首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
This paper investigates the waters of the Gulf of Papua during three cruises of the TROPICS (Tropical River Ocean Processes In Coastal Settings) programme. Plume characteristics were investigated during Leg 1 (May 1997), and estuarine properties during Leg 5a (September 1997) and Leg 7 (January 1999). During Leg 1 the plume was apparent as a well mixed layer up to 30 m deep extending offshore to a distance of 150 km off the Fly River. Lowest salinities were found off the Taruma Delta. Highest chlorophyll concentrations were found at the inner plume close to the river mouth. Dissolved phosphate and nitrate are removed in this zone, whereas silicate behaves conservatively. Primary productivity within the plume appears to rely upon recycled nutrients, with organic fractions representing the majority of the nutrient pool. In the estuaries nutrients were found to behave differently during the monsoon than during the low flow of the extremely dry conditions associated with the 1997 El Niño event. Normally the Fly is characterised by remineralisation of organic nitrogen in the upper estuary, but during drought conditions DON production and NH4+ uptake suggest that bacterial activity is more prevalent. Ocean Colour and Temperature Scanner imagery shows a number of features of the plume, but generally overestimates chlorophyll concentrations due to the effects of high suspended sediment concentrations and, to a lesser extent, coloured dissolved organic matter.  相似文献   

2.
In the river Oder high-waters of the river with high nutrient loads and low biological activity mainly occur during winter. Thus, a remarkable portion of the annual load passes the estuary untransformed. During summer high level of biological activity is observed in the whole estuary, but while more than 10 mol/l dissolved inorganic nitrogen (DIN) is found in the Großes Haff, where the theoretical water-residence time is only 1 month, in the western part of the estuary, where the water-residence time is approximately 3 months, all DIN is transformed into organic matter.The transformed nutrients settle partly as biological products, but they are released again in these shallow waters due to biological and physical degradation, and transported into the Baltic Sea.This behaviour may explain why in the sediments of the Oderhaff with a sedimentation rate of 1 mm/year only 1% of the annual nutrient load of the Oder river can be found.  相似文献   

3.
A laboratory incubation experiment was conducted using replicate cores collected from a muddy-sand sediment facies offshore Sydney, Australia to determine what components and processes would be affected by the addition of sewage organic matter. Sewage effluent has a solid phase composition of 40% carbon (35% organic carbon), 5% nitrogen, 1% phosphorus and 5% silicate. The molecular C:N:P ratio is 92:10:1, compared to the Redfield ratio of 106:16:1 in marine phytoplankton. Sediment cores were incubated at in situ temperature in a darkened room for periods up to 95 days. Sewage organic matter was added to the cores at three different loads equivalent to 0 (T0), 65 (T1) and 130 (T2) g m−2 of sediment. Following the addition of sewage organic matter, fluxes of oxygen (into the sediments), ammonia and phosphate (from the sediments) increased, reflecting an enhanced organic carbon supply to the sediments. Oxygen penetrated to a depth of 6 mm in the ambient cores, but the sediment oxygen content was severely depleted following the addition of the sewage-derived organic matter. Sediment porewater data, together with nutrient flux data indicate that oxygen reduction, nitrate reduction and sulphate reduction occurs within these sediments. Following the addition of sewage organic matter, increases in total nitrogen, total phosphate and total organic carbon were measured to depths of 5 cm in the sediments, suggesting that bioturbation influences nutrient and organic carbon distributions. Additionally, irrigation of the surficial sediments may play an important role in the metabolism of organic matter. These results indicate that oxygen penetration, oxygen fluxes, nitrate concentrations within porewaters, ammonia flux rates, and solid phase concentrations of total organic carbon and nutrients may be useful indicators of sediments affected by high rates of organic matter deposition onto Sydney's offshore sediments. The EPA has recently predicted maximum deposition rates of sewage particulate matter to be approximately 1 g m−2 day−1. Because of the similarities in CNP ratios of sewage organic matter and marine organic matter, the effects of sewage organic matter and marine organic matter inputs to coastal sediments may not be easily distinguishable.  相似文献   

