations-altogether 28 European stations including seven arrays participated in the GSETT-2 experiment-clearly shows that the Teisseyre-Tornquist Zone (TTZ) influences the propagation of regional seismic phases. Large explosions in the Bay of Gdańsk, for example, were observed by the well-established Scandinavian arrays'NORSAR (Δ 830km) and ARCESS (Δ 1650km), but not by the Polish station KSP (Δ 470km) nor by the new highly sensitive GERESS array (Δ 750km), both situated south-west of the TTZ. For events in central Europe with comparable magnitudes, we observe a similar increase of the detection threshold at stations located north-east of the TTZ in Scandinavia. to explain these observations, the wave propagation of Pn and Pg perpendicular to the TTZ was modelled for a profile from the Estonian/Russian border region to GERESS with Gaussian-beam seismograms. Published crustal and uppermost mantle models for Poland and for Europe were used as a starting point for developing a model of the TTZ. the observations cannot be explained only by a graben-like crustal structure with a jump in Moho depth from 30km to 50km. to defocus the seismic energy, the TTZ as a structural anomaly between eastern and western Europe must reach down into the upper mantle to a depth of at least about 200 km. the proposed model has such a deep-reaching root of the TTZ.  相似文献   

5.
Summary. The paper gives the results of a study of the anisotropy of seismic wave velocities within the Ashkhabad test field in Central Asia. The anisotropy was studied by analysing variations in the values of apparent velocities of first arrivals for epicentral distances ranging from 30 to 130 km and by analysing the delays (Δ ts1-s2 ) between the arrival times of shear waves with different polarizations.
The velocities of P -waves vary with azimuth from 5.3 to 6.27 km s-1 and the velocities of S -waves vary from 3.15 to 3.5 km s-1.
The delay times Δ tS1 - S2 depend on the direction of the propagation. The character of the variation of the propagation velocity of the longitudinal wave, the presence of two differently polarized shear waves S 1 and S 2 propagating at different velocities, and the character of the distribution of Δ tS1 - S2 on the stereogram suggest that the symmetry of the anisotropic medium is close to hexagonal with a nearly horizontal symmetry axis coinciding with the direction of maximal velocity. The azimuth of the symmetry axis of the medium is 140° and coincides with the direction of geological faults.  相似文献   

6.
Summary. A normal mode superposition approach is used to synthesize complete seismic codas for flat layered earth models and the P-SV phases. Only modes which have real eigenwavenumbers are used so that the search for eigenvalues in the complex wavenumber plane is confined to the real axis. In order to synthesize early P -wave arrivals by summing a number of'trapped'modes, an anomalously high velocity cap layer is added to the bottom of the structure so that most of the seismic energy is contained in the upper layers as high-order surface waves. Causality arguments are used to define time windows for which the resulting synthetic seismograms are close approximations to the exact solutions without the cap layer. The traditional Thomson—Haskell matrix approach to computing the normal modes is reformulated so that numerical problems encountered at high frequencies are avoided and numerical results of the locked mode approximation are given.  相似文献   

7.
Summary. Synthetic seismograms based upon first-order perturbation theory are analysed to test the validity of assumptions which form the basis of current velocity inversion procedures. It is found that the lowest order geometrical optics approximation, namely that measured normal mode eigen-frequencies reflect the average structure underlying the source–receiver great circle path, becomes less valid near nodes in the source radiation pattern and near the surface wave foci at the source and its antipode. These failures are a consequence of singlet interference within an isolated normal mode multiplet. The technique of determing frequency by fitting a single resonance peak to a multiplet yields results which agree well with the first-order theory for slow and fast paths where excitation is dominated by one pair of singlets but on intermediate paths where singlet interference is more of a problem, agreement is not as good. Inversion of small data sets is particularly sensitive to frequency fluctuations near radiation nodes, while larger sets are influenced more by antipodal deviations from geometrical optics. The latter leads to inversions which fail to recover the short wavelength structure of the starting model. Basing inversions directly upon first-order theory shows promise of improving recovery of short wavelengths.  相似文献   

