首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Recognition of thin interbedded reservoirs in the middle-shallow strata in the Songliao Basin is a great difficulty. In order to resolve this problem, we present a technique for predicting the distribution of thin reservoirs using a broad frequency band and ultra high resolution seismic. Based on forward modeling, we recognized that a thin bed seismic reflection is characterized by changing amplitude with changing frequency (amplitude versus frequency, AVF). We calculate the thickness of thin reservoirs from their AVF characteristics and predict the distribution of thin bed reservoir using broad frequency band and ultra high resolution seismic. The technique has been applied in the 3D seismic area of Zhaoyuan in the northern part of the Songliao Basin. The seismic resolution is increased by two or three times over that of conventional seismic and many thin reservoirs have been identified. The technique has extensive application to the exploration and development of oil and gas, such as optimizing the location of exploration wells, the design of wells (especially horizontal wells), choice of production test layers, analyzing reservoir continuity in development wells, and so on.  相似文献   

2.
In this paper, a new concept called numerical structure of seismic data is introduced and the difference between numerical structure and numerical value of seismic data is explained. Our study shows that the numerical seismic structure is closely related to oil and gas-bearing reservoir,so it is very useful for a geologist or a geophysicist to precisely interpret the oil-bearing layers from the seismic data. This technology can be applied to any exploration or production stage. The new method has been tested on a series of exploratory or development wells and proved to be reliable in China. Hydrocarbon-detection with this new method for 39 exploration wells on 25 structures indicates a success ratio of over 80 percent. The new method of hydrocarbon prediction can be applied for: (1) depositional environment of reservoirs with marine facies, delta, or non-marine facies (including fluvial facies, lacustrine facies); (2) sedimentary rocks of reservoirs that are non-marine clastic rocks and carbonate rock; and (3) burial depths range from 300 m to 7000 m, and the minimum thickness of these reservoirs is over 8 m (main frequency is about 50 Hz).  相似文献   

3.
Energy loss in porous media containing fluids is typically caused by a variety of dynamic mechanisms.In the Biot theory,energy loss only includes the frictional dissipation between the solid phase and the fluid phase,resulting in underestimation of the dispersion and attenuation of the waves in the low frequency range.To develop a dynamic model that can predict the high dispersion and strong attenuation of waves at the seismic band,we introduce viscoelasticity into the Biot model and use fractional derivatives to describe the viscoelastic mechanism,and finally propose a new wave propagation model.Unlike the Biot model,the proposed model includes the intrinsic dissipation of the solid frame.We investigate the effects of the fractional order parameters on the dispersion and attenuation of the P-and S-waves using several numerical experiments.Furthermore,we use several groups of experimental data from different fluid-saturated rocks to testify the validity of the new model.The results demonstrate that the new model provides more accurate predictions of high dispersion and strong attenuation of different waves in the low frequency range.  相似文献   

4.
In order to search for the seismic wave characteristics of low frequency signals in the Alxa Left Banner region,Inner Mongolia,the low frequency signals of seismic wave data are extracted from the earthquakes of MS5. 8 in 2015 and MS5. 0 in 2016 in this area. The results show that:① Before the MS5. 8 earthquake,the seismic stations located near the epicenter in Wuhai,Dongshengmiao,and Shizuishan recorded seismic waves that showed the phenomenon of spectrum shift from high to low frequency.② The low frequency signals recorded by different stations have obvious difference.③ According to the data recorded by the station closest to the epicenter,low-frequency signals were recorded about120 hours before the earthquake and had obvious anomalies. This may reflect slow slip before the earthquake.  相似文献   

5.
6.
Seismic data with high signal-to-noise ratios (SNRs) are useful in reservoirexploration. To obtain high SNR seismic data, significant effort is required to achieve noiseattenuation in seismic data processing, which is costly in materials, and human and financialresources. We introduce a method for improving the SNR of seismic data. The SNR iscalculated by using the frequency domain method. Furthermore, we optimize and discussthe critical parameters and calculation procedure. We applied the proposed method on realdata and found that the SNR is high in the seismic marker and low in the fracture zone.Consequently, this can be used to extract detailed information about fracture zones that areinferred bv structural analysis but not observed in conventional seismic data.  相似文献   