4.
Nutrient loads from the land to the sea must be reduced to combat coastal eutrophication. It has been suggested that further mitigation efforts are needed in the brackish Baltic Sea to decrease nutrients, especially in eutrophic coastal areas. Mussel farming is a potential measure to remove nutrients directly from the sea. Mussels consume phytoplankton containing nitrogen (N) and phosphorus (P); when the mussels are harvested these nutrients are removed from the aquatic system. However, sedimentation of organic material in faeces and pseudo-faeces below a mussel farm consumes oxygen and can lead to hypoxic or even anoxic sediments causing an increased sediment release of ammonium and phosphate. Moreover, N losses from denitrification can be reduced due to low oxygen and reduced numbers of bioturbating organisms. To reveal if mussel farming is a cost-effective mitigation measure in the Baltic Sea the potential for enhanced sediment nutrient release must be assessed.  相似文献   

5.
There is an urgent need to control nutrient release fluxes from organically-enriched sediments into overlying waters to alleviate the effects of eutrophication. This study aims to characterize blast furnace slag (BFS) and evaluate its remediation performance on organically-enriched sediments in terms of suppressing nutrient fluxes and reducing acid volatile sulfide. BFS was mainly composed of inorganic substances such as CaO, SiO2, Al2O3 and MgO in amorphous crystal phase. Container experiments showed that the phosphate concentration in the overlying water, its releasing flux from sediment and AVS of the sediment decreased by 17-23%, 39% and 16% compared to the control without BFS, respectively. The loss on ignition was significantly decreased by 3.6-11% compared to the control. Thus, the application of BFS to organically-enriched sediment has a suppressive role on organic matter, AVS concentration and phosphate releasing flux from sediments and therefore, is a good candidate as an effective environmental remediation agent.  相似文献   

6.
Porewater profiles often are used to identify and quantify important biogeochemical processes occurring in lake sediments. In this study, multiple porewater profiles were obtained from two eutrophic Swiss lakes using porewater equilibrators (peepers) in order to examine spatial and seasonal trends in biogeochemical processes. Variability in profile shapes and concentrations was small on spatial scales of a few meters, but the uncertainty in calculated diffusive fluxes across the sediment surface was, on average, 35%. Focusing of Fe and Mn oxides toward the lake center resulted in systematic increases in porewater concentrations and diffusive fluxes of Fe2+ and Mn2+ with increasing water depth; these fluxes are postulated to be regulated by the pH-dependent dissolution of reduced-metal phases. Despite higher concentrations of inorganic carbon, NH 4 + , Si and P in pelagic compared to littoral sites, diffusive fluxes of these substances across the sediment surface increased only slightly or not at all with increasing water depth. Porewater profiles did reveal temporal changes in Fe2+, Mn2+, Ca2+ and Mg2+ that were an indirect result of the large, seasonal changes in seston deposition, but no clear seasonal variations were found in diffusive fluxes of nutrients across the sediment surface. The intense mineralization occurring at the sediment surface was not reflected in the porewater profiles nor in the calculated diffusive fluxes. Calculated diffusive fluxes across the sediment surface resulted from decomposition occurring primarily in the top 5–7 cm of sediment. Diffusive fluxes from this subsurface mineralization were equal to the solute release from mineralization occurring at the sediment-water interface. Buried organic matter acts as a memory of previous lake conditons; it will require at least a decade before reductions in nutrient inputs to lakes fully reduce the diffusive fluxes into the lake from the buried reservoir of organic matter.  相似文献   

7.
淀山湖底泥生态疏浚适宜深度判定分析   总被引:3,自引:3,他引:0  
通过室内模拟实验,对淀山湖东部湖区的沉积物进行研究,测定沉积物在不同疏浚深度和疏浚温度下的铵态氮(NH4+-N)、正磷酸盐(NH43--P)和溶解性有机碳(DOC)的释放速率,并对该区域沉积物的理化指标进行检测.结果表明:淀山湖表层沉积物近年来总磷和有机质含量有较大增加.淀山湖东部湖区NH4+-N和DOC存在着释放趋势,NH43--P在夏季会从沉积物中向上覆水中释放,在年内会形成"源"和"汇"的转化.整个淀山湖东部湖区按不同研究区域划分,疏浚深度以10~20 cm最佳,疏浚季节以秋季为佳.通过对淀山湖东部湖区的沉积物在不同疏浚深度和疏浚时间下的污染物释放速率的研究,可以为淀山湖和其它类似湖泊的疏浚工作提供相应的科学依据.  相似文献   

