首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
We present medium-resolution VLT/FORS2 spectroscopy of six cataclysmic variables (CVs) discovered by the Sloan Digital Sky Survey (SDSS). We determine orbital periods for  SDSS J023322.61+005059.5 (96.08 ± 0.09 min), SDSS J091127.36+084140.7 (295.74 ± 0.22 min), SDSS J103533.02+055158.3 (82.10 ± 0.09 min)  and SDSS J121607.03+052013.9 (most likely 98.82 ± 0.16 min, but the one-day aliases at 92 and 107 min are also possible) using radial velocities measured from their Hα and Hβ emission lines. Three of the four orbital periods measured here are close to the observed 75–80 min minimum period for CVs, indicating that the properties of the population of these objects discovered by the SDSS are substantially different to those of the CVs found by other means. Additional photometry of SDSS J023322.61+005059.5 reveals a periodicity of approximately 60 min which we interpret as the spin period of the white dwarf, suggesting that this system is an intermediate polar with a low accretion rate. SDSS J103533.02+055158.3 has a period right at the observed minimum value, a spectrum dominated by the cool white dwarf primary star and exhibits deep eclipses, so is an excellent candidate for an accurate determination of the parameters of the system. The spectroscopic orbit of SDSS J121607.03+052013.9 has a velocity amplitude of only  13.8 ± 1.6 km s−1  , implying that this system has an extreme mass ratio. From several physical constraints we find that this object must contain either a high-mass white dwarf or a brown-dwarf-mass secondary component or both.  相似文献   

2.
We critically re-examine the available data on the spectral types, masses and radii of the secondary stars in cataclysmic variables (CVs) and low-mass X-ray binaries (LMXBs), using the new catalogue of Ritter &38; Kolb as a starting point. We find there are 55 reliable spectral type determinations and only 14 reliable mass determinations of CV secondary stars (10 and 5, respectively, in the case of LMXBs). We derive new spectral type–period, mass–radius, mass–period and radius–period relations, and compare them with theoretical predictions. We find that CV secondary stars with orbital periods shorter than 7–8 h are, as a group, indistinguishable from main-sequence stars in detached binaries. We find that it is not valid, however, to estimate the mass from the spectral type of the secondary star in CVs or LMXBs. We find that LMXB secondary stars show some evidence for evolution, with secondary stars which are slightly too large for their mass. We show how the masses and radii of the secondary stars in CVs can be used to test the validity of the disrupted magnetic braking model of CV evolution, but we find that the currently available data are not sufficiently accurate or numerous to allow such an analysis. As well as considering secondary star masses, we also discuss the masses of the white dwarfs in CVs, and find mean values of M  = 0.69 ± 0.13 M below the period gap, and M  = 0.80 ± 0.22 M above the period gap.  相似文献   

3.
The Sloan Digital Sky Survey has been instrumental in obtaining a homogeneous sample of the rare AM CVn stars: mass-transferring binary white dwarfs. As part of a campaign of spectroscopic follow-up on candidate AM CVn stars from the Sloan Digital Sky Survey, we have obtained time-resolved spectra of the   g = 20.2  candidate SDSS J155252.48+320150.9 on the Very Large Telescope of the European Southern Observatory. We report an orbital period   P orb= 3376.3 ± 0.3 s  , or 56.272 ± 0.005 min, based on an observed 'S-wave' in the helium emission lines of the spectra. This confirms the ultracompact nature of the binary. Despite its relative closeness to the orbital period minimum for hydrogen-rich donors, there is no evidence for hydrogen in the spectra. We thus classify SDSS J1552 as a new bona fide AM CVn star, with the second-longest orbital period after V396 Hya  ( P = 65.5 min)  . The continuum of SDSS J1552 is compatible with either a blackbody or helium atmosphere of   T eff= 12 000–15 000 K  . If this represents the photosphere of the accreting white dwarf, as is expected, it puts the accretor at the upper end of the temperature range predicted by thermal evolution models. This suggests that SDSS J1552 consists of (or formerly consisted of) relatively high-mass components.  相似文献   

