首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
以合成花岗岩、水、不同浓度的盐酸溶液、氢氟酸溶液作为反应初始物,在850℃,100 MPa,接近于NNO的条件下开展了金在不同花岗质熔体中溶解度的实验研究,实验固液相产物中的金含量使用石墨炉原子吸收法测定。实验结果显示,金在花岗质熔体中的溶解度变化范围为1.87~156.62μg/g,流体相中金的溶解度为0.31~6.92μg/g;金在熔体相中的溶解度较其在共存液相中的高。花岗质熔体相中金的溶解度明显受熔体化学组成的影响,过碱性富钠花岗质熔体中金的溶解度明显高些;金在花岗质熔体中的溶解度随着熔体中Na2O/K2O摩尔比增大而增大;在氟氯共存岩浆体系中,氟含量变化对金在熔体相中的溶解度影响不明显,而液相中氯含量增大有利于提高金在流体相中的含量。  相似文献   

2.
《Applied Geochemistry》2001,16(11-12):1419-1428
The effect of nonionic surfactants on the solubility and biodegradation of polycyclic aromatic hydrocarbons (PAHs) in the aqueous phase and in the soil slurry phase, as well as the fate of these surfactants, were investigated. The PAH solubility was linearly proportional to the surfactant concentration when above the critical micelle concentration (CMC), and increased as the hydrophile–lipophile balance (HLB) value decreased. Substantial amounts of the sorbed phenanthrene in the soil particles were desorbed by non-ionic surfactants into the liquid phase when the ratio of soil to water was 1:10 (g/ml). Brij 30 was the most biodegradable surfactant tested, showed no substrate inhibition up to a concentration of 1.5 g/l, and was definitely used as a C source by the bacteria. Naphthalene and phenanthrene were completely degraded by phenanthrene-acclimatised cultures within 60 h, but a substantial amount of naphthalene was lost due to volatilization. The limiting step in the soil slurry bioremediation was bioavailability by the micro-organisms for the sand slurry and mass transfer from a solid to aqueous phase in the clay slurry.  相似文献   

3.
Polycyclic aromatic hydrocarbon (PAH) and aliphatic hydrocarbon concentrations have been determined for sediments and associated pore waters collected at 2 sites (11 stations) in Puget Sound, Washington (northwest U.S.A.). These sediments have been contaminated to varying degrees by hydrocarbons from a creosote plant and from various combustion sources. PAH were not detected in pore waters of sediments whose PAH were primarily derived from combustion and natural sources, even though pore water concentrations predicted from sediment concentrations and two-phase equilibrium partitioning models were above detection limits from most PAH. Equilibrium partition coefficients calculated from field aqueous and solid phase data from an area contaminated with creosote agreed with laboratory-derived coefficients to within a factor of ± 4. Pore water concentrations of creosote-derived aliphatic hydrocarbons increase with increasing concentration in bulk sediments. However, pore water concentrations of natural and contaminant aliphatic hydrocarbons are much higher than predicted by solubility data, possibly due to association with nonfilterable dissolved organic matter and colloids. Other major factors controlling hydrocarbon pore water concentrations include differential hydrocarbon sources, specific particle associations and solubility.  相似文献   