8.
Tidal and seasonal behaviour of the redox-sensitive trace metals Mn, Fe, Mo, U, and V have been investigated in the open-water column and shallow pore waters of the backbarrier tidal flats of the island of Spiekeroog (Southern North Sea) in 2002 and 2007. The purpose was to study the response of trace metal cycles on algae blooms, which are assumed to cause significant changes in the redox state of the entire ecosystem. Trace metal data were complemented by measurements of nutrients and enumeration of algae cells in 2007. Generally, Mn and V show a tidal cyclicity in the water column with maximum values during low tide which is most pronounced in summer due to elevated microbial activity in the sediments. Mo and U behave almost conservatively throughout the year with slightly increasing levels towards high tide. Exceptions are observed for both metals after summer algae blooms. Thus, the seasonal behaviour of the trace metals appear to be significantly influenced by productivity in the water column as the occurrence of algae blooms is associated with an intense release of organic matter (e.g. transparent exopolymer particles, TEP) thereby forming larger organic-rich aggregates. Along with elevated temperatures in summer, the deposition of such aggregates favours microbial activity within the surface sediments and release of DOC, nutrients and trace metals (Mn, Mo and V) during the degradation of the aggregates. Additionally, pronounced reducing conditions lead to the reduction of Mn(IV)-oxides and Fe(III)-(oxihydr)oxides, thereby releasing formerly scavenged compounds as V and phosphate. Therefore, pore-water profiles show significant enrichments in trace metals especially from July to September. Finally, the trace metals are released to the open water column via draining pore waters (esp. Mo, Mn, and V) and/or fixed in the sediment as sulphides (Fe, Mo) and bound to organic matter (U). Non-conservative behaviour of Mo in oxygenated seawater, first observed in the investigation area by Dellwig et al. (Geochim Cosmochim Acta 71:2745–2761, 2007a), was shown to be a recurrent phenomenon which is closely coupled to bacterial activity after the breakdown of algae blooms. In addition to the postulated fixation of Mo in oxygen-depleted micro-zones of the aggregates or by freshly formed organic matter, a direct removal of Mo from the water column by reduced sediment surfaces may also play an important role.  相似文献   

9.
This paper is a review of research works concerning the nutrient transportation, transformation and exchange between water, sediment and biota in the lakes from the middle and lower reaches of the Yangtze River conducted in the context of project entitled "The Processes and Mechanism of Lake Eutrophication in Middle and Lower Reaches of Yangtze River". All the lakes from this area are shallow lakes. According to the typical lake site research, the lakes from the middle and lower reaches of Yangtze River have a higher baseline of nutrition in the history. Normally the trophic status of these lakes can be categorized into medium-trophic or eutrophic. Human activities have been enhanced during the last decades, which speed up the lake eutrophic process. Lake eutrophication control needs to reduce not only the external nutrient inputs from watershed but also the internal loading from the sediments. Investigations revealed that the lake sediments in this area are considerablly high in nutrition in which at most about 30% of phosphorus exists in the form of bio-available in the sediment. The surface sediment will exert great effects on the nutrient exchange between water-sediment interface via adsorption and release of nutrient. The nutrient release from the sediment in these shallow lakes is mainly in two ways, i.e. in the undisturbed condition the nutrient is released through diffusion created by the nutrient gradient from sediment to overlying water; whereas in disturbed condition, the nutrient release is determined by the hydrodynamic forcing intensity and the sediment resuspension. Metallic elements such as the iron, manganese and aluminium and the aerobic-anaerobic ambience will affect the release of nutrients. The disturbed release will increase the total nutrients in the water column significantly in the short period. At the beginning of sediment resuspension, the dissolved nutrient concentration will increase. This increase will be damped if the ferric oxide and aluminium are rich in sediment because of the adsorption and flocculation. This means that the lakes have capability of eliminating the nutrient loadings. Investigations for the lakes from middle and down stream of Yangtze River have suggested that most lakes have the self-cleaning capability. Dredging the control of the internal loading, therefore, is only applicable to the small lakes or undisturbed bays which normally are situated nearby the city or town and rich in organic materials in the sediment. In addition, the strong reduction condition and weak aeration of these lakes and bays make these small lakes and bays release much more bio-available nutrient and without much self-eliminating capability. Moreover, eutrophication induced algal bloom in these lakes will change the pH of water, which further induces the increase in the nutrient release. In turn, the increase in nutrient release promotes the growth of phytoplankton and results in severe algal bloom. For the heavily polluted water, research suggests that the biomass of bacteria and alkaline phosphatase activity will be higher corresponding to the higher concentration of nutrients, which accelerates the nutrient recycling between water, sediment and biota. Quick recycling of nutrient, in turn, promotes the production and biomass growth of microorganism and leads to more severe eutrophication. Further research work should focus on the nutrient transformation mechanism and the effects of microbial loop on the eutrophication.  相似文献   

10.