8.
b
Long-period data of the Global Digital Seismograph Network (GDSN) recorded over the three-year period from 1984 to 1986 were studied for the occurrence of S-P and P-S conversions from the upper mantle transition zone that appear as precursors to teleseismic S arrivals. Conversions of this type were identified on a large number of single-station records. Simple stacking of many records enhanced the appearance of converted phases and demonstrated that no major lateral variations in the nature of the transition zone exist between various tectonic regions. S-P and P-S conversions from the 400 km discontinuity were best observed at distances between 70 and 85 while conversions from the 670 km discontinuity showed up best at distances beyond 87. The analysis of published source mechanisms and comparison with synthetic seismograms suggests that the appearance of converted phases is primarily governed by the earthquake radiation pattern. Phases that have undergone S-P conversions beneath the receiver are best observed from dip-slip events that radiate strong SV - and weak P -waves towards the station. P-S conversions beneath the source area, on the other hand, are frequently observed from events that radiate strong P and little SV energy towards the station, and also from some strike-slip events. Comparison of observed with synthetic seismograms suggests that the PREM model of Dziewonski & Anderson (1981) explains most of the observations. Observed S-P and P-S conversions from the 670 km discontinuity, however, often have larger amplitudes than in the synthetics. Constructive interference of converted waves with the P -wave coda, source radiation effects and a velocity contrast across the 670 km discontinuity which is higher than in PREM may all contribute to the discrepancy.  相似文献   

9.
We investigate large-amplitude phases arriving in the P -wave coda of broad-band seismograms from teleseisms recorded by the Gräfenberg array, the German Regional Seismic Network and the Global Seismic Network. The data set consists of all events m b≤ 5.6 from the Aleutian arc between 1977 and 1992. Earthquakes with large-amplitude coda waves correlate with the presence of oceanic crust in the source region. The amplitudes sometimes approach those of the P wave, much larger than predicted by theory. Modelling indicates that phases in the P -wave coda cannot be P -wave multiples beneath the source and receiver, or underside reflections, which precede PP , from upper-mantle discontinuities. Among the events, seismograms are very similar, where the arrival times of the unusual phases agree approximately with the predicted times of S -to- P conversions from the upper-mantle discontinuities under the source. Because the large-amplitude phases in the P -wave coda have little, if any, dependence on event depth and have predominantly an SV -wave radiation pattern towards the receiver, we suggest that they originate as SV and/or Rayleigh waves and are enhanced by lateral heterogeneity and multipathing from the subducting Aleutian slab.  相似文献   

10.
Summary. The investigation of temporal variations in seismic velocities sometimes requires the use of paper seismograms. For this reason, an investigation of all of the sources of random error in measuring travel times on seismograms has been undertaken using a mathematical model devised by Jeffreys and some additional results derived using elementary statistics. The most important contribution to the total error is often the error due to linear interpolation between minute markers or other time marks on the seismogram, which can be as high as 0.13 s on smoked paper seismograms recorded at 120 mm min−1, and as high as 0.076 s on short-period seismograms of the Canadian network recorded at 60 mm min−1. For 32 explosions at short distances (< 50 km) recorded on smoked paper, however, the median value of the total error in the travel times was 0.016 s. Interpolation errors are generally insignificant for travel-time studies of teleseisms, but may be important in some special studies of local earthquakes and explosions. The theoretical results are useful, not only in seismology, but wherever the accurate timing of an event relative to two reference time markers on a chart recorder is required.  相似文献   

11.
P-SH conversion is commonly observed in teleseismic P waves, and is often attributed to dipping interfaces beneath the receiver. Our modelling suggests an alternative explanation in terms of flat-layered anisotropy. We use reflectivity techniques to compute three-component synthetic seismograms in a 1-D anisotropic layered medium. For each layer of the medium, we prescribe values of seismic velocities and hexagonally symmetric anisotropy about a common symmetry axis of arbitrary orientation. A compressional wave in an anisotropic velocity structure suffers conversion to both SV -and SH -polarized shear waves, unless the axis of symmetry is everywhere vertical or the wave travels parallel to all symmetry axes. The P-SV conversion forms the basis of the widely used 'receiver function' technique. The P-SH conversion occurs at interfaces where one or both layers are anisotropic. A tilted axis of symmetry and a dipping interface in isotropic media produce similar amplitudes of both direct ( P ) and converted ( Ps ) phases, leaving the backazimuth variation of the P-Ps delay as the main discriminant. Seismic anisotropy with a tilted symmetry axis leads to complex synthetic seismograms in velocity models composed of just a few flat homogeneous layers. It is possible therefore to model observations of P coda with prominent transverse components with relatively simple 1-D velocity structures. Successful retrieval of salient model characteristics appears possible using multiple realizations of a genetic-algorithm (GA) inversion of P coda from several backazimuths. Using GA inversion, we determine that six P coda recorded at station ARU in central Russia are consistent with models that possess strong (> 10 per cent) anisotropy in the top 5 km and between 30 and 43 km depth. The symmetry axes are tilted, and appear aligned with the seismic anisotropy orientation in the mantle under ARU suggested by SKS splitting.  相似文献   