4.
We have performed experiments to evaluate Au solubility in natural, water-saturated basaltic melts as a function of oxygen fugacity. Experiments were carried out at 1000 °C and 200 MPa, and oxygen fugacity was controlled at the fayalite-magnetite-quartz (FMQ) oxygen fugacity buffer and FMQ + 4. All experiments were saturated with a metal-chloride aqueous solution loaded initially as a 10 wt% NaCl eq. fluid. The stable phase assemblage at FMQ consists of basalt melt, olivine, clinopyroxene, a single-phase aqueous fluid, and metallic Au. The stable phase assemblage at FMQ + 4 consists of basalt melt, clinopyroxene, magnetite-spinel solid solution, a single-phase aqueous fluid, and metallic Au. Silicate glasses (i.e., quenched melt) and their contained crystalline material were analyzed by using both electron probe microanalysis (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Measured Au concentrations in the quenched melt range from 4.8 μg g−1 to 0.64 μg g−1 at FMQ + 4, and 0.54 μg g−1 to 0.1 μg g−1 at FMQ. The measured solubility of Au in olivine and clinopyroxene was consistently below the LA-ICP-MS limit of detection (i.e., 0.1 μg g−1). These melt solubility data place important limitations on the dissolved Au content of water-saturated, Cl- and S-bearing basaltic liquids at geologically relevant fO2 values. The new data are compared to published, experimentally-determined values for Au solubility in dry and hydrous silicate liquids spanning the compositional range from basalt to rhyolite, and the effects of melt composition, oxygen fugacity, pressure and temperature are discussed.  相似文献   

5.
The modeling of the solubility of water and carbon dioxide in silicate liquids (flash problem) is performed by assuming mechanical, thermal, and chemical equilibrium between the liquid magma and the gas phase. The liquid phase is treated as a mixture of ten silicate components + H2O or CO2, and the gas phase as a pure H2O or CO2. A general model for the solubility of a volatile component in a liquid is adopted. This requires the definition of a mixing equation for the excess Gibbs free energy of the liquid phase and an appropriate reference state for the dissolved volatile. To constrain the model parameters and identify the most appropriate form of the solubility equations for each dissolved volatile, a large number of experimental solubility determinations (640 for H2O and 263 for CO2) have been used. These determinations cover a large region of the P-T-composition space of interest. The resultant water and carbon dioxide solubility models differ in that the water model is regular and isometric, and the carbon dioxide model is regular and non-isometric. This difference is consistent with the different speciation modalities of the two volatiles in the silicate liquids, producing a composition-independent partial molar volume of dissolved water and a composition-dependent partial molar volume of dissolved carbon dioxide. The H2O solubility model may be applied to natural magmas of virtually any composition in the P-T range 0.1 MPa–1 GPa and > 1000 K, whereas the CO2 solubility model may be applied to several GPa pressures. The general consistency of the water solubility data and their relatively large number as compared to the calibrated model parameters (11) contrast with the large inconsistencies of the carbon dioxide solubility determinations and their low number with respect to the CO2 model parameters (22). As a result, most of the solubility data in the database are reproduced within 10% of approximation in the case of water, and 30% in the case of carbon dioxide. When compared with the experimental data, the H2O and CO2 solubility models correctly predict many features of the saturation surface in the P-T-composition space, including the change from retrograde to prograde H2O solubility in albitic liquids with increasing pressure, the so-called alkali effect, the increasing CO2 solubility with increasing degree of silica undersaturation, the Henrian behavior of CO2 in most silicate liquids up to about 30–50 MPa, and the proportionality between the fugacity in the gas phase, or the saturation activity in the liquid phase, and the square of the mole fraction of the dissolved volatile found in some unrelated silicate liquid compositions. Received: 21 August 1995 / Accepted: 8 July 1996  相似文献   

