首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
We present the results of the study of long-term orbital evolution of space debris objects, formed from end-of-life space vehicles (SV) of satellite radio navigation systems in the medium Earth orbit (MEO) region. Dynamical features of the evolution of objects in this region have been studied on the basis of 20-year laser surveillance with the Etalon-1 and Etalon-2 satellites and the results of numerical simulation of the long-term evolution of operating and disposal orbits of uncontrolled GLONASS and GPS SVs. It is shown that perturbations from secular lunisolar resonances produce an eccentricity growth for orbits with inclinations chosen for navigation constellations; this significantly changes the positions of these orbits in space and results in the ingress of end-of-life objects into the area of operating SVs.  相似文献   

2.
We investigated by numerical integrations the long-term orbital evolution of four giant comets or comet-like objects. They are Chiron, P/Schwassmann-Wachmann 1 (SW1), Hidalgo, and 1992AD (5145), and their orbits were traced for 100–200 thousand years (kyr) toward both the past and the future. For each object, 13 orbits were calculated, one for the nominal orbital elements and other 12 with slightly modified elements based on the rms residual of the orbit determination and on the number of observations. As past studies indicate, their orbital evolution is found to be very chaotic, and thus can be described only in terms of probability. Plots of the semi-major axis (a) and perihelion distance (q) of the objects treated here seem to cross each other frequently, suggesting a possibility of their common evolutionary paths. About a half of all the calculated orbits showedq- ora-decreasing evolution. This indicates that, at least on the time scale in question, the giant comet-like objects are possibly on a dynamical track that can lead to capture from the outer solar system. We could hardly find the orbits with perihelia far outside the orbit of Saturn (q>15 AU). This is perhaps because the evolution of the orbits beyond Saturn is so slow that substantial orbital changes do not take place within 100–200 kyr.  相似文献   

3.
The results of an analysis of changes in resonant orbital dynamics of near-Earth objects, which are caused by light pressure, are presented. We describe features of the orbital evolution of the objects subjected to the combined effect of secular resonances and light pressure. It was shown that the transfer of objects to highly elliptical and hyperbolic orbits is possible when the object’s area-to-mass ratio is large.  相似文献   

4.
To understand the long-term evolution and distribution of the space objects, it is necessary to predict their orbits. Compared with the short-term prediction of a few days, the priority concerns of the long-term orbit prediction are the calculation speed, and the accuracies of major orbital elements, including the semi-major axis and eccentricity which define the shape of the orbit, as well as the orbital inclination and the right ascension of ascending node which define the orientation of the orbit. Given these requirements, it is preferable to adopt the semi-analytical method, which averages the system over the orbital period, and integrates the averaged system using the numerical method. It is not new, however, in the available literature, we can hardly find a quantitative assessment regarding its accuracy and speed when it is applied to various types of orbits. In this paper, we would like to report our implementation and assessment of the semi-analytical method, expecting that it would help to estimate its feasibility in the long-term orbit prediction. The quantitative assessment covers the commonly used orbits for the Earth satellites. In some rare and special cases where the performance of our method appears abnormal, we discuss the reasons and possible solutions. We hope our results can provide some useful reference for the similar applications of the semi-analytical method since our method is a relatively common approach in terms of both accuracy and implementation.  相似文献   

5.
Using statistical orbital ranging, we systematically study the orbit computation problem for transneptunian objects (TNOs). We have automated orbit computation for large numbers of objects, and, more importantly, we are able to obtain orbits even for the most sparsely observed objects (observational arcs of a few days). For such objects, the resulting orbit distributions include a large number of high-eccentricity orbits, in which TNOs can be perturbed by close encounters with Neptune. The stability of bodies on the computed orbits has therefore been ascertained by performing a study of close encounters with the major planets. We classify TNO orbit distributions statistically, and we study the evolution of their ephemeris uncertainties. We find that the orbital element distributions for the most numerous single-apparition TNOs do not support the existence of a postulated sharp edge to the belt beyond 50 AU. The technique of statistical ranging provides ephemeris predictions more generally than previously possible also for poorly observed TNOs.  相似文献   