12.
FIR filter effects and nucleation phases   总被引:1,自引:0,他引:1  
The symmetric impulse response of linear phase Finite Impulse Response (FIR) filters most commonly used in modern seismic recording systems produces precursory signals to impulsive arrivals. These acausal filter-generated artefacts may result in misinterpretations of various onset properties. Prior to any onset interpretation, these effects have to be removed from the seismic record. This can be achieved without loss of bandwidth by post-filtration of the digital seismograms if the filter coefficients and the decimation ratios are known. We have analysed numerous signals from different instruments and sampling rates for precursory phases and found that—in contrast to commonly held beliefs—FIR-filter-related precursory signals are not always easy to recognize visually from their waveform signature. Furthermore, they can exhibit surprisingly similar properties to those reported for nucleation phases, although the majority of nucleation phases reported in the past have been obtained on instruments with a causal response. We demonstrate examples of filter-related precursory signals for events scanning nine orders of moment, from 1010 N m to 1019 N m. Surprisingly, the lower bound of the artefact durations as a function of seismic moment scales close to the cube root of the seismic moment. We interpret this as being caused by the fact that above a certain seismic moment, the attenuated source signal acts as a causal lowpass filter of a smaller bandwidth than the FIR filter. Assuming an ω-2 source model, constant stress drop and an empirical relationship between the maximum artefact duration and the cut-off frequency of the FIR filter, the artefact durations are expected to scale proportional to the 1/2.5 power of the seismic moment, in comparison to 1/3 as proposed for nucleation phases.  相似文献   

13.
Summary. Particle-motion plots of shear waves have been studied for the section FG of the FENNOLORA seismic experiment. Shear-wave splitting is observed on some records and the polarization of the first arriving shear waves show two peaks at about N35°W and N65°E. These results can be interpreted as being due to crack-induced anisotropy with the crack direction dominated by a (dominant) horizontal stress around N35°W. This is consistent with in situ stress measurements and focal mechanism studies in Scandinavia. the results show that seismic refraction experiments may be useful in providing evidence of crack-induced anisotropy in the stable continental crust.  相似文献   

14.
Summary. There is evidence that the equivalent seismic sources of the Amchitka Island explosions — Longshot, Milrow and Cannikin — depart significantly from the simple model of a point compressional-source in a layered elastic-medium. Consequently modelling the observed seismograms using standard source-models may not be the most efficient method of determining source properties. Here an alternative to modelling is used to obtain information on the seismic sources due to the explosions. Broad-band (BB) estimates of the P signals are obtained from the short-period (SP) seismograms, corrected for attenuation, and interpreted in terms of P, pP and radiation from secondary sources. the main conclusions are:
(i) BB estimates of the radiated displacement from the explosions can be obtained with only a small reduction in the signal-to-noise ratio seen on SP seismograms;
(ii) observations of differences in pulse amplitudes and spectra are not necessarily due to differences in anelastic attenuation;
(iii) P and pP at a given station may differ in shape so that notches in the signal spectrum may not be related to source depth;
(iv) there is evidence of arrivals that others have identified as due to slap-down but which could be interpreted as an overshoot to pP;
(v) direct interpretation of the estimated ground displacement is a better procedure for determining the seismic source properties of explosions than modelling SP seismograms using idealised models as a starting point.  相似文献   

15.
Summary. Catastrophe optics provides insights into the structure of the caustics produced by seismic events. Two examples are given. The first is the caustic formed on the surface of the Earth between 10° and 30° from the event by P rays that have reached the transition zone of the mantle. This is organized by one or more approximately circular cusp lines; these are generally below the surface, but because of lateral (regional) variations, they are puckered. Where they intersect the surface they give rise to characteristic beak-to-beak and lips patterns. The second example is the caustic structure produced by refraction at the core–mantle boundary. There is a four-cusped figure at the antipodal point, and, in addition, it is suggested that the main 143° PKP caustic is actually cusped, the cusps being smeared out when radially symmetric earth models are used. The cusps arise from bumps on the core–mantle boundary. In general, the caustic, and its accompanying diffraction structure, associated with a bump can be understood as an unfolding of the parabolic umbilic catastrophe.  相似文献   