7.
Study on characterizing reservoir parameters dynamic variations by time-lapse seismic attributes is the theoretical basis for effectively distinguishing reservoir parameters variations and conducting time-lapse seismic interpretation,and it is also a key step for time-lapse seismic application in real oil fields. Based on the rock physical model of unconsolidated sandstone,the different effects of oil saturation and effective pressure variations on seismic P-wave and S-wave velocities are calculated and analyzed. Using numerical simulation on decoupled wave equations,the responses of seismic amplitude with different offsets to reservoir oil saturation variations are analyzed,pre-stack time-lapse seismic attributes differences for oil saturation and effective pressure variations of P-P wave and P-S converted wave are calculated,and time-lapse seismic AVO (Amplitude Versus Offset) response rules of P-P wave and P-S converted wave to effective pressure and oil saturation variations are compared. The theoretical modeling study shows that it is feasible to distinguish different reservoir parameters dynamic variations by pre-stack time-lapse seismic information,including pre-stack time-lapse seismic attributes and AVO information,which has great potential in improving time-lapse seismic interpreta-tion precision. It also shows that the time-lapse seismic response mechanism study on objective oil fields is especially important in establishing effective time-lapse seismic data process and interpreta-tion scheme.  相似文献   

8.
Spectral decomposition using the method of Matching Pursuit Decomposition (MPD) for PP- and PS-wave data has higher resolution and higher consistency over the entire time-frequency plane. The MPD algorithm avoids the problems of inaccurate analytic time point and the time window size choice that may occur during a Fourier transform. The PP-wave attenuation is greater than the PS-wave attenuation while propagating through gas reservoirs. There are some stronger amplitude low-frequency shadows on the PP-wave single frequency sections beneath gas reservoirs which are not seen on corresponding PS- wave single frequency sections. Therefore, hydrocarbons are predicted from comparing the behavior on both frequency sections. The time-frequency analysis for multi-component data is decomposed by MPD for data from northeast China containing rich gas reservoirs. The gas response character is analyzed on different wave mode single frequency sections. We describe the MPD algorithm, compare it to other spectral decomposition methods, and show some examples of detecting low-frequency shadows beneath gas reservoirs.  相似文献   

9.
The Fuyang oil-layer in North Songliao Basin is characterized by thin interbedded sands and shales, strong lateral variation, strong reservoir heterogeniety, and so on. The thickness of individual sand layers is generally 3 - 5 m. Identifying the channel sand-bodies of the Fuyang oil layer using seismic techniques is very difficult due to the low seismic resolution. Taking the GTZ area as an example, we discuss the genetic characteristics of the channel sand-bodies and point out the real difficulty in using seismic techniques to predict the channel sand-bodies. Two methods for the identification of channels are presented: frequency spectrum imaging and pre-stack azimuthal anisotropy. Identifying the channel sand-bodies in Fuyu oil-layer using the two seismic methods results in a success rate up to 80% compared with well data.  相似文献   

10.
双相介质中地震波衰减的物理机制   总被引:1,自引:0,他引:1  
High-frequency seismic attenuation is conventionally attributed to anelastic absorption. In this paper, I present three studies on high-frequency seismic attenuation and propose that the physical mechanism results from the interference of elastic microscopic multiple scattering waves. First, I propose a new theory on wave propagation in a two-phase medium which is based on the concept that the basic unit for wave propagation is a nano- mass point. As a result of the elasticity variations of pore fluid and rock framework, micro multiple scattering waves would emerge at the wavelength of the seismic waves passing through the two-phase medium and their interference and overlap would generate high- frequency seismic attenuation. Second, I present a study of the frequency response of seismic transmitted waves by modeling thin-layers with thicknesses no larger than pore diameters. Results indicate that high-frequency seismic waves attenuate slightly in a near-surface water zone but decay significantly in a near-surface gas zone. Third, I analyze the seismic attenuation characteristics in near-surface water and gas zones using dual-well shots in the Songliao Basin, and demonstrate that the high-frequency seismic waves attenuate slightly in water zones but in gas zones the 160-1600 Hz propagating waves decay significantly. The seismic attenuation characteristics from field observations coincide with the modeling results. Conclusions drawn from these studies theoretically support seismic attenuation recovery.  相似文献   

