首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Anisotropy of magnetic susceptibility (AMS) is investigated in samples of Peralimala (PM) pluton (ca. 550 Ma) and adjacent gneiss, gabbro, mylonite and amphibolite from the Moyar Shear Zone (MSZ), Southern Granulite Terrane (SGT) with an aim to decipher the time-relationship between fabric development in the pluton and regional tectonics. Magnetic foliation recorded in the PM pluton is sub-parallel to the WNW-ESE striking MSZ. Magnetic foliation and lineation trajectories are sigmoidal and curve into the shear zone. A dextral sense of shear is deciphered from the trajectories, which is similar to that reported within the MSZ in some earlier studies. It is inferred that the PM pluton has developed post-emplacement deformation-fabric related to reactivation of the MSZ during Pan-African age. Based on the data and existing information about regional tectonics of the area, the possibility of the (a) PM pluton being a Deformed Alkali Rock and Carbonatite (DARC) and (b) MSZ marking an ancient suture zone, is discussed.  相似文献   

2.
The Ardara pluton as part of the Donegal batholith was intruded into Neoproterozoic metasediments and metadolerites at mid-crustal levels. The emplacement mechanism of the Ardara granite is very controversial, and mechanisms ranging from diapirism, ballooning and stoping followed by nested diapirism have been proposed. Magnetic fabrics, rock fabrics and K/Ar dating of micas are used here to constrain the emplacement history. The compositional zoning of the Ardara pluton is clearly reflected in the different bulk magnetic susceptibilities between the outer quartz monzodiorite and the central granodiorite, whereas the intervening tonalite is of intermediate nature. The magnetic carriers are characterized by the anisotropy of the magnetic susceptibility (AMS), thermomagnetic measurements and through high field analyses (HFA). The separation of the ferrimagnetic and paramagnetic contributions revealed that biotite and magnetite control the AMS in the quartz monzodiorite. Both minerals are oriented in such a way that their summed contribution is constructive and originates from the shape fabric of magnetite and the texture of biotite. Biotite is responsible mainly for the AMS in the tonalite and granodiorite. The magnetic foliation can be directly related to the macroscopic foliation and also to the D4 structures in the country rocks. The foliation is consistent with the geometry of the roughly circular shape and has a mostly steep to vertical dip. Towards the central granodiorite the magnetic foliation dies out, although plagioclase texture measurements indicate a weak magmatic shape fabric. With the exception of the tail, the Kmax axes (magnetic lineation) vary from steeply to gently plunging. The so-called lineation factor is approximately 1.01 and therefore points to a less significant axial symmetry. These observations coincide with strain estimates on mafic enclaves that show a very consistent pattern of K ∼0 flattening strain. Texture analyses of biotite and quartz additionally support the observations made by the strain analyses and the magnetic fabric data. Microstructural investigations give evidence that the fabrics are associated with the emplacement over a range of temperatures from truly magmatic to high-temperature solid-state conditions. The age of the intrusion is still under discussion, but a new cooling age was determined by K/Ar dating of biotite at 403.7±8 Ma corresponding to a temperature range between 450 and 300°C. For a mylonite along the southern contact between the Ardara pluton and the country rock a K/Ar muscovite age of 378.8±7 Ma indicates a minimum age for the shear zone when the Ardara pluton must have already been cooled down below 350±50°C. Received: 28 January 1999 / Accepted: 28 December 1999  相似文献   

3.
The Kapitan-Dimitrievo pluton was emplaced within the 15 km wide Maritsa shear zone during the Late Cretaceous. It has well-known U–Pb zircon age (78.54 ± 0.13 Ma) and appears as a late-syntectonic intrusion that marked the last ductile deformation in the Maritsa shear zone. Magnetite is believed to be the main carrier of the magnetic fabric in this pluton, and crystallized mainly late, after the main rock-forming minerals. Two fabrics are recorded, a visible syn-magmatic fabric (due to magma flow) and magnetic late-magmatic fabric (related to regional stresses). Although different, both are mainly related to the shearing along this shear zone. These results constrain in age the dextral strike-slip controlled emplacement and evolution of the Late Cretaceous plutons from Central Bulgaria.  相似文献   