4.
We present time-resolved spectroscopy and photometry of the cataclysmic variable (CV) SDSS J133941.11+484727.5 (SDSS 1339) which has been discovered in the Sloan Digital Sky Survey (SDSS) Data Release 4. The orbital period determined from radial velocity studies is 82.524(24) min, close to the observed period minimum. The optical spectrum of SDSS 1339 is dominated to 90 per cent by emission from the white dwarf (WD). The spectrum can be successfully reproduced by a three-component model (white dwarf, disc, secondary) with   T WD=12 500 K  for a fixed  log   g = 8.0, d = 170 pc  , and a spectral type of the secondary later than M8. The mass-transfer rate corresponding to the optical luminosity of the accretion disc is very low,  ≃ 1.7 × 10−13 M yr−1  . Optical photometry reveals a coherent variability at 641 s with an amplitude of 0.025 mag, which we interpret as non-radial pulsations of the white dwarf. In addition, a long-period photometric variation with a period of either 320 or 344 min and an amplitude of 0.025 mag is detected, which bears no apparent relation with the orbital period of the system. Similar long-period photometric signals have been found in the CVs SDSS J123813.73−033933.0, SDSS J204817.85−061044.8, GW Lib and FS Aur, but so far no working model for this behaviour is available.  相似文献   

5.
Using improved, up-to-date stellar input physics tested against observations of low-mass stars and brown dwarfs, we calculate the secular evolution of low-mass donor cataclysmic variables (CVs), including those that form with a brown-dwarf donor. Our models confirm the mismatch between the calculated minimum period ( P min70 min) and the observed short-period cut-off (80 min) in the CV period histogram. We find that tidal and rotational corrections applied to the one-dimensional stellar structure equations have no significant effect on the period minimum. Theoretical period distributions synthesized from our model sequences always show an accumulation of systems at the minimum period, a feature absent from the observed distribution. We suggest that non-magnetic CVs become unobservable as they are effectively trapped in permanent quiescence before they reach P min, and that small-number statistics may hide the period spike for magnetic CVs.  相似文献   

6.
High time resolution spectroscopic observations of the ultracompact helium dwarf nova 'SN 2003aw' in its quiescent state at   V ∼ 20.5  reveal its orbital period at  2027.8 ± 0.5 s  or 33.80 min. Together with the photometric 'superhump' period of  2041.5 ± 0.5 s  , this implies a mass ratio   q ≈ 0.036  . We compare both the average and time-resolved spectra of 'SN 2003aw' and Sloan Digital Sky Survey (SDSS) J124058.03−015919.2. Both show a DB white dwarf spectrum plus an optically thin, helium-dominated accretion disc. 'SN 2003aw' distinguishes itself from the SDSS source by its strong calcium H & K emission lines, suggesting higher abundances of heavy metals than the SDSS source. The silicon and iron emission lines observed in the SDSS source are about twice as strong in 'SN 2003aw'. The peculiar 'double bright spot' accretion disc feature seen in the SDSS source is also present in time-resolved spectra of 'SN 2003aw', albeit much weaker.  相似文献   

7.
We use the ROSAT North Ecliptic Pole (NEP) survey to construct a small, but purely X-ray flux-limited sample of cataclysmic variable stars (CVs). The sample includes only four systems, two of which (RX J1715.6+6856 and RX J1831.7+6511) are new discoveries. We present time-resolved spectroscopy of the new CVs and measure orbital periods of 1.64 ± 0.02 and 4.01 ± 0.03 h for RX J1715.6+6856 and RX J1831.7+6511, respectively. We also estimate distances for all the CVs in our sample, based mainly on their apparent brightness in the infrared. The space density of the CV population represented by our small sample is  1.1+2.3−0.7× 10−5 pc−3  . We can also place upper limits on the space density of any subpopulation of CVs too faint to be included in the NEP survey. In particular, we show that if the overall space density of CVs is as high as  2 × 10−4 pc−3  (as has been predicted theoretically), the vast majority of CVs must be fainter than   L X≃ 2 × 1029 erg s−1  .  相似文献   

8.
We present charge-coupled device (CCD) photometry of WX Cet in quiescence. Apart from the flickering which is characteristic to cataclysmic binaries, our data also reveal the periodic modulation of the brightness of WX Cet with a period of 0.058 27±0.000 02, with further restrictions on it. This period is derived from our data alone, but it agrees, within errors, with the spectroscopic period of Thorstensen et al. Hence the most likely spectroscopic and photometric periods are identical and correspond to the orbital motion. Our data were obtained during two observational seasons in 1990 and 1998. In the former season we observed what appears to be the ordinary orbital hump. However, in 1998 we observed both single- and double-hump orbital modulation. Several authors have noted the similarities between WX Cet and WZ Sge: the occurrence of rare, large-amplitude, long-lasting superoutbursts with superhump modulation, and the slow rate of decline. Both stars have similar, extremely short orbital periods. We recorded further similarities: the orbital modulation of brightness, with switching between single- and double-hump light curves. Patterson noticed that superhump excesses in WX Cet and WZ Sge are different in that they may fall on different evolutionary branches (pre-period minimum versus post-period minimum). We demonstrate that the masses of their white dwarfs differ by a factor of two.  相似文献   