This paper is a review of research works concerning the nutrient transportation, transformation and exchange between water, sediment and biota in the lakes from the middle and lower reaches of the Yangtze River conducted in the context of project entitled “The Processes and Mechanism of Lake Eutrophication in Middle and Lower Reaches of Yangtze River”. All the lakes from this area are shallow lakes. According to the typical lake site research, the lakes from the middle and lower reaches of Yangtze River have a higher baseline of nutrition in the history. Normally the trophic status of these lakes can be categorized into medium-trophic or eutrophic Human activities have been enhanced during the last decades, which speed up the lake eutrophic process. Lake eutrophication control needs to reduce not only the external nutrient inputs from watershed but also the internal loading from the sediments. Investigations revealed that the lake sediments in this area are considerablly high in nutrition in which at most about 30% of phosphorus exists in the form of bio-available in the sediment. The surface sediment will exert great effects on the nutrient exchange between water-sediment interface via adsorption and release of nutrient. The nutrient release from the sediment in these shallow lakes is mainly in two ways, i.e. in the undisturbed condition the nutrient is released through diffusion created by the nutrient gradient from sediment to overlying water; whereas in disturbed condition, the nutrient release is determined by the hydrodynamic forcing intensity and the sediment resuspension. Metallic elements such as the iron, manganese and aluminium and the aerobic-anaerobic ambience will affect the release of nutrients. The disturbed release will increase the total nutrients in the water column significantly in the short period. At the beginning of sediment resuspension, the dissolved nutrient concentration will increase. This increase will be damped if the ferric oxide and aluminium are rich in sediment because of the adsorption and flocculation. This means that the lakes have capability of eliminating the nutrient loadings. Investigations for the lakes from middle and down stream of Yangtze River have suggested that most lakes have the self-cleaning capability. Dredging the control of the internal loading, therefore, is only applicable to the small lakes or undisturbed bays which normally are situated nearby the city or town and rich in organic materials in the sediment. In addition, the strong reduction condition and weak aeration of these lakes and bays make these small lakes and bays release much more bio-available nutrient and without much self-eliminating capability. Moreover, eutrophication induced algal bloom in these lakes will change the pH of water, which further induces the increase in the nutrient release. In turn, the increase in nutrient release promotes the growth of phytoplankton and results in severe algal bloom. For the heavily polluted water, research suggests that the biomass of bacteria and alkaline phosphatase activity will be higher corresponding to the higher concentration of nutrients, which accelerates the nutrient recycling between water, sediment and biota. Quick recycling of nutrient, in turn, promotes the production and biomass growth of microorganism and leads to more severe eutrophication. Further research work should focus on the nutrient transformation mechanism and the effects of microbial loop on the eutrophication.

  相似文献   

11.
东洞庭湖沉积物覆水后磷形态变化及其释放量   总被引:4,自引:1,他引:3  
王婷  王坤  姜霞 《湖泊科学》2018,30(4):937-947
研究干燥覆水后低流速条件下东洞庭湖沉积物中磷的形态变化及释放量,可以为轻度富营养化湖泊中磷的生物地球化学循环提供基础数据,为季节性湖泊內源营养盐的迁移转化规律研究、內源营养盐的释放风险评价提供理论依据.本文采集处于干湿交替状态的东洞庭湖表层沉积物,利用室内模拟装置,研究风干沉积物低流速条件下覆水后沉积物及上覆水中磷的形态变化.结果表明,低流速覆水后东洞庭湖沉积物中的磷向上覆水及大气中迁移释放,上覆水中磷的释放量随覆水时长增大,释放速率随覆水时长减小,上覆水流速和磷释放量相关性显著.上覆水循环过程中释放到上覆水中的溶解态有机磷比溶解态活性磷更容易吸附于颗粒物而转化为颗粒态磷.覆水后沉积物中各形态有机磷、无机磷及磷的生物有效性均发生转变,覆水初期沉积物中无机磷向有机磷转化,磷的生物可利用性增大;上覆水循环过程中有机磷向无机磷转化,磷的生物可利用性减小;覆水后沉积物的无机磷的主要组分由铝磷转变为铁磷,有机磷的主要组分有从中活性有机磷向活性有机磷转变的趋势.  相似文献   