4.
Magnetic fabric and rock-magnetism studies were performed on the four units of the 578 ± 3-Ma-old Piracaia pluton (NW of São Paulo State, southern Brazil). This intrusion is roughly elliptical (~32 km2), composed of (i) coarse-grained monzodiorite (MZD-c), (ii) fine-grained monzodiorite (MZD-f), which is predominant in the pluton, (iii) monzonite heterogeneous (MZN-het), and (iv) quartz syenite (Qz-Sy). Magnetic fabrics were determined by applying both anisotropy of low-field magnetic susceptibility (AMS) and anisotropy of anhysteretic remanent magnetization (AARM). The two fabrics are coaxial. The parallelism between AMS and AARM tensors excludes the presence of a single domain (SD) effect on the AMS fabric of the units. Several rock-magnetism experiments performed in one specimen from each sampled units show that for all of them, the magnetic susceptibility and magnetic fabrics are carried by magnetite grains, which was also observed in the thin sections. Foliations and lineations in the units were successfully determined by applying magnetic methods. Most of the magnetic foliations are steeply dipping or vertical in all units and are roughly parallel to the foliation measured in the field and in the country rocks. In contrast, the magnetic lineations present mostly low plunges for the whole pluton. However, for eight sites, they are steep up to vertical. Thin-section analyses show that rocks from the Piracaia pluton were affected by the regional strain during and after emplacement since magmatic foliation evolves to solid-state fabric in the north of the pluton, indicating that magnetic fabrics in this area of the pluton are related to this strain. Otherwise, the lack of solid-state deformation at outcrop scale and in thin sections precludes deformation in the SW of the pluton. This evidence allows us to interpret the observed magnetic fabrics as primary in origin (magmatic) acquired when the rocks were solidified as a result of magma flow, in which steeply plunging magnetic lineation suggests that a feeder zone could underlie this area.  相似文献   

5.
The EW-striking Variscan Mérens shear zone (MSZ), located on the southern border of the Aston dome (Pyrenees), corresponds to variously mylonitized gneisses and plutonic rocks that are studied using the Anisotropy of Magnetic Susceptibility (AMS) technique. The plutonic rocks form EW-striking bands with, from south to north, gabbro-diorites, quartz diorites and granodiorites. The MSZ underwent a mylonitic deformation with an intensity progressively increasing from the mafic to the more differentiated rocks. The foliations are EW to NW–SE striking and subvertical. A first set of lineations shows a moderate WNW plunge, with a dextral reverse kinematics. More recent subvertical lineations correspond to an uplift of the northern compartment. To the east, the MSZ was cut by a N120°E-striking late shear band, separating the MSZ from the Quérigut pluton. The different stages of mylonitization relate to Late Variscan dextral transpression. This regime allowed the ascent of magmas along tension gashes in the middle crust. We interpret the MSZ as a zone of magma transfer, which fed a pluton now eroded that was similar to the Quérigut and Millas plutons located to the east. We propose a model of emplacement of these plutons by successive pulses of magmas along en-échelon transfer zones similar to the MSZ.  相似文献   

6.
The Pan-African NE–SW elongated Bandja granitic pluton, located at the western part of the Pan-African belt in Cameroon, is a K-feldspar megacryst granite. It is emplaced in banded gneiss and its NW border underwent mylonitization. The magmatic foliation shows NE–SW and NNE–SSW strike directions with moderate to strong dip respectively in its northern and central parts. This mostly, ferromagnetic granite displays magnetic fabrics carried by magnetite and characterized by (i) magnetic foliation with best poles at 295/34, 283/33 and 35/59 respectively in its northern, central and southern parts and (ii) a subhorizontal magnetic lineation with best line at 37/8, 191/9 and 267/22 respectively in the northern, central and southern parts. Magnetic lineation shows an ‘S’ shape trend that allows to (1) consider the complete emplacement and deformation of the pluton during the Pan-African D 2 and D 3 events which occurred in the Pan-African belt in Cameroon and (2) reorganize Pan-African ages from Nguiessi Tchakam et al. (1997) compared with those of the other granitic plutons in the belt as: 686 ±17 Ma (Rb/Sr) for D 1 age of metamorphism recorded in gneiss; and the period between 604–557 Ma for D 2–D 3 emplacement and deformation age of the granitic pluton in a dextral ENE–WSW shear movement.  相似文献   