16.
Finite-frequency sensitivity kernels for head waves   总被引:2,自引:0,他引:2  
Head waves are extremely important in determining the structure of the predominantly layered Earth. While several recent studies have shown the diffractive nature and the 3-D Fréchet kernels of finite-frequency turning waves, analogues of head waves in a continuous velocity structure, the finite-frequency effects and sensitivity kernels of head waves are yet to be carefully examined. We present the results of a numerical study focusing on the finite-frequency effects of head waves. Our model has a low-velocity layer over a high-velocity half-space and a cylindrical-shaped velocity perturbation placed beneath the interface at different locations. A 3-D finite-difference method is used to calculate synthetic waveforms. Traveltime and amplitude anomalies are measured by the cross-correlation of synthetic seismograms from models with and without the velocity perturbation and are compared to the 3-D sensitivity kernels constructed from full waveform simulations. The results show that the head wave arrival-time and amplitude are influenced by the velocity structure surrounding the ray path in a pattern that is consistent with the Fresnel zones. Unlike the 'banana–doughnut' traveltime sensitivity kernels of turning waves, the traveltime sensitivity of the head wave along the ray path below the interface is weak, but non-zero. Below the ray path, the traveltime sensitivity reaches the maximum (absolute value) at a depth that depends on the wavelength and propagation distance. The sensitivity kernels vary with the vertical velocity gradient in the lower layer, but the variation is relatively small at short propagation distances when the vertical velocity gradient is within the range of the commonly accepted values. Finally, the depression or shoaling of the interface results in increased or decreased sensitivities, respectively, beneath the interface topography.  相似文献   

17.
Summary. Short period P -wave amplitudes at Soviet seismic stations are analysed to determine an amplitude–distance curve in the range 0°–180° from the USSR. Station amplitude terms, corrected for crustal amplification effects, are determined from seismic sources located between 30° and 90°. A relationship between these station terms and regional Pn wave speed and regional heat flow is determined and is found to be in close agreement with similar observations in North America. Station amplitude terms were found to be reasonably uniform across the continental portion of the USSR but the Baikal Rift valley is characterized by very low P -wave amplitudes and is the most significant feature discemible from the P -wave amplitude terms.  相似文献   

18.
We have used the S wave receiver function (SRF) technique to investigate the crustal thickness beneath two seismic profiles from the CHARGE project in the southern central Andes. A previous study employing the P wave receiver function method has observed the Moho interface beneath much of the profiles. They found, however, that the amplitude of the P to S conversion was diminished in the western part of the profiles and have attributed it to a reduction of the impedance contrast at the Moho due to lower crustal ecologitization. With SRF, we have successfully detected S to P converted waves from the Moho as well as possible conversions from other lithospheric boundaries. The continental South American crust reaches its maximum thickness of ∼70 km (along 30°S between 70°W and 68.5°W) beneath the Principal Cordillera and the Famatina system and becomes thinner towards the Sierras Pampeanas with a thickness of ∼40 km. Negative phases, possibly related to the base of the continental and oceanic lithosphere, can be recognized in the summation traces at different depths. By comparing our results with data obtained from previous investigations, we are able to further constrain the thickness of the crust and lithosphere beneath the central Andes.  相似文献   

19.
We explore the possibility of determining the actual fault plane of an earthquake from the inversion of near-source displacement seismograms of one station when a finite-dimension source is used instead of a point source model and when the complete displacement is taken into account, including near-field waves. Tests on synthetic seismograms and real data recorded at local distances show that this is possible even with a single, three-component station. A single accelerogram available for the Erzincan, Turkey, 1992 March 13, M s = 6.8 earthquake is inverted and the solution found is compatible with other seismological studies and with the mechanism expected for the North Anatolian Fault.  相似文献   

20.
Summary. Bulletins of the International Seismological Centre (ISC) show very large residuals, up to 15 s early, for arrivals from events in the Tonga–Kermadec subduction zone to the New Zealand network of seismometers. The very early arrivals are confined to events south of about 22°S, and shallower than about 350 km. The waveforms show two distinct phases: an early, emergent, first phase with energy in the high-frequency band 2–10 Hz, and a distinct second phase, containing lower frequency energy, arriving at about the time predicted by JB tables.
The residuals are attributed to propagation through the cold, subducted lithosphere, which has a seismic velocity 5 per cent faster, on average, than normal. Ray tracing shows that the ray paths lie very close to the slab for events south of 22°S, but pass well beneath the slab for events further north, corresponding to the change in residual pattern. This characteristic of the ray paths is due to the curved shape of the seismic zone, and in particular to the bend in the zone where the Louisville ridge intersects the trench at 25°S.
The residuals can only be explained if the high velocity anomaly extends to a depth of 450 km in the region of the gap in deep seismicity from 32 to 36°S. The very high-frequency character of the first phase requires the path from the bottom of the slab to the stations to be of high Q , and to transmit 2–10 Hz energy with little attenuation.
The absence of low-frequency energy in the first phase is due to the narrowness of the high-velocity slab, which transmits only short-wavelength waves. The second phase, which contains low frequencies, is identified as a P -wave travelling beneath the subducted slab in normal mantle. There is no need to invoke any special structures, such as low-velocity waveguides or reflectors, to explain any of the observations. The S -wave arrivals show similar effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号