11.
高精度频率衰减分析技术及其应用(英文)   总被引:3,自引:1,他引:2  
本文从含流体孔隙介质中的地震波场的衰减理论出发,对常规的频率衰减分析技术中的"低频阴影"和"频率衰减梯度"分析方法进行了改进,提出了一种高精度的频率衰减分析技术。首先,通过引入三参数小波变换和时频聚焦准则,发展了一种基于自适应三参数小波变换的高精度时频分析方法,其不仅具有很高的时—频分辨率(有利于"低频阴影"分析),而且其频谱只有一个峰,旁瓣比较小(有利于"频率衰减梯度"分析)。其次,采用基于最小二乘法的Nelder-Mead非线性算法对频谱的衰减部分进行拟合计算,可以准确地计算衰减系数,提高了"频率衰减梯度"的计算精度。实际资料的计算结果表明,本文提出的综合"低频阴影"和"频率衰减梯度"方法的频率衰减分析技术能够有效地圈定碳酸盐岩鲕滩储层的发育区域,且两种方法具有很好的一致性,有效地提高了储层预测的可靠性,从而降低了勘探风险。  相似文献   

12.
To simulate the frequency-dependent response of turbidite reservoirs in the JZ Area, near the Bohai Sea, China, we apply a diffusive and viscous wave equation (DVWE), which takes into account diffusive and viscous attenuation and velocity dispersion in fluid-bearing poroelastic media. We use a seismic data-driven geological model building approach to produce physical parameter sections, which are then used to numerically synthesize the frequency-dependent seismic response in the DVWE-based simulation. The DVWE-based synthetic section shows the characteristic reflection and geometry of turbidites and delineates the phase delay, instantaneous dominant frequency decrease and magnitude attenuation related to the gas-bearing reservoir. The common frequency sections obtained by instantaneous spectral decomposition of the synthetic section show that a low-frequency shadow (LFS) lies immediately beneath the reservoir. Next, following the implications of the numerical simulation, we then apply LFS and fluid mobility to the data volume. Both hydrocarbon indicators clearly delineate the bright gas reservoir and its spatial distribution. The workflow and methodologies can be expected to be applicable to other frequency-dependent hydrocarbon indicators.  相似文献   

13.
Due to strong heterogeneity of marine carbonate reservoir, seismic signals become more complex, thus, it is very difficult for hydrocarbon detection. In hydrocarbon reservoir, there usually exist some changes in seismic wave energy and frequency. In their instantaneous spectrums there often exist such phenomena that show the characteristics of attenuation of high frequency energy and enhancement of low-frequency energy. The three EMD-based time-frequency analysis methods' instantaneous spectra all have certain oil and gas detection capability. In this paper, we introduced the Normalized Hilbert Transform (NHT) and a new method named the HU method for hydrocarbon detection. The model results in the Jingbian Gas Field which is located in the eastern Ordos Basin, China, show that NHT and HU methods can be adopted. They also detect the gas-bearing reservoir efficiently as the HHT method does. The three EMD-based methods, that is, the Hilbert–Huang transformation (HHT) and NHT and HU methods, were respectively applied to analyze the seismic data from the Jingbian Gas Field. Firstly, the seismic signals were decomposed into a finite number of intrinsic mode functions (IMFs) by empirical mode decomposition (EMD) method. The second IMF signal (IMF2) of the original seismic section better indicates the distribution of the reservoir. Information on hydrocarbon-bearing reservoir is mainly in IMF2. Secondly, the HHT, NHT and HU methods were respectively used to obtain different frequency division sections from IMF2. Hydrocarbon detection was realized from the energy distribution of the different frequency division sections with these three EMD-based methods. The practical application results show that the three EMD-based methods can all be employed to hydrocarbon detection. Frequency division section of IMF2 using NHT method was better for the seismic data from the Jingbian Gas Field than when using the HHT method and HU method.  相似文献   

14.
The fractional S-transform (FRST) has good time–frequency focusing ability. The FRST can identify geological features by rotating the fractional Fourier transform frequency (FRFTfr) axis. Different seismic signals have different optimal fractional parameters which is not conducive to multichannel seismic data processing. Thus, we first decompose the common-frequency sections by the FRST and then we analyze the low-frequency shadow. Second, the combination of the FRST and blind-source separation is used to obtain the independent spectra of the various geological features. The seismic data interpretation improves without requiring to estimating the optimal fractional parameters. The top and bottom of a limestone reservoir can be clearly recognized on the common-frequency section, thus enhancing the vertical resolution of the analysis of the low-frequency shadows compared with traditional ST. Simulations suggest that the proposed method separates the independent frequency information in the time–fractional-frequency domain. We used field seismic and well data to verify the proposed method.  相似文献   