6.
The orbital evolution of more than 22000 Jupiter-crossing objects under thegravitational influence of planets was investigated. We found that the meancollision probabilities of Jupiter-crossing objects (from initial orbits close tothe orbit of a comet) with the terrestrial planets can differ by more than twoorders of magnitude for different comets. For initial orbital elements close tothose of some comets (e.g., 2P and 10P), about 0.1% of objects got Earth-crossingorbits with semi-major axes a < 2 AU and moved in such orbits for more than a Myr (up to tens or even hundreds of Myrs).Results of our runs testify in favor of at least one of these conclusions: (1) the portionof 1-km former trans-Neptunian objects (TNOs) among near-Earth objects (NEOs)can exceed several tens of percent, (2) the number of TNOs migrating inside the solarsystem could be smaller by a factor of several than it was earlier considered, (3) mostof 1-km former TNOs that had got NEO orbits disintegrated into mini-comets and dustduring a smaller part of their dynamical lifetimes if these lifetimes are not small.  相似文献   

7.
Abstract— The MORP camera network in western Canada observed 56 events which we associate with meteorites larger than 0.1 kg. An additional 33 Prairie Network (central USA) fireballs with published orbits were previously identified as the sources of meteorites of at least 0.25 kg. A comparison of the MORP orbits with each other and with the PN orbits, using the D′ criterion of orbital similarity, exhibits a surprising number of small values. This suggests there are groups of related objects among the 89 events. We evaluate the probability of small values of D′ arising by chance from a group of random orbits that has the distribution of orbital elements expected for meteorites. There is an excess of small values of D′ among the 89 meteoritic objects over the expectation for random orbits and a marked excess of very small values. Four groups comprising a total of 16 objects account for this excess. These groups exhibit a preference for the larger masses of the population and a very strong concentration of perihelia just slightly inside the Earth's orbit. Although it has been shown by others that gravitational perturbations will disperse Earth-crossing streams in times that are much less than cosmic-ray exposure ages, the properties of the four groups suggest they may be streams of fragments that crossed the Earth's orbit only recently. Such streams may include a considerable fraction of meteorites falling at a given time. Orbital evolution of these streams could alter the sample of meteorites arriving on Earth over time intervals that are less than the accumulation time of the Antarctic collections.  相似文献   

8.
Single close encounters between Jupiter and about 3000 hypothetical minor bodies, initially on elliptical orbits, have been studied computing the evolution of the three-body system Sun-Jupiter-object, by means of a new numerical method of integration. The fictitious population processed contains almost all the orbits which allow a close approach to the planet. The efficiency of a single encounter in varying the orbital parameters of the objects resulted to be generally poor, as it is shown by the distributions of the orbital parameter variations. Collisions and ejections from the solar system on hyperbolic orbits are little numerous; some temporary satellite capture have been recognised. The results of this work show that any attempt to study the close encounter event by means of two distinct two-body problems is physically meaningless because the mid-range perturbations, disregarded in such cases, are very far from being negligible.  相似文献   

9.
The dynamics of larger interplanetary bodies is reviewed, with emphasis on evolutionary problems, interrelations, and open questions. Observational biases distinguishing the sample of known objects from the whole population are briefly discussed. A schematic division of the solar system into zones with different regimes of motion, and a rough taxonomy of orbit types are attempted. The role of individual major planets in controlling the dynamical evolution of interplanetary objects, in particular by stabilizing resonances and destabilizing close encounters, is compared. There are significant evolution asymmetries due to boundary conditions and preferential evolutionary paths; individual major displacements in the phase space of orbital elements conserve the Tisserand invariant with respect to the planet responsible, thus favouring certain evolutionary sequences against others. Very limited lifetimes of some orbit types imply a long-term balance between source and sink, and require a continuous supply of objects from other types of orbits. In this respect, the ultimate fate of extinct comets is of particular interest. Under very specific conditions, nongravitational effects of mass loss can result in stabilization of a formerly unstable orbit. Since the dividing line between the two basic interplanetary populations distinguished by origin and composition — the asteroids and the comets — is essentially that between stable and unstable motion, orbital data can be used to specify which of the known asteroid-like objects may be devolatilized cometary nuclei.Paper presented at the European Workshop on Planetary Sciences, organised by the Laboratorio di Astrofisica Spaziale di Frascati, and held between April 23–27, 1979, at the Accademia Nazionale del Lincei in Rome, Italy.  相似文献   