12.
The organic carbon cycle of slowly permeable, clayey glacial till deposits in the Western Interior Great Plains, southern Alberta, was investigated by examining the relationship between solid organic matter (SOM) in the till sediments and dissolved organic carbon (DOC) in the till porewaters. Geochemically, the tills can be divided into two distinct zones: an upper oxidized (low SOM) till zone, and a lower unoxidized (high SOM) till zone. Till porewaters in both zones are characterized by high DOC contents. Radiocarbon dating and comparison of SOM and DOC fractions suggest DOC in the deep unoxidized zone originated during deglaciation, and is probably representative of groundwater ages in this till zone. In the oxidized zone, DOC originates from variable mixtures of soluble organic matter emplaced during deglaciation, and Cretaceous age coal fragments in this till zone. SOM in the upper till zone was mainly oxidized to CO2 gas during lowered water table conditions of the Altithermal climatic period. The subsurface production of fossil CO2 gas has serious implications for using the conventional dissolved inorganic carbon (DIC) 14C groundwater dating method in these clayey till porewaters.  相似文献   

13.
Estimation of internal nutrient release in large shallow Lake Taihu, China   总被引:17,自引:2,他引:17  
Based on field investigation of wave, sediment suspension and the changes in nutrient concentration of the water column in Lake Taihu, China, we proposed two release models to quantify nutrient release under static and dynamic conditions, respectively. Under static conditions, nutrient release from sediments to the overlying water mainly depends on chemical diffusion induced by concentration gradient, in which the nutrient release is controlled by the temperature, dissolved oxygen concentration in the sediment-water interface, oxidation-reduction potential and the concentration difference between porewater and overlying water. Under dynamic condition (or disturbed condition), both dissolved and particulate nutrients in sediments are released into the water column because of wind-induced sediment suspension. The amount of nutrient release under dynamic conditions is larger than that under the static condition. The release of dissolved nutrients, however, does not increase because the wind induced turbulence made oxidation of metallic elements such as Fe (ferric iron), Mn which are capable of precipitating soluble reactive phosphate (SRP). Under dynamic conditions, therefore, the release of total phosphorus (TP) increases dramatically but the release of SRP is close to those under static conditions. In sediments of Lake Taihu, high Fe content leads to a high ratio of Fe to P contents in sediments (Fe:P ratio). Under dynamic conditions, therefore, nutrient release is controlled by the intensity of disturbance, sediment consolidation and nutrient content in sediments. As for dissolved nutrients, especially SRP, the release is also controlled by the intensity of dynamic re-oxidation, Fe content in sediments and nutrient concentration gradient between porewater and overlying water. Based on these two release modes, the release flux in Lake Taihu has been estimated. In the static condition (i.e. laboratory experimental condition), total release of NH4 -N for whole lake is ca. 10,000 ton/a, and PO43--P is ca. 900 ton/a. In the dynamic condition, nutrient release following sediment suspension was estimated according to three different intensities of wind forcing which were defined as "calm" (wind speed is less than 2 m/s), "gentle" (wind speed is greater than 2 m/s and less than 6 m/s) and "gust" (wind speed is greater than 6 m/s). The release rate in the condition of "calm" was estimated in terms of the nutrient release in the laboratory experimental static condition; whereas the release rate in conditions of "gentle" and "gust" was estimated in terms of measurement during sediment resuspension conducted in flume experiments. With the observation of wind velocity and frequency in 2001, each type of wind forcing took the frequency of 12%, 82% and 6% for "calm", "gentle" and "gust", respectively. The yearly release of nitrogen was 81,000 ton and phos- phorus was 21,000 ton, which is about 2-6 folds of annual external loading, respectively.  相似文献   