7.
New laser ablation-inductive coupled plasma-mass spectrometry U-Pb analyses on oscillatory-zoned zircon imply Early Miocene crystallization (18.64 ± 0.11 Ma) of the Pohorje pluton at the southeastern margin of the Eastern Alps (northern Slovenia). Inherited zircon cores indicate two crustal sources: a late Variscan magmatic population (~270–290 Ma), and an early Neoproterozoic one (850–900 Ma) with juvenile Hf isotope composition close to that of depleted mantle. Initial εHf of Miocene zircon points to an additional, more juvenile source component of the Miocene magma, which could be either a juvenile Phanerozoic crust or the Miocene mantle. The new U-Pb isotope age of the Pohorje pluton seriously questions its attribution to the Oligocene age ‘Periadriatic’ intrusions. The new data imply a temporal coincidence with 19–15 Ma magmatism in the Pannonian Basin system, more specifically in the Styrian Basin. K-Ar mineral- and whole rock ages from the pluton itself and cogenetic shallow intrusive dacitic rocks (~18–16 Ma), as well as zircon fission track data (17.7–15.6 Ma), gave late Early to early Middle Miocene ages, indicating rapid cooling of the pluton within about 3 Million years. Medium-grade Austroalpine metamorphics north and south of the pluton were reheated and subsequently cooled together. Outcrop- and micro scale structures record deformation of the Pohorje pluton and few related mafic and dacitic dykes under greenschist facies conditions. Part of the solidstate fabrics indicate E–W oriented stretching and vertical thinning, while steeply dipping foliation and NW–SE trending lineation are also present. The E–W oriented lineation is parallel to the direction of subsequent brittle extension, which resulted in normal faulting and tilting of the earlier ductile fabric at around the Early / Middle Miocene boundary; normal faulting was combined with strike-slip faulting. Renewed N–S compression may be related to late Miocene to Quaternary dextral faulting in the area. The documented syn-cooling extensional structures and part of the strike-slip faults can be interpreted as being related to lateral extrusion of the Eastern Alps and/or to back-arc rifting in the Pannonian Basin.  相似文献   

8.
The Late Panafrican evolution of the Hoggar shield is characterized by emplacement of magmatic intrusions and by occurrence of major shear zones separating different terranes. In Telloukh granite is close to the In Guezzam faults (western border of the Tin Serririne basin). Analysis of its visible and magnetic fabrics suggests an emplacement mode and deformation that are not related to the In Guezzam faults, but most likely to a N–S compression, an event not yet identified. Dioritic dykes crosscutting the granite have a very different magnetic fabric, which is related on the contrary to dextral strike-slip movements along the In Guezzam faults. In both cases, no visible fabric can be correlated with the magnetic fabric, which has been likely acquired during late magmatic stages. This magnetic fabric was not significantly affected by the tectonic events that took place after entire crystallization of the magma. The In Guezzam faults and the major 7°30 and 4°50 shear zones are close to intrusions such as In Telloukh dykes and the Alous En Tides and Tesnou plutons where quite similar magnetic fabrics are observed, all related with dextral strike-slip movements along these structures.  相似文献   