10.
The long-term dynamics of the geostationary Earth orbits (GEO) is revisited through the application of canonical perturbation theory. We consider a Hamiltonian model accounting for all major perturbations: geopotential at order and degree two, lunisolar perturbations with a realistic model for the Sun and Moon orbits, and solar radiation pressure. The long-term dynamics of the GEO region has been studied both numerically and analytically, in view of the relevance of such studies to the issue of space debris or to the disposal of GEO satellites. Past studies focused on the orbital evolution of objects around a nominal solution, hereafter called the forced equilibrium solution, which shows a particularly strong dependence on the area-to-mass ratio. Here, we (i) give theoretical estimates for the long-term behavior of such orbits, and (ii) we examine the nature of the forced equilibrium itself. In the lowest approximation, the forced equilibrium implies motion with a constant non-zero average ‘forced eccentricity’, as well as a constant non-zero average inclination, otherwise known in satellite dynamics as the inclination of the invariant ‘Laplace plane’. Using a higher order normal form, we demonstrate that this equilibrium actually represents not a point in phase space, but a trajectory taking place on a lower-dimensional torus. We give analytical expressions for this special trajectory, and we compare our results to those found by numerical orbit propagation. We finally discuss the use of proper elements, i.e., approximate integrals of motion for the GEO orbits.  相似文献   

11.
(903) Nealley moves on an orbit of low eccentricity with a mean motion that is slightly larger than the 2/1 value of resonance. This orbit and some related fictious orbits are studied by numerical integrations of the four-body problem Sun-Jupiter-Saturn-asteroid over an interval of 110000 yr. The author's experience on related cases of resonance allows a study of the variation of suitably defined orbital parameters. The long-term evolution of the orbits is compared with earlier predictions. Some of the librating orbits are temporarily captured in a secondary resonance that refers to three-dimensional motion and is demonstrated by a special example.  相似文献   

12.
This paper analyzes the capture of comets into Halley-type and Jupiter-family orbits from the nearparabolic flux of the Oort cloud. Two types of capture into Halley-type orbits are found. The first type is the evolution of near-parabolic orbits into short-period orbits (with heliocentric orbital periods P < 200 years) as a result of close encounters with giant planets. This process is followed by a very slow drift of cometary orbits into the inner part of the Solar System. Only those comets may pass from short-period orbits into Halley-type and Jupiter-family orbits, which move in orbits with perihelion distances q < 13 au. In the second type of capture, the perihelion distances of cometary orbits become rather small (< 1.5 au) during the first stage of dynamic evolution under the action of perturbations from the Galaxy, and then their semimajor axes decrease as a result of diffusion. The capture takes place, on average, in 500 revolutions of the comet about the Sun, whereas in the first case, the comet is captured, on average, after 12500 revolutions. The region of initial orbital perihelion distances q > 4 au is found to be at least as important a source of Halley-type comets as the region of perihelion distances q < 4 au. More than half of the Halley-type comets are captured from the nearly parabolic flux with q > 4 au. The analysis of the dynamic evolution of objects moving in short-period orbits shows that the distribution of Centaurs orbits agrees well with the observed distribution corrected for observational selection effects. Hence, the hypothesis associating the origin of Centaurs with the Edgeworth-Kuiper belt and the trans-Neptunian region exclusively should be rejected.  相似文献   

13.
We present a GPU-accelerated numerical integrator specifically optimized for stability calculations of small bodies in planetary systems. Specifically, the integrator is designed for cases when large numbers of test particles (tens or hundreds of thousands) need to be followed for long durations (millions of orbits) to assess the orbital stability of their initially “close-encounter free” orbits. The GLISSE (Gpu Long-term Integrator for Solar System Evolution) code implements several optimizations to achieve a roughly factor of 100 speed increase over running the same code on a CPU. We explain how various hardware speed bottlenecks can be avoided by the careful code design, although some of the choices restrict the usage to specific types of application.As a first application, we study the long-term stability of small bodies initially on orbits between Uranus and Neptune. We map out in detail the small portion of the phase space in which small bodies can survive for 4.5 billion years of evolution; the ability to integrate large numbers of particles allow us to identify for the first time how instability-inducing mean-motion resonance overlaps sharply define the stable regions. As a second application, we map the boundaries of 4 Gyr stability for transneptunian objects in the 5:2 and 3:1 mean-motion resonances, demonstrating that long-term perturbations remove the initially stable Neptune-crossing members.  相似文献   