6.
Distribution coefficients have been experimentally determined for the partitioning of nickel, cobalt and manganese between calcium-rich clinopyroxenes and coexisting silicate liquids. Temperatures ranged from 1110–1360°C and oxygen fugacities in the furnaces were controlled by gas mixtures at one atmosphere total pressure. Bulk compositions used include synthetic compositions in the system albite-anorthite-diopside and a natural basalt. Charges were doped with a few percent transition metal oxides and analyzed by electron microprobe. Measured clinopyroxene/liquid distribution coefficients range from 1.5–14 for Ni, 0.5–2.0 for Co and 0.3–1.2 for Mn. Diopside/liquid distribution coefficients for nickel are shown to be independent of Ni content over a range of from 3 ppm to 3 wt.% Ni in the liquid and to increase with decreasing temperature. From analyses of pyroxenes grown from experimental charges differing only in the amounts of transition metals present, nickel and cobalt are shown to occupy the M1 site of diopside while manganese occupies both M1 and M2.Ordinary weight ratio distribution coefficients are strongly dependent on liquid composition as well as temperature. For example, experiments on synthetic Ab-An-Di compositions give clinopyroxene/liquid distribution coefficients higher by about a factor of five than those from experiments at the same temperature on a natural basalt. For Ni and Co, which occupy only the M1 site of clinopyroxene, an equilibrium constant can be defined in terms of activities of components in the liquid and solid phases. Activities of components in the solid are approximated by their mole fractions. An activity/concentration model based on the viscosity model of BOTTINGA and WEILL (1972) is used for the liquid. This model approximates the activity of silica as its mole fraction among the network-forming components SiO2, TiO2, KAlO2, NaAlO2 and Ca0.5AlO2.Activities of network modifiers such as CaO are approximated as their mole fractions among the network-modifying components CaO, MgO, FeO, FeO1.5, etc. When these estimated activities are used in the expression for the equilibrium constant, the effects of compositional differences on trace element distribution coefficients can be understood and the results of experiments on synthetic and natural compositions reconciled.  相似文献   

7.
The solubility of platinum and palladium in a silicate melt of the composition Di 55 An 35 Ab 10 was determined at 1200°C and 2 kbar pressure in the presence of H2O-H2 fluid at an oxygen fugacity ranging from the HM to WI buffer equilibria. The influence of sulfur on the solubility of platinum in fluid-bearing silicate melt was investigated at a sulfur fugacity controlled by the Pt-PtS equilibrium at 1200°C and a pressure defined in such a way that the \(f_{H_2 O} \) and \(f_{O_2 } \) values were identical to those of the experiments without sulfur. The experiments were conducted in a high pressure gas vessel with controlled hydrogen content in the fluid. Oxygen fugacity values above the NNO buffer were controlled by solid-phase buffer mixtures using the two-capsule technique. Under more reducing conditions, the contents of H2O and H2 were directly controlled by the argon to hydrogen ratio in a special chamber. The hydrogen fugacity varied from 5.2 × 10?2 bar (HM buffer) to 1230 bar (\(X_{H_2 } \) = 0.5). Pt and Pd contents were measured in quenched glass samples by neutron activation analysis. The results of these investigations showed that the solubility of Pt and Pd increases significantly in the presence of water compared with experiments in dry systems. The content of Pd within the whole range of redox conditions and that of Pt at an oxygen fugacity between the HM to MW buffer reactions are weakly dependent on \(f_{O_2 } \) and controlled mainly by water fugacity. This suggests that, in addition to oxide Pt and Pd species soluble at the ppb level in haplobasaltic melts, much more soluble (ppm level) hydroxide complexes of these metals are formed under fluid-excess conditions. Despite a decrease in water fugacity under reducing conditions, Pt solubility increases sharply near the MW buffer. It was shown by electron paramagnetic resonance spectrometry that, in contrast to dry melts, fluid-saturated silicate melts do not contain a pure metal phase (micronuggets). Therefore, the increase in Pt solubility under reducing conditions can be explained by the formation of Pt hydride complexes or Pt-fluid-silicate clusters. At a sulfur fugacity controlled by the Pt-PtS equilibrium, the solubility of Pt in iron-free silicate melts as a function of redox conditions is almost identical to that obtained in the experiments without sulfur at the same water and oxygen fugacity values. These observations also support Pt dissolution in iron-free silicate melts as hydroxide species.  相似文献   