9.
Widespread distribution of mafic dykes and scanty occurrence of ultrabasic intrusives of kimberlitic affinity around Proterozoic Cuddapah basin, parts of Eastern Dharwar craton of south India has been the focus of attention since their discovery, to understand the structural fabric in relation to their emplacement in geological time. Satellite Imagery, geomorphological, geophysical and radiometric age data of Narayanpet area, northwest of Cuddappah basin, have clearly displayed the alignments and structures of geological significance, such as deep seated fault / fracture / shear zones, stratigraphic / lithological contacts, basic / ultrabasic intrusives and younger granites etc,. Based on the field observations such as emplacement of mafic dykes, their cross cutting relationship, study of morphological and geophysical signatures, inferred linears drawn from satellite imagery, aeromagnetic and gravity maps are arranged in a chronological order. A system of long, narrow and widely spaced dykes trending NW-SE direction conformable to gneissic foliation, typically associated with migmatites in the southwestern part of the study area are the oldest. Followed by E-W dykes, cut across by the sparsely distributed dykes associated with NW-SE and N-S features and in turn off set by dykes of NE-SW trends are the youngest. Kimberlites of Narayanpet area, belongs to hypabysal facies, which are essentially controlled by E-W to ENE-WSW deep seated fault / fracture zone, their intersection with NW-SE, NE-SW to N-S trends, which may have been reactivated during Proterozoic period as indicated by the intrusion of mafic dykes (~2270 to 1701 Ma) and emplacement of kimberlitic magmatism (~1300 to 1100 Ma) suggesting different intrusive episodes. Kimberlite pipes of Narayanpet field, falls in an ellipsoid form trending WNW-ESE direction in the northern part of the area, associated with radial drainage / topographic high and a gravity low. In addition, physical properties such as density and magnetic susceptibilities of mafic dykes and kimberlites, their geophysical signatures, emplacement of kimberlites at the close vicinity of mafic dykes or at their intersections have also been discussed.  相似文献   

10.
华北晚前寒武纪镁铁质岩墙群的流动构造及侵位机制   总被引:21,自引:1,他引:21       下载免费PDF全文
华北克拉通中部广泛发育晚前寒武纪镁铁质岩墙群。这些岩墙群未变形和未变质,保存了清晰完好的流动构造,完整地反映了前寒武纪岩浆活动的特征和流动构造,这在世界上是罕见的。通过对晚前寒武纪镁铁质岩墙群的形态和流动构造研究,如:流动线理、矿物组构和磁组构等,提出岩墙群的侵位方向和侵位方式。结合本区岩墙群与燕辽—中条拗拉槽系的关系以及岩墙群的力学性质,探讨本区岩墙群的侵位机制。  相似文献   

11.
为了分析望云山复式花岗岩体侵位时的动力学状态,对该岩体进行了岩石磁组构参数测定,磁化率的变化特征反映了望云山得式岩体侵位过程中构造环境的变化和单元岩石的暗色矿物组成及其性程度的高低;磁面理的产状与岩体形态和岩石单元分布相吻合,清晰地反映了不同构造单元岩浆侵位方式;磁线理指示岩体的侵位中心,线理表现形式不一,标示侵位方式与受构造应力的不同;晚期岩浆对早期岩浆中的磁线理有一定的改造作用,磁线理方向基本上反映了岩浆原始流动状态;从磁化率椭球参数可以看出岩浆侵位的应变状态;岩浆应力场分布体现了岩浆侵位方式及其所处构造环境,岩体岩石磁组构参数佐证了区域构造,围岩构造及岩体内部其他构造所反映的岩体侵位机制。  相似文献   

12.
The Late Panafrican evolution of the Hoggar shield is characterized by emplacement of magmatic intrusions and by occurrence of major shear zones separating different terranes. In Telloukh granite is close to the In Guezzam faults (western border of the Tin Serririne basin). Analysis of its visible and magnetic fabrics suggests an emplacement mode and deformation that are not related to the In Guezzam faults, but most likely to a N–S compression, an event not yet identified. Dioritic dykes crosscutting the granite have a very different magnetic fabric, which is related on the contrary to dextral strike-slip movements along the In Guezzam faults. In both cases, no visible fabric can be correlated with the magnetic fabric, which has been likely acquired during late magmatic stages. This magnetic fabric was not significantly affected by the tectonic events that took place after entire crystallization of the magma. The In Guezzam faults and the major 7°30 and 4°50 shear zones are close to intrusions such as In Telloukh dykes and the Alous En Tides and Tesnou plutons where quite similar magnetic fabrics are observed, all related with dextral strike-slip movements along these structures.  相似文献   