14.
The orbital evolution of model meteoroids ejected from the comet Encke has been investigated. The particles abandon the mother body with velocities 20 and 40 ms-1 perihelion within the interval of the past 10,000 years. Their 10,000 years old osculating orbits were numerically integrated forward, using a dynamical model of the solar system consisting of all planets. Forces from solar electromagnetic and corpuscular radiation effecting the particles are considered, too. Orbital dispersions of the model meteoroids are presented. The importance of nongravitational forces for a long-term orbital evolution of meteoroid streams is shown.  相似文献   

15.
The paper presents the results of a study of the dynamic structure of the orbital space of the navigation systems GLONASS and GPS. It is shown that the dynamic structure of the GLONASS region is determined by the action of one stable Lidov–Kozai secular resonance. The motion of almost all the retired objects of the GLONASS system is stable throughout the 100-year study period. In the GPS region, there is an orbital resonance and a large number of secular resonances. Their combined influence leads to a rapid increase in the eccentricity of the orbits of the retired objects of the system. Features of the dynamic structure of the orbital space are used to find the graveyard (parking) orbits of the retired objects of navigation systems.  相似文献   

16.
Orbital correlation of space objects is one of the most important elements in space object identification. Using the orbital elements, we provide correlation criteria to determine if objects are coplanar,co-orbital or the same. We analyze the prediction error of the correlation parameters for different orbital types and propose an orbital correlation method for space objects. The method is validated using two line elements and multisatellite launching data. The experimental results show that the proposed method is effective, especially for space objects in near-circular orbits.  相似文献   

17.
Rodney S Gomes 《Icarus》2003,161(2):404-418
I simulate the orbital evolution of the four major planets and a massive primordial planetesimal disk composed of 104 objects, which perturb the planets but not themselves. As Neptune migrates by energy and angular momentum exchange with the planetesimals, a large number of primordial Neptune-scattered objects are formed. These objects may experience secular, Kozai, and mean motion resonances that induce temporary decrease of their eccentricities. Because planets are migrating, some planetesimals can escape those resonances while in a low-eccentricity incursion, thus avoiding the return path to Neptune close encounter dynamics. In the end, this mechanism produces stable orbits with high inclination and moderate eccentricities. The population so formed together with the objects coming from the classical resonance sweeping process, originates a bimodal distribution for the Kuiper Belt orbits. The inclinations obtained by the simulations can attain values above 30° and their distribution resembles a debiased distribution for the high-inclination population coming from the real classical Kuiper Belt.  相似文献   

18.
The analysis of the Moon artificial satellite orbits stability and satellite system configuring are important issues of lunar orbital navigational system development. The article analyses the influence of different combinations of perturbations on Moon artificial satellite’s obits evolution. The method of Moon artificial satellite’s orbital evolution analysis is offered; general stability regions of Moon artificial satellite’s orbits are defined and the quality characteristics of the selected orbital groups of the satellite system are evaluated.  相似文献   

19.
The orbital evolutions of the asteroid 3040 Kozai and model asteroids with similar orbits have been investigated. Their osculating orbits for an epoch 1991 December 10 were numerically integrated forward within the interval of 20,000 years, using a dynamical model of the solar system consisting of all inner planets, Jupiter, and Saturn.The orbit of the asteroid Kozai is stable. Its motion is affected only by long-period perturbations of planets. With change of the argument of perihelion of the asteroid Kozai, the evolution of the model asteroid orbits changes essentially, too. The model orbits with the argument of perihelion changed by the order of 10% show that asteroids with such orbital parameters may approach the Earth orbit, while asteroids with larger changes may even cross it, at least after 10,000 years. Long-term orbital evolution of asteroids with these orbital parameters is very sensitive on their angular elements.  相似文献   

20.
In our work, the method that can help to predict the existence of distant objects in the Solar system is demonstrated. This method is connected with statistical properties of a heliocentric orbital complex of meteoroids with high eccentricities. Heliocentric meteoroid orbits with high eccentricities are escape routes for dust material from distant parental objects with near-circular orbits to Earth-crossing orbits. Ground-based meteor observations yield trajectory information from which we can derive their place of possible origin: comets, asteroids, and other objects (e.g. Kuiper Objects) in the Solar system or even interstellar space. Statistical distributions of radius vectors of nodes, and other parameters of orbits of meteoroids contain key information about position of greater bodies. We analyze meteor orbits with high eccentricities that were registered in 1975–1976 in Kharkiv (Ukraine). The orbital data of the Kharkiv electronic catalogue are received from observations of radiometeors with masses 10−6−10−3 g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号