14.
Estimation of internal nutrient release in large shallow Lake Taihu,China   总被引:1,自引:0,他引:1  
Based on field investigation of wave, sediment suspension and the changes in nutrient concentration of the water column in Lake Taihu, China, we proposed two release models to quantify nutrient release under static and dynamic conditions, respectively. Under static conditions, nutrient release from sediments to the overlying water mainly depends on chemical diffusion induced by concentration gradient, in which the nutrient release is controlled by the temperature, dissolved oxygen concentration in the sediment-water interface, oxidation-reduction potential and the concentration difference between porewater and overlying water. Under dynamic condition (or disturbed condition), both dissolved and particulate nutrients in sediments are released into the water column because of wind-induced sediment suspension. The amount of nutrient release under dynamic conditions is larger than that under the static condition. The release of dissolved nutrients, however, does not increase because the wind induced turbulence made oxidation of metallic elements such as Fe (ferric iron), Mn which are capable of precipitating soluble reactive phosphate (SRP). Under dynamic conditions, therefore, the release of total phosphorus (TP) increases dramatically but the release of SRP is close to those under static conditions. In sediments of Lake Taihu, high Fe content leads to a high ratio of Fe to P contents in sediments (Fe:P ratio). Under dynamic conditions, therefore, nutrient release is controlled by the intensity of disturbance, sediment consolidation and nutrient content in sediments. As for dissolved nutrients, especially SRP, the release is also controlled by the intensity of dynamic re-oxidation, Fe content in sediments and nutrient concentration gradient between porewater and overlying water. Based on these two release modes, the release flux in Lake Taihu has been estimated. In the static condition (i.e. laboratory experimental condition), total release of NH4 +-N for whole lake is ca. 10,000 ton/a, and PO4 3?-P is ca. 900 ton/a. In the dynamic condition, nutrient release following sediment suspension was estimated according to three different intensities of wind forcing which were defined as “calm” (wind speed is less than 2 m/s), “gentle” (wind speed is greater than 2 m/s and less than 6 m/s) and “gust” (wind speed is greater than 6 m/s). The release rate in the condition of “calm” was estimated in terms of the nutrient release in the laboratory experimental static condition; whereas the release rate in conditions of “gentle” and “gust” was estimated in terms of measurement during sediment resuspension conducted in flume experiments. With the observation of wind velocity and frequency in 2001, each type of wind forcing took the frequency of 12%, 82% and 6% for “calm”, “gentle” and “gust”, respectively. The yearly release of nitrogen was 81,000 ton and phosphorus was 21,000 ton, which is about 2–6 folds of annual external loading, respectively.  相似文献   

15.
P, Fe, Mn, and S species were analyzed in water samples from the sediment-water interface collected at four seasonally different times during the course of a year at two sampling sites in the southern basin of Lake Lugano (Lago di Lugano). The results reveal the strong influence of the biogeochemical processes in the sediment on the chemical composition of the lake water above. Consumption of oxygen and nitrate under oxic to microoxic conditions in the water column as well as sequential release of reduced manganese and iron under anoxic conditions was observed as a direct or indirect consequence of microbially mediated degradation of organic matter. The seasonal pattern observed for the release and the retainment of dissolved reduced iron and manganese correlates well with the one for dissolved phosphate. Iron, manganese and phosphorus cycling are coupled tightly in these sediments. Both sediment types act as sinks for hydrogen sulfide and sulfate. An inner-sedimentary sulfur cycle is proposed to couple iron, manganese and phosphorus cycling with the degradation of organic matter. Nutrient cycling at the sediment-water interface might thus be driven by a microbially regulated electron pumping mechanism. The results contribute to a better understanding of the role of sediment processes in the lake's internal phosphorus cycle and its seasonal dynamics.  相似文献   

16.
Estuarine environments are influenced by both river flows and oceanic tidal movement of water, sediment, and nutrients, often forming ecosystems that are rich in resources and biodiversity. The Yellow River once carried the world’s largest sediment load, but artificial structures have transformed its hydrodynamic processes. An annual Water-Sediment Regulation Scheme(WSRS) was introduced to flush accumulated sediment from the Xiaolangdi Reservoir, which provides flood control and water storage.Ho...  相似文献   

17.
A long-term analysis of seasonal cycles of inorganic nutrients by means of a seasonal index is presented for the German Bight and the southern Wadden Sea (SE North Sea). Multivariate analysis for the German Bight data series revealed dependence of ammonium and phosphate index time series on dissolved inorganic nitrogen concentrations and riverine nutrient loads. Both indices are assumed to reflect seasonal dynamics of remineralisation processes associated with increased supply of organic matter. Temporal analysis revealed breaks in nutrient dynamics in 1970/1972 and 1979/1980. After 1970/1972, an unprecedented increase in the summer concentrations of mineralisation endproducts with correspondingly low index values were observed, which further declined after 1979/1980. Further breaks for Wadden Sea data series were identified in 1985 and 1988/1989. The indicative value of the temporal breaks with respect to eutrophication is discussed against the background of changes in meteoclimatic factors and local environmental conditions. Collated information on eutrophication effects was consistent with the observed breaks. It is suggested that the break in 1970/1972 in the German Bight was the first sign of ecosystem response to eutrophication in the SE North Sea.  相似文献   

