首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Radon is an excellent tracer for the study of transport processes in the lower atmospheric boundary layer. Analyses of the radon data measured on a 300-m meteorological tower at Philadelphia show that the diurnal variation of atmospheric turbulence is closely related to the meteorological variables. A model of variation of radon concentration with mean wind speed and low-level vertical temperature difference is derived. It indicates that radon concentration is inversely proportional to the mean wind speed and directly proportional to the temperature difference. These predictions are in good agreement with the measurements.  相似文献   

2.
Eight years (1980–1987) of Wake Island rawinsonde data are used to derive atmospheric boundary layer (ABL) depth, integrated boundary-layer moisture, and a measure of boundary-layer ageostrophy. The variability in these processes controls the accumulation of moisture and heat in the tradewind regions and their transport to regions of intense convection. Preliminary analyses using different methods reveal quasi-periodic signals in these data in the 30–60 days range. Cross correlation calculations in this intraseasonal range show that these ABL variables are coherent with each other and with the low-level flow. The integrated ABL variables and the ABL height exhibit local in-phase relationships. At higher frequencies, the analyses show intense diurnal variation of boundary-layer height but only a weak diurnal signal in integrated ABL properties. At the lower frequency range, the analyses show a significant reduction in the amplitude of the seasonal and intraseasonal variation in ageostrophy during the strong El-Niño event of 1982/1983. The results clearly establish a relationship between integrated water vapour and divergent ABL processes (Ekman pumping/suction) in which shallower (deeper) ABLs are associated with mass and moisture divergence (convergence) and higher (lower) sea-level pressure. A possible interpretation in terms of a remote dynamic response of the trade inversion and ABL processes to equatorial deep convection is suggested.  相似文献   

3.
The ECLATS experiment was conducted in order to investigate the influence of radiative processes on the dynamics of the atmospheric boundary layer during its diurnal evolution. This experiment was carried out over Niger, near Niamey, by measuring continuously the energy balance at ground level and by using an instrumented aircraft for turbulence, radiative fluxes and aerosol measurements in the boundary layer during dusty conditions (brumes sèches). This paper is restricted to an analysis of the turbulent structure in the homogeneous and stationary convective boundary layer. The turbulence moments for kinetic energy and the spectral characteristics of the vertical velocity are discussed. These results are compared with a set of data obtained for clear convective boundary layers. The differences observed are quite important and seem, at least in part, due to radiative processes (infrared radiative divergence in the surface layer and absorption of solar radiation in the boundary layer).  相似文献   

4.
The present work analyzes the effect of aerosols on the evolution of the atmospheric boundary layer (ABL) over Shangdianzi in Beijing.A one-dimensional ABL model and a radiative transfer scheme are incorporated to develop the structure of the ABL.The diurnal variation of the atmospheric radiative budget,atmospheric heating rate,sensible and latent heat fluxes,surface and the 2 m air temperatures as well as the ABL height,and its perturbations due to the aerosols with different single-scattering albedo (SSA) are studied by comparing the aerosol-laden atmosphere to the clean atmosphere.The results show that the absorbing aerosols cause less reduction in surface evaporation relative to that by scatting aerosols,and both surface temperature and 2 m temperature decrease from the clean atmosphere to the aerosol-laden atmosphere.The greater the aerosol absorption,the more stable the surface layer.After 12:00 am,the 2 m temperature increases for strong absorption aerosols.In the meantime,there is a slight decrease in the 2 m temperature for purely scattering aerosols due to radiative cooling.The purely scattering aerosols decrease the ABL temperature and enhance the capping inversion,further reducing the ABL height.  相似文献   

5.
We discuss the structure and evolution of a cloud-free atmospheric boundary layer (ABL) during daytime over land, starting from a shallow ABL at sunrise and developing into a deep ABL with strong convection in the afternoon. The structure of the turbulence in the lower half of a convective ABL capped by an inversion is reasonably well understood. Less is known about the details of the turbulence in higher regions affected by entrainment, because of the difficulty in taking turbulence measurements there. For the evolution in time of the height of the ABL and its mean potential temperature mixed-layer models have been developed that give satisfactory agreement with observations. It has been shown that for many practical applications accurate knowledge of forcing functions and boundary conditions is more important than a refinement of the entrainment hypothesis. Observations show that the assumption of well-mixedness of first-order moments of conservative variables is not valid for all quantities. A simple similarity relation for the inclusion of the effect of entrainment on the shape of the vertical profiles is given.  相似文献   

6.
Surface and remote-sensing instruments deployed during ESCOMPTE experiment over the Marseille area, along the Mediterranean coast, were used to investigate the fine structure of the atmospheric boundary layer (ABL) during sea-breeze circulation in relation to pollutant transport and diffusion. Six sea-breeze events are analyzed with a particular focus on 25 June 2001.Advection of cool and humid marine air over land has a profound influence on the daytime ABL characteristics. This impact decreases rapidly with the inland distance from the sea. Nearby the coast (3 km inland), the mixing height Zi rises up to 750 m and falls down after 15:00 (UT) when the breeze flow reaches its maximum intensity. A more classical evolution of the ABL is observed at only 11-km inland where Zi culminates in the morning and stabilizes in the afternoon at about 1000 m height.Fine inspection of the data revealed an oscillation of the sea-breeze with a period about 2 h 47 min. This feature, clearly discernable for 3 days at least, is present in several atmospheric variables such as wind, temperature, not only at the ground but also aloft in the ABL as observed by sodar/RASS and UHF wind profilers. In particular, the mixing height Zi deduced from UHF