8.
Partitioning tracer tests, as an alternative to the core sampling method, were conducted to quantify the degree of saturation of water and nonaqueous phase liquids (NAPL) in the vadose zone. Hydrocarbon gases, which have less effect on global warming than conventional tracers, were used as partitioning tracers. Column tests using CH4, C3H5, and C4H10 as non-partitioning and partitioning tracers were performed to determine the retardation factor and partition coefficient of the tracer into water and NAPL. The retardation factors of these tracers were estimated to be in the range of 1.0–7.0 based on breakthrough curves of the tracers. The partition coefficient of C3H5 to water and diesel phase was calculated to be 0.57 and 8.45, respectively. For a heavier tracer, C4H10, the partition coefficient to the water and diesel phases was 1.2 and 40.5, respectively. The average value of water and diesel saturation estimated from column tests agreed well with known values in unsaturated soil. A residence time longer than 7.5 h within soil pores was found to provide local equilibrium partitioning of the tracer to the diesel phase. The concentration of tracer had no effect on the partitioning process.  相似文献   

9.
Organic contaminants in aquifers are often present as non-aqueous phase liquids (NAPL), which are long-lasting sources for groundwater contamination. The existing NAPL mass is an important parameter for the persistence of the source, but its determination is difficult. One possible detection method is based on the ideal multicomponent dissolution theory, using aqueous concentrations downstream of a fully mixed NAPL source to calculate its mass. In this publication, the applicability of this method is tested for a source size of about 5 m, using numerical methods. In contrast to fully mixed source zones, on this scale the NAPL sources are not in contact with each other, do not mix and develop independently over time. Highly soluble NAPL components can be depleted or the NAPL phase can be completely exhausted locally, while in other portions of the source zone NAPL is still present with all its components. Hence, the interpretation of the resulting aqueous concentrations downstream using the ideal dissolution theory leads to erroneous NAPL masses of several orders of magnitude in the investigated scenarios.  相似文献   

10.
The compositions of liquids coexisting with experimentally grown crystals of olivine, plagioclase, clinopyroxene, orthopyroxene, leucite, spinel, rhombohedral oxide, melilite and potassium feldspar are used to define, through mass action expressions of liquid/solid equilibrium, compositional derivatives of the Gibbs free energy of mixing of naturally occuring silicate liquids as a function of temperature, pressure and the fugacity of oxygen. The available experimental data describe these derivatives over a range of compositions which includes basic magmas. Therefore, for silicate liquids in this composition range, the topology of the Gibbs free energy of mixing can be approximated from experimental determinations of its derivatives. The majority of the existing thermodynamic data on the liquid phase is consistent with the application of regular solution theory to model the free energy of mixing. Strictly symmetric, temperature and pressure independent, regular solution interaction parameters are calibrated from this phase equilibrium data using regression techniques which have their basis in inverse theory. These techniques generate numerically stable interaction parameters which incorporate inter-variable correlation and account for experimental uncertainty. The regular solution model fits the available data on anhydrous silicate liquids to within the accuracy of the thermodynamic database +/?550 cals). Extensions to regular solution theory allow water solubility in more silica rich liquids to be modelled somewhat less accurately (+/?750 cals). The topology of the excess free energy of mixing surface is strongly asymmetric, possessing a single multicomponent saddle point which defines a spinodal locus. Given this prediction of a multicomponent spinode, a mathematical procedure based upon minimisation of the Gibbs free energy of mixing is developed for the calculation of the compositions of coexisting immiscible liquids. Predicted binodal compositions substantially agree with elemental liquid/liquid partitioning trends observed in lavas. Calculations suggest that an immiscible dome, in temperature-composition space, intersects the liquidus field of the magma type tholeiite. Immiscible phenomena are predicted at sub-liquidus temperatures for the bulk compositions of more basic or alkalic lavas, but are absent in more siliceous rock types for temperatures of the metastable liquid down to 900 K. The regular solution model is used in four petrological applications. The first concerns a prediction of the binary olivine-liquid phase diagram. The calculated geometry exhibits a minimum near Fa75, which, though not in accord with experimental results on the pseudobinary system, compares quite favorably with olivine-liquid phase equilibria interpreted from rhyolites, namely that the olivine phenocrysts of rhyolites are more iron rich than their coexisting liquids. The second petrological example concerns estimating the depth of the source regions of several basic lavas whose compositions cover a range from ugandite to basaltic andesite. The third application is a calculation of the saturation temperatures and compositions of plagioclase and olivine in four experimental basaltic liquids and a prediction of the liquidus temperatures and first phenocryst compositions of the Thingmuli lava series of Eastern Iceland. Lastly, enthalpies of fusion are computed for a variety of stoichiometric compounds of geologic interest. These demonstrate good agreement with calorimetrically measured quantities  相似文献   