9.
We present optical observations of the recently discovered ROSAT source RX J1238 − 38, which is a new member of the intermediate polar class of asynchronous magnetic cataclysmic variables (CVs). Optical photometry reveals two coherent periodicities at 1860 and 2147 s respectively, with similar amplitudes of ∼ 8 per cent. Infrared ( J -band) intensity variations are detected only at the 1860-s period, at an amplitude of ∼ 15 per cent. The initial hypothesis, that these two periods were the spin and synodic (i.e., beat) period respectively, appears not to be supported by the spectroscopic data. The emission lines vary on the longer photometric period, and radial velocity variations are detected at this period and at a longer period of ∼ 5300 s, which we identify as the spin and orbital periods respectively. The most likely explanation for the 1860-s period is that it is the first harmonic of the ω − Ω sideband, leading to an improved determination of the orbital period as 5077 s (= 84 min). If this interpretation is correct, RX J1238 − 38 joins EX Hya as the only other intermediate polar below the 2–3 h period gap, and with an orbital period close to the minimum for CVs with non-degenerate secondaries. The spin-modulated emission-line radial velocities and widths appear to be anticorrelated, with maximum width occurring at maximum blueshift. Such an anticorrelation is expected for aspect changes of accretion curtains. Polarimetric observations of RX J1238 − 38 were inconclusive, although we can put a limit of 0.4 per cent on any variability on the circular polarization, and certainly there is no indication of variations at the photometric or spectroscopic periods.  相似文献   

10.
We describe a spectroscopic survey designed to uncover an estimated ∼40 AM Canum Venaticorum (AM CVn) stars hiding in the photometric data base of the Sloan Digital Sky Survey. We have constructed a relatively small sample of about 1500 candidates based on a colour selection, which should contain the majority of all AM CVn binaries while remaining small enough that spectroscopic identification of the full sample is feasible.
We present the first new AM CVn star discovered using this strategy, SDSS J080449.49+161624.8, the ultracompact binary nature of which is demonstrated using high-time-resolution spectroscopy obtained with the Magellan telescopes at Las Campanas Observatory, Chile. A kinematic 'S-wave' feature is observed on a period   P orb= 44.5 ± 0.1 min  , which we propose is the orbital period, although the present data cannot yet exclude its nearest daily aliases.
The new AM CVn star shows a peculiar spectrum of broad, single-peaked helium emission lines with unusually strong series of ionized helium, reminiscent of the (intermediate) polars among the hydrogen-rich cataclysmic variables. We speculate that SDSS J0804+1616 may be the first magnetic AM CVn star. The accreted material appears to be enriched in nitrogen, to N/O ≳ 10 and N/C > 10 by number, indicating CNO cycle hydrogen burning, but no helium burning, in the prior evolution of the donor star.  相似文献   

11.
We report on the identification of cyclical changes in the orbital period of the eclipsing dwarf novae V2051 Ophiuchi and V4140 Sagittarii. We used sets of white dwarf mid-eclipse timings to construct observed-minus-calculated diagrams covering, respectively, 25 and 16 yr of observations. The V2051 Oph data present cyclical variations that can be fitted by a linear plus sinusoidal function with period of  22 ± 2 yr  and amplitude of  17 ± 3 s  . The statistical significance of this period by an F-test is larger than 99.9 per cent. The V4140 Sgr data present cyclical variations of similar amplitude and period of  6.9 ± 0.3 yr  which are statistically significant at the 99.7 per cent level. We derive upper limits for secular period changes of     and     for V2051 Oph and V4140 Sgr, respectively.
We have combined our results with those in the literature to construct a diagram of the amplitude versus period of the modulation for a sample of 11 eclipsing cataclysmic variables (CVs). If the cyclical period changes are the consequence of a solar-type magnetic activity cycle in the secondary star, then magnetic activity is a widespread phenomenon in CVs, being equally common among long- and short-period systems. This gives independent evidence that the magnetic field (and activity) of the secondary stars of CVs do not disappear when they become fully convective. We also find that the fractional cycle period changes of the short-period CVs are systematically smaller than those of the long-period CVs.  相似文献   