18.
In the shallow water of Orbetello lagoon, macroalgae harvesting boats produce sediment disturbance. To evaluate the effect of this, during 2001-2002, a trial study was carried out in the lagoon in order to: verify seasonal and diurnal trends in nutrients and estimate the quantity of resuspended organic sediment. An unbalanced and balanced ANOVA (one and two way) analysis was applied. The disturbance did not produce strong and lasting eutrophication effects. In the seasonal survey, dissolved inorganic nitrogen (DIN) and soluble reactive phosphorus (SRP) showed significant decreases in disturbed areas at the end of the trial, while the control area showed a constant, significant increase. Dissolved organic nitrogen (DON) and phosphorus (DOP) significantly increased everywhere. In disturbed areas, sediment redox (Eh((NHE))) increased and porosity values decreased, contrary to the control area. Total organic carbon (TOC) remained unchanged in disturbed areas, but increased in the control area, where the C:P ration increased. The fall-out of sedimentary material resuspended by boat action for as far as 50 m from the boat route, was 189 g(dw)m(-2) made up mainly of organic matter. This disturbance could be the cause of change in vegetation in the lagoon.  相似文献   

19.
The principal features of the hydrological regime of the Seine River mouth area are discussed. Attention is focused on studying the dynamics of water and sediments in the estuary of the Seine River and in its tidal mouth area under the combined effect of seasonal variations in river runoff and tides. The history of development and improvement of the estuary is described.  相似文献   

20.

Based on field investigation of wave, sediment suspension and the changes in nutrient concentration of the water column in Lake Taihu, China, we proposed two release models to quantify nutrient release under static and dynamic conditions, respectively. Under static conditions, nutrient release from sediments to the overlying water mainly depends on chemical diffusion induced by concentration gradient, in which the nutrient release is controlled by the temperature, dissolved oxygen concentration in the sediment-water interface, oxidation-reduction potential and the concentration difference between porewater and overlying water. Under dynamic condition (or disturbed condition), both dissolved and particulate nutrients in sediments are released into the water column because of wind-induced sediment suspension. The amount of nutrient release under dynamic conditions is larger than that under the static condition. The release of dissolved nutrients, however, does not increase because the wind induced turbulence made oxidation of metallic elements such as Fe (ferric iron), Mn which are capable of precipitating soluble reactive phosphate (SRP). Under dynamic conditions, therefore, the release of total phosphorus (TP) increases dramatically but the release of SRP is close to those under static conditions. In sediments of Lake Taihu, high Fe content leads to a high ratio of Fe to P contents in sediments (Fe:P ratio). Under dynamic conditions, therefore, nutrient release is controlled by the intensity of disturbance, sediment consolidation and nutrient content in sediments. As for dissolved nutrients, especially SRP, the release is also controlled by the intensity of dynamic re-oxidation, Fe content in sediments and nutrient concentration gradient between porewater and overlying water. Based on these two release modes, the release flux in Lake Taihu has been estimated. In the static condition (i.e. laboratory experimental condition), total release of NH4 +-N for whole lake is ca. 10,000 ton/a, and PO4 3−-P is ca. 900 ton/a. In the dynamic condition, nutrient release following sediment suspension was estimated according to three different intensities of wind forcing which were defined as “calm” (wind speed is less than 2 m/s), “gentle” (wind speed is greater than 2 m/s and less than 6 m/s) and “gust” (wind speed is greater than 6 m/s). The release rate in the condition of “calm” was estimated in terms of the nutrient release in the laboratory experimental static condition; whereas the release rate in conditions of “gentle” and “gust” was estimated in terms of measurement during sediment resuspension conducted in flume experiments. With the observation of wind velocity and frequency in 2001, each type of wind forcing took the frequency of 12%, 82% and 6% for “calm”, “gentle” and “gust”, respectively. The yearly release of nitrogen was 81,000 ton and phosphorus was 21,000 ton, which is about 2–6 folds of annual external loading, respectively.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号