11.
It occurs worldwide that the organic components of non-aqueous phase liquid (NAPL) enter the porous medium and become the source of contaminants in the subsurface. The transport of the organic components through NAPL interphase into the aqueous phase and the subsurface determines the extent of contamination, the persistence of residual NAPL phases and the techniques of remediation. During the transport process the NAPL interphase may experience "aging", a physical and chemical change when NAPL is exposed to aqueous and or gaseous phases. This aging process alters vice versa the mass transfer behaviour of the organic contaminants in the porous medium.  相似文献   

12.
In this contribution we report the results of an experimental study that investigated equilibrium and fractional crystallization of hydrous, transitional alkaline basalt at low oxygen fugacity, under lower to middle crustal conditions to constrain the generation of subaluminous and peralkaline differentiation products that typically occur in rift systems. The experiments reveal that liquids produced by equilibrium crystallization in the range 0.7–1 GPa cannot cross the subaluminous/peralkaline compositional divide. In contrast, fractional crystallization experiments under isobaric and polybaric conditions approach closer the naturally observed trend from subaluminous to evolved peralkaline products suggesting that polybaric differentiation starting at elevated pressures can indeed lead to the transition from subaluminous to peralkaline derivative liquids. The presence of water in the parental magmas of silicic derivative products is of prime importance for the fractionation equilibria as well as for the mobility of such magmas toward shallow crustal levels.

We suggest that peralkaline magmas in rift environments are indicative for differentiation under relatively low oxygen fugacity conditions in an extensional environment characterized by a high degree of crustal fracturing that allows rapid upward migration of mafic parental magmas and formation of shallow magma reservoirs. Crystallization–differentiation of parental, hydrous transitional alkaline basalt in such reservoirs is controlled by low pressure phase equilibria that typically evolve through early saturation of anorthite-rich plagioclase and suppressed amphibole crystallization resulting in ‘low-alumina’, peralkaline derivative liquids.  相似文献   


13.
Fluid inclusions in quartz were synthesized by the method of crack healing at 2 kbar and temperatures of 500, 700, 750, and 800°C from solutions containing sodium fluoride (±chloride). Critical phenomena occur in the saturated solution of NaF. Thermometric and cryometric measurements were carried out. Fluid interaciton with quartz was observed under all the parameters of our experiments with the formation of intermediate compounds, which were also sometimes trapped in inclusions. Based on the results of cryometric investigations of inclusions synthesized from solutions of different concentration, the solubility of NaF was estimated as 3.9 wt % at 500°C. It was shown that at temperatures higher than 700°C, heterogeneous entrapment occurred in most cases. Complex unmixing processes took place in the inclusions synthesized under the conditions of the upper heterogeneous region. All our observations suggest that coarse dispersed emulsions of two liquids exist in the upper heterogeneous region: an essentially aqueous phase and a water-rich silicate-dominated phase.At temperatures of 206–389°C, liquid immiscibility occurred in the presence of vapor, and three equilibrium noncrystalline (fluid) phases coexisted. Under the experimental conditions, the addition of NaCl to the fluidgenerating mixture did not exert a significant influence on the phase state of fluorine-bearing fluid.  相似文献   