12.
AM Her variables – synchronized magnetic cataclysmic variables (CVs) – exhibit a different period distribution from other CVs across the period gap. We show that non-AM Her systems may infiltrate the longer-period end of the period gap if they are metal-deficient, but that the position and width of the gap in orbital period are otherwise insensitive to other binary parameters (except for the normalization of the braking rate). In AM Her binaries, magnetic braking is reduced as the wind from the secondary star may be trapped within the magnetosphere of the white dwarf primary. This reduced braking fills the period gap from its short-period end as the dipole magnetic moment of the white dwarf increases. The consistency of these models with the observed distribution of CVs, of both AM Her and non-AM Her type, provides compelling evidence supporting magnetic braking as the agent of angular momentum loss among long-period CVs, and its disruption as the explanation of the  2–3 h  period gap among non-magnetic CVs.  相似文献   

13.
We analyse high time resolution spectroscopy of the AM CVn stars HP Librae and V803 Centauri, taken with the New Technology Telescope (NTT) and the Very Large Telescope (VLT) of the European Southern Observatory, Chile.
We present evidence that the literature value for V803 Cen's orbital period is incorrect, based on an observed ' S -wave' in the binary's spectrogram. We measure a spectroscopic period   P V803 Cen= 1596.4 ± 1.2 s  of the S -wave feature, which is significantly shorter than the 1611-s periods found in previous photometric studies. We conclude that the latter period likely represents a 'superhump'. If one assumes that our S -wave period is the orbital period, V803 Cen's mass ratio can be expected to be much less extreme than previously thought, at   q ∼ 0.07  rather than   q ∼ 0.016  . This relaxes the constraints on the masses of the components considerably: the donor star then does not need to be fully degenerate, and the mass of the accreting white dwarf no longer has to be very close to the Chandrasekhar limit.
For HP Lib, we similarly measure a spectroscopic period   P HP Lib= 1102.8 ± 0.2 s  . This supports the identification of HP Lib's photometric periods found in the literature, and the constraints upon the masses derived from them.  相似文献   

14.
We present a new luminosity–colour relation based on trigonometric parallaxes for thin-disc main-sequence stars in Sloan Digital Sky Survey (SDSS) photometry. We matched stars from the newly reduced Hipparcos catalogue with the ones taken from Two-Micron All-Sky Survey (2MASS) All-Sky Catalogue of Point Sources, and applied a series of constraints, i.e. relative parallax errors  (σπ/π≤ 0.05)  , metallicity  (−0.30 ≤[M/H]≤ 0.20 dex)  , age  (0 ≤ t ≤ 10 Gyr)  and surface gravity  (log  g > 4)  , and obtained a sample of thin-disc main-sequence stars. Then, we used our previous transformation equations ( Bilir et al. 2008a ) between SDSS and 2MASS photometries and calibrated the   Mg   absolute magnitudes to the  ( g − r )0  and  ( r − i )0  colours. The transformation formulae between 2MASS and SDSS photometries along with the absolute magnitude calibration provide space densities for bright stars which saturate the SDSS magnitudes.  相似文献   

15.
We investigate why the spectral type of most cataclysmic variable (CV) secondaries is significantly later than that of a zero-age main-sequence (ZAMS) star with the same mean density. Using improved stellar input physics, tested against observations of low-mass stars at the bottom of the main sequence, we calculate the secular evolution of CVs with low-mass donors. We consider sequences with different mass transfer rates and with a different degree of nuclear evolution of the donor prior to mass transfer.
Systems near the upper edge of the gap ( P ∼3–6 h) can be reproduced by models with a wide range of mass transfer rates from 1.5×10−9 M yr−1 to 10−8 M yr−1. Evolutionary sequences with a small transfer rate and donors that are substantially evolved off the ZAMS (central hydrogen content 0.05–0.5) reproduce CVs with late spectral types above P ≳6 h. Systems with the most discrepant (late) spectral type should have the smallest donor mass at any given P .
Consistency with the period gap suggests that the mass transfer rate increases with decreasing donor mass for evolved sequences above the period gap. In this case, a single-parameter family of sequences with varying X c and increasing mass transfer rate reproduces the full range of observed spectral types. This would imply that CVs with such evolved secondaries dominate the CV population.  相似文献   