13.
In the southern French Massif Central, the Rocles leucogranite of Variscan age consists of three petrographic facies; textural analysis shows that they experienced the same subsolidus deformation. New chemical U-Th-Pb dating on monazite yielded 324 ± 4 Ma and 325 ± 5 Ma ages for muscovite-rich and biotite-rich facies respectively. AMS-study results agree with petrostructural observations. The magnetic planar and linear fabrics, which correspond to the preferred orientation of biotite and muscovite, are consistent with the foliation and lineation defined by the preferred mineral orientation. This fabric developed during pluton emplacement. The accordance of this granite foliation with that observed in the host rock, suggests that the Rocles pluton is a laccolith, but its present geometry resulted from post-emplacement southward tilting due to the uplift of the Late Carboniferous Velay dome. Restoration of the primary geometry of the pluton and its country-rocks to a flat-lying attitude places the granite lineation close to the trend measured in other plutons of the area. This restoration further supports the interpretation of the Rocles laccolith as a pluton emplaced along a tectonic contact reactivated during the late-orogenic collapse of the Variscan Belt.  相似文献   

14.
J. P. Callot  X. Guichet   《Tectonophysics》2003,366(3-4):207-222
We develop two simple models for simulating the combination of magnetic sub-fabrics related to magma flow in dykes. The basic assumptions are (i) the petrofabric is representative of the flow fabric, and (ii) the petrofabric is composed of S/C-type structures related to flow. The first model consists of summing the magnetic tensors of two identical sub-fabrics, differing solely by their relative rotation. This model accounts for the possible change of the macroscopic magnetic lineation from a flow-related fabric to a lineation situated at the geometric intersection between the two sub-fabrics. Such a result is obtained in the case of oblate to highly oblate sub-fabric ellipsoids. The second model integrates the effect of very oblate grains of variable orientations into calculating the shape controlled magnetic tensor of each sub-fabric, and emphasizes the possible under-estimation of fabric superposition due to microscopic disordering. The magma fluxes along the East Greenland volcanic margin are illustrated by the flow pattern within the major dyke swarm. The magmatic flow vectors inferred from the imbrication of magnetic foliation at the dyke margins are primarily horizontal. The classic use of magnetic lineation can lead to contradictory results, giving flow vectors perpendicular to the flow directions. The magnetic lineation is situated close to the zone axis of magnetic foliation planes over a wide range of scales throughout the dyke swarm, suggesting that the contradiction may arise from the association of several textural domains at the sample scale. Forward modelling of macroscopic magnetic fabrics using the first model yields good agreement with the measured magnetic fabric of the East Greenland dykes. Our results, which are applicable to strained sedimentary rocks, highlight the possible misuse of the magnetic lineation due to combination of magnetic textures. The exchange between a microscopic lineation, i.e. mineralogical lineation, and a macroscopic lineation, i.e. intersection lineation, is particularly expected for dykes that generally bear oblate magnetic textures.  相似文献   

15.
The Cascade Lake shear zone occurs on the eastern margin of the Tuolumne Intrusive Suite, Sierra Nevada Batholith, California. Foliation in the zone is NNW trending and subvertical, and lineation is moderately south plunging. Deformation is syn-tectonic with emplacement of the Cathedral Peak granodiorite. A deformation gradient exists toward the NE margin of this pluton, with higher strains and lower temperatures of deformation found near the contact. We compare fabric data collected very densely in this shear zone using several techniques: field fabrics, 3D orientation of K-feldspar megacrysts, and AMS (anisotropy of magnetic susceptibility) analysis. In general, the results from the three different methods are in agreement. Deformation in this shear zone is part of a larger pattern of deformation within the Cathedral Peak granodiorite, as recorded by AMS analysis, and dextral shearing associated within the last stage of plutonism within the Sierra Nevada magmatic arc.  相似文献   

16.
http://www.sciencedirect.com/science/article/pii/S1674987113001151   总被引:1,自引:0,他引:1  
Magma mixing process is unusual in the petrogenesis of felsic rocks associated with alkaline complex worldwide. Here we present a rare example of magma mixing in syenite from the Yelagiri Alkaline Comp...  相似文献   