14.
The hydrocarbon solution process in water was studied because it is important in environmental and geological situations. The aqueous solubility of binary hydrocarbon mixtures was determined (n-octane + 1-methylnaphthalene at 20 and 70°C; n-octane + ethylbenzene at 20°Cand tetralin + methylcyclohexane at 20°C). Vapor-liquid equilibrium hydrocarbon phase activity coefficients for the above mixtures were also determined. Hydrocarbon activity coefficients in the aqueous phase were found not to be measurably reduced in the presence of hydrocarbon co-solutes, in contradiction to the conclusions of Leinonen and Mackay (1973) and Leinonen (1976). This indicates that the effects of aqueous phase solute-solute interactions can not be determined within the precision of water solubility measurements.The presence of a substantial amount of water in the liquid hydrocarbon phase at 70°C did not significantly affect the hydrocarbon activity coefficients in the hydrocarbon phase. Activity coefficients estimated by the UNIFAC group-contribution method indicate that water in the hydrocarbon phase may not significantly affect hydrocarbon phase activity coefficients up to 150°C.  相似文献   

15.
Olivine-liquid equilibrium   总被引:6,自引:5,他引:6  
A number of experiments have been conducted in order to study the equilibria between olivine and basaltic liquids and to try and understand the conditions under which olivine will crystallize. These experiments were conducted with several basaltic compositions over a range of temperature (1150–1300° C) and oxygen fugacity (10?0.68–10?12 atm.) at one atmosphere total pressure. The phases in these experimental runs were analyzed with the electron microprobe and a number of empirical equations relating the composition of olivine and liquid were determined. The distribution coefficient 1 $$K_D = \frac{{(X_{{\text{FeO}}}^{{\text{Ol}}} )}}{{(X_{{\text{FeO}}}^{{\text{Liq}}} )}}\frac{{(X_{{\text{MgO}}}^{{\text{Liq}}} )}}{{(X_{{\text{MgO}}}^{{\text{Ol}}} )}}$$ relating the partioning of iron and magnesium between olivine and liquid is equal to 0.30 and is independent of temperature. This means that the composition of olivine can be used to determine the magnesium to ferrous iron ratio of the liquid from which it crystallized and conversely to predict the olivine composition which would crystallize from a liquid having a particular magnesium to ferrous iron ratio. A model (saturation surface) is presented which can be used to estimate the effective solubility of olivine in basaltic melts as a function of temperature. This model is useful in predicting the temperature at which olivine and a liquid of a particular composition can coexist at equilibrium.  相似文献   

16.
An analytical solution is given to evaluate the number and duration of pumping cycles required for the remediation by pumping of contaminants, both single component and multi-component non-aqueous phase liquids (NAPLs), when no free product is present in the system. The method can be applied in a homogenous medium if the contamination zones have been delineated and residual total NAPL concentrations assessed. Based on the principle of the NAPL partitioning in unsaturated or saturated porous media, analytical closed-form solutions are provided for both cases of remediation by pumping in saturated and unsaturated conditions: “pump-and-treat” and “soil vapor extraction”. In each case we determine the number of pumping cycles required to reach the residual required concentration of NAPL (for example, according to health-based standards), considering one or more chemicals simultaneously present in an aquifer. The method requires information on the aquifer saturation state and the properties of the chemicals of interest. Calculations are based on the assumption of equilibrium partitioning of chemicals between the pore water, the soil solids, and the soil gas (in the case of unsaturated conditions), and no presence of a NAPL phase.  相似文献   

17.
Two series of anhydrous experiments have been performed in anend-loaded piston cylinder apparatus on a primitive, mantle-derivedtholeiitic basalt at 1·0 GPa pressure and temperaturesin the range 1060–1330°C. The experimental data provideconstraints on phase equilibria, and solid and liquid compositionsalong the liquid line of descent of primary basaltic magmasdifferentiating in storage reservoirs located at the base ofthe continental crust. The first series are equilibrium crystallizationexperiments on a single basaltic bulk composition; the secondseries are fractionation experiments where near-perfect fractionalcrystallization was approached in a stepwise manner using 30°Ctemperature steps and starting compositions corresponding tothe liquid composition of the previous, higher-temperature glasscomposition. Liquids in the fractional crystallization experimentsevolve with progressive SiO2 increase from basalts to dacites,whereas the liquids in the equilibrium crystallization experimentsremain basaltic and display only a moderate SiO2 increase accompaniedby more pronounced Al2O3 enrichment. The principal phase equilibriacontrols responsible for these contrasting trends are suppressionof the peritectic olivine + liquid = opx reaction and earlierplagioclase saturation in the fractionation experiments comparedwith the equilibrium experiments. Both crystallization processeslead to the formation of large volumes of ultramafic cumulatesrelated to the suppression of plagioclase crystallization relativeto pyroxenes at high pressures. This is in contrast to low-pressurefractionation of tholeiitic liquids, where early plagioclasesaturation leads to the production of troctolites followed by(olivine-) gabbros at an early stage of differentiation. KEY WORDS: liquid line of descent; tholeiitic magmas; equilibrium crystallization; fractional crystallization  相似文献   