16.
GD 552 is a high proper motion star with the strong, double-peaked emission lines characteristic of the dwarf nova class of cataclysmic variable (CV) star, and yet no outburst has been detected during the past 12 yr of monitoring. We present spectroscopy taken with the aim of detecting emission from the mass donor in this system. We fail to do so at a level which allows us to rule out the presence of a near-main-sequence star donor. Given GD 552's orbital period of 103 min, this suggests that it is either a system that has evolved through the ∼80-minute orbital period minimum of CV stars and now has a brown dwarf mass donor, or that has formed with a brown dwarf donor in the first place. This model explains the low observed orbital velocity of the white dwarf and GD 552's low luminosity. It is also consistent with the absence of outbursts from the system.  相似文献   

17.
We report on the properties of 71 known cataclysmic variables (CVs) in photometric Hα emission-line surveys. Our study is motivated by the fact that the Isaac Newton Telescope (INT) Photometric Hα Survey of the northern galactic plane (IPHAS) will soon provide r ',  i ' and narrow-band Hα measurements down to   r '≃ 20  for all northern objects between  − 5° < b < +5°  . IPHAS thus provides a unique resource, both for studying the emission-line properties of known CVs and for constructing a new CV sample selected solely on the basis of Hα excess. Our goal here is to carry out the first task and prepare the way for the second. In order to achieve this, we analyse data on 19 CVs already contained in the IPHAS data base and supplement this with identical observations of 52 CVs outside the galactic plane.
Our key results are as follows: (i) the recovery rate of known CVs as Hα emitters in a survey like IPHAS is ≃70 per cent; (ii) of the ≃30 per cent of CVs which were not recovered ≃75 per cent were clearly detected but did not exhibit a significant Hα excess at the time of our observations; (iii) the recovery rate depends only weakly on CV type; (iv) the recovery rate depends only weakly on orbital period; (v) short-period dwarf novae tend to have the strongest Hα lines. These results imply that photometric emission-line searches provide an efficient way of constructing CV samples that are not biased against detection of intrinsically faint, short-period systems.  相似文献   

18.
The European Space Agency γ-ray telescope, INTEGRAL , is detecting relatively more intrinsically rare cataclysmic variables (CVs) than were found by surveys at lower energies. Specifically, a large fraction of the CVs that are INTEGRAL sources consists of asynchronous polars and intermediate polars (IPs). IP classifications have been proposed for the majority of CVs discovered by INTEGRAL , but, in many cases, there is very little known about these systems. In order to address this, I present time-resolved optical data of five CVs discovered through INTEGRAL observations. The white dwarf spin modulation is detected in high-speed photometry of three of the new CVs (IGR J15094−6649, IGR J16500−3307 and IGR J17195−4100), but two others (XSS J12270−4859 and IGR J16167−4957) show no evidence of magnetism, and should be considered unclassified systems. Spectroscopic orbital period ( P orb) measurements are also given for IGR J15094−6649, IGR J16167−4957, IGR J16500−3307 and IGR J17195−4100.  相似文献   

19.
Large differences between the properties of the known sample of cataclysmic variable stars (CVs) and the predictions of the theory of binary star evolution have long been recognized. However, because all existing CV samples suffer from strong selection effects, observational biases must be taken into account before it is possible to tell whether there is an inconsistency. In order to address this problem, we have modelled the impact of selection effects on observed CV samples using a Monte Carlo approach. By simulating the selection criteria of the Palomar–Green (PG) Survey, we show that selection effects cannot reconcile the predictions of standard CV evolution theory with the observed sample. More generally, we illustrate the effect of the biases that are introduced by magnitude limits, selection cuts in U − B and restrictions in Galactic latitude.  相似文献   

20.
We present time-resolved optical spectroscopy and photometry of the nova-like cataclysmic variable V348 Puppis. The system displays the same spectroscopic behaviour as SW Sex stars, so we classify V348 Pup as a new member of the class. V348 Pup is the second SW Sex system (the first is V795 Herculis) which lies in the period gap. The spectra exhibit enhanced He  ii λ 4686 emission, reminiscent of magnetic cataclysmic variables. The study of this emission line gives a primary velocity semi-amplitude of     . We have also derived the system parameters, obtaining:     ,         ,     and     . The spectroscopic behaviour of V348 Pup is very similar to that of V795 Her, with the exception that V348 Pup shows deep eclipses. We have computed the '0.5-absorption' spectrum of both systems, obtaining spectra that resemble the absorption spectrum of a B0 V star. We propose that absorption in SW Sex systems can be produced by a vertically extended atmosphere which forms where the gas stream re-impacts the system, either at the accretion disc or at the magnetosphere of the white dwarf (assuming a magnetic scenario).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号