17.
Anisotropy of magnetic susceptibility and structural geology of the ca. 1.45 Ga Karlshamn pluton (southern Sweden) are used to study its emplacement and structural evolution. The Karlshamn pluton is one of the largest metaluminous A-type granitoid intrusions in southern Sweden. It is a multiphase body made up of two suites that differ in composition but which have similar crystallization ages. The magmatic foliation, ductile shear zones and granite–pegmatite filled fractures were mapped as well as the metamorphic foliation and extension lineation in the metamorphic host rocks. The anisotropy of magnetic susceptibility was used to map the magnetite petrofabric of the pluton, providing a larger data set for both the magmatic foliations and lineations, which could not be mapped in the field. The fabrics within the pluton are continuous with the metamorphic fabrics in the country rocks. Both the pluton and the country rock fabrics were folded during ENE–WSW compression, while the pluton was still a magma mush. The stress field orientation during cooling of the pluton is determined on the basis of magmatic, ductile and brittle structures in the Karlshamn pluton that formed successively as the pluton cooled. The compressional event is referred to as the Danopolonian orogeny and therefore the Karlshamn granitoids, and other plutons of similar composition and age in central and southern Sweden, on the Danish Island of Bornholm, and in Lithuania, may be considered as syntectonic intrusions and not as anorogenic, as was previously thought.  相似文献   

18.
南秦岭晚三叠世胭脂坝岩体的磁组构特征及意义   总被引:1,自引:0,他引:1  
胭脂坝岩体是秦岭造山带内具典型代表性意义的晚三叠世花岗岩,已有的年代学和地球化学研究对岩体的侵位机制有着不同的认识。采用磁组构方法研究了该岩体的内部组构特征,并结合区域构造探讨了岩体的侵位机制。结果显示,胭脂坝岩体51个采点、348个样品的平均体积磁化率(Km)值普遍小于100 μSI,总体较低。磁滞回线和热磁曲线特征表明,岩体磁组构主要由顺磁性矿物控制。大部分样品的校正磁化率各向异性度(PJ)值小于1.10,平均为1.06,表现出低各向异性度的总体特征。样品磁化率椭球形态参数(T)值多大于0,磁化率椭球体以压扁椭球为主。综合分析认为,岩体的磁组构是典型的岩浆组构,记录了岩浆侵位的流动构造。岩体磁组构以东西向中低角度倾伏的磁线理和南北向倾伏的磁面理为总体特征,磁线、面理轨迹揭示出岩浆自西向东的侵位流动。这样的岩浆侵位过程应与中、浅部地壳的走滑挤压构造相关,岩体侵位时造山带处于同碰撞构造环境。  相似文献   

19.
20.
The ENE–WSW Autun Shear Zone in the northeastern part of the French Massif Central has been interpreted previously as a dextral wrench fault. New field observations and microstructural analyses document a NE–SW stretching lineation that indicates normal dextral motions along this shear zone. Further east, similar structures are observed along the La Serre Shear Zone. In both areas, a strain gradient from leucogranites with a weak preferred orientation to highly sheared mylonites supports a continuous Autun–La Serre fault system. Microstructural observations, and shape and lattice-preferred orientation document high-temperature deformation and magmatic fabrics in the Autun and La Serre granites, whereas low- to intermediate-temperature fabrics characterize the mylonitic granite. Electron microprobe monazite geochronology of the Autun and La Serre granites yields a ca. 320 Ma age for pluton emplacement, while mica 40Ar-39Ar datings of the Autun granite yield plateau ages from 305 to 300 Ma. The ca. 300 Ma 40Ar-39Ar ages, obtained on micas from Autun and La Serre mylonites, indicate the time of the mylonitization. The ca. 15-Ma time gap between pluton emplacement and deformation along the Autun–La Serre fault system argue against a synkinematic pluton emplacement during late orogenic to postorogenic extension of the Variscan Belt. A ductile to brittle continuum of deformation is observed along the shear zone, with Lower Permian brittle faults controlling the development of sedimentary basins. These results suggest a two-stage Late Carboniferous extension in the northeastern French Massif Central, with regional crustal melting and emplacement of the Autun and La Serre leucogranites around 320 Ma, followed, at 305–295 Ma, by ductile shearing, normal brittle faulting, and subsequent exhumation along the Autun–La Serre transtensional fault system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号