18.
We have made a detailed examination of the mineralogy, textures and assemblages of six calcium-aluminum-rich inclusions (CAI) in the Allende meteorite. They can be classified into four types—hibonite-bearing, fassaite- and olivine-bearing, feldspathoid-bearing and fassaite-bearing CAI that are hibonite and olivine free. Examples of each type appear to have crystallized from a liquid rather than by agglomeration of solid nebular condensates. Some lines of evidence for a liquid origin are (1) the presence of spherical and ovoid shapes, (2) rims containing minerals (e.g. hibonite, perovskite) that are more refractory than minerals inside the inclusion, (3) eutectic and poikilitic textures, (4) minerals that are completely enclosed by more refractory minerals and (5) glass and fine-grained grossular stringers.Thermodynamic calculations and comparisons with liquidus phase diagrams indicate that the CAI could have been produced by direct condensation to metastable subcooled liquids that subsequently crystallized (blander and Katz, 1967) or by remelting of an equilibrium high-temperature condensate by impact. The diopside rims in some hibonite-bearing CAI and the paucity of metal in fassaite-olivinebearing CAI are more consistent with direct condensation of a liquid. The sluggishness of solid-solid reactions at the relatively high temperatures at which the CAI formed argues against assuming equilibrium in calculations at lower temperatures.  相似文献   

19.
The solubility of water in several NaAl silicate melts has been determined up to 8 kbars. The results are shown on a (fugacity)1/2 versus mole percent solubility diagram and data points for any composition can be joined by 2 or more straight lines. It is suggested that each straight line segment represents a different water-solubility mechanism.  相似文献   

20.
Recrystallized globules representing former immiscible sulfide liquids are found in a variety of igneous environments. Relatively little is known about the physical properties and thermochemistry of sulfide liquids, despite their importance in igneous systems. This study presents results of a series of experiments designed to calibrate a thermodynamic model for sulfide liquids in the system O-S-Fe at one atmosphere pressure. Sulfide liquids were equilibrated under controlled oxygen and sulfur fugacities at temperatures between 1100 and 1350 ° C in equilibrium with a silica mineral and a silicate melt. Experiments were quenched in a high-speed double-roller “splat” quencher in order to assure that measured compositions were as close to equilibrium liquid values as possible. Sulfide liquids are not stable in equilibrium with a silica-saturated silicate melt at log10(f O2) > FMQ-1 at 1250 °C and log10(f S2)=−3. Iron content of the sulfide changes little with variations in oxygen and sulfur fugacity at a given temperature. Consequently, oxygen and sulfur contents are inversely correlated in these liquids. Sulfur is present entirely as sulfide. Iron appears to be present in both its ferric and ferrous states. Data from this study were combined with data compiled from the literature to calibrate an asymmetric regular solution thermodynamic mixing model for O-S-Fe liquids. This model reproduces miscibility gaps and data from this study quite well, but exhibits minor but systematic errors at the O-Fe binary. The observed inverse correlation between sulfur and oxygen is reflected in the predicted free-energy surface by a sharp energy valley running along a line of constant Fe content. Received: 10 April 1996 / Accepted: 15 November 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号