15.
In comparison to high-frequency signals, low-frequency seismic signals suffer less from scattering and intrinsic attenuation during wave propagation, penetrate deeper strata and thus can provide more energy information related to the hydrocarbon reservoirs. Based on the asymptotic representation for the frequency-dependent reflections in the fluid-saturated pore-elastic media, we first derive a novel equation of the reservoir energy density and present an efficient workflow to calculate the reservoir energy density using low-frequency seismic data. Then, within a low-frequency range (from 1 to 30 Hz), we construct an objective function to determine the optimal frequency, using the energy densities calculated from the post-stack seismic traces close to the wells. Next, we can calculate the reservoir energy density using the instantaneous spectra of optimal frequency at the low-frequency end of the seismic spectrum. Tests on examples for synthetic and field data demonstrate that the proposed reservoir energy density can produce high-quality images for the fluid-saturated reservoirs, and it produces less background artefacts caused by elastic layers. This method provides a new way to detect the location of hydrocarbon reservoirs and characterize their spatial distribution.  相似文献   

16.
东非裂谷Albertine地堑是当今世界油气勘探的热点地区之一,具有埋藏浅、演化快、地层新的地质特点。作为主力含油气层段的新生代地层中疏松砂岩异常发育,物性参数差异较大,受控于孔隙度以及孔隙流体的综合影响,含油气储层的地震响应无明显规律,油气预测难度较大。基于能量吸收分析思想的指导,在利用匹配追踪时频分解方法有效提高时频分辨率的前提下,进一步提出瞬时能量异常属性的计算方法。以Albertine地堑的W油田为例,针对含油气储层表现的低频能量增加、高频能量衰减的异常特征,借助瞬时能量异常属性实现了油气预测,预测结果获得了钻井的验证。   相似文献   

17.
利用频谱分解得到的频率能量数据体进行属性提取,是烃类检测的常用手段之一.同步挤压小波变换能够提供高分辨率的时频谱,具有较好的应用潜力.本文以同步挤压小波变换为基础,提出了一套烃类检测方法,包括低频阴影检测、流体流动性估计以及高频能量衰减等,通过自适应选取优势频段,实现了多属性联合高精度刻画烃类的分布范围.实际资料处理结果与现有钻井情况吻合,具有较好的实用性,实现了对储层位置的高精度描述,对指导油气田开发具有重要的理论意义和实用价值.  相似文献   

18.
选取2019年3月—8月河南平顶山市宝丰县平煤矿区发生的ML 2.0—2.9天然地震、爆破、塌陷等9次震动事件,在区域地质构造背景和波形特征分析基础上,采用短时傅里叶变换(STFT)方法开展时频波谱分析,提取不同类型事件的时频特征。结果显示:(1)天然地震频率成分丰富,且高、低频分布均匀,P波在约3 Hz和8 Hz处存在2个峰值,S波存在多个峰值;(2)爆破事件的时频谱相对集中,以低频为主,P波频率峰值约5Hz,信号主频随时间变化,大致呈线性降低至1—2 Hz;(3)塌陷事件频率成分以4 Hz以下的低频为主,P波无明显峰值且频率成分单一,主频出现在2 Hz左右的面波。本文结果可为今后该矿区震动事件类型判断提供参考依据。  相似文献   

19.
利用紫坪铺水库2004~2007年记录的实际地震数据,通过比较多种滤波方法,发展出一种既能有效滤除地震数据中本底噪音、又对有效信号损伤较小的比值滤波方法。对去噪后的水库诱发地震和构造地震数据,利用小波变换方法,分别进行时频分析获得两类地震的时频谱,并提取可以反映地震发生前后能量分布和聚集情况的时频属性,最后根据各个属性的响应效果,组合得到新的属性。将时频谱与时频属性相结合,总结归纳紫坪铺水库诱发地震与构造地震波谱时频特征的差异性,为地震监测分析提供基础依据。  相似文献   

20.
时频域油气储层低频阴影检测   总被引:27,自引:8,他引:19       下载免费PDF全文
为了准确刻画地震信号的局部层次结构,实现高效率的三维地震资料瞬时谱分解,检测油气储层的低频阴影,构造了广义S变换.广义S变换通过引入两个参数,改造S变换的小波函数,使其小波能根据信号处理的具体应用需要而调整.模型信号的仿真发现,广义S变换具有更加优越和灵活可调的时频聚集性能.文中分析了低频阴影的机理,并利用广义S变换对三维实际地震资料进行了瞬时谱分解,它不仅能检测油气储层的低频阴影,而且可以刻画油气储层的岩性边界和空间展布,减小油气储层检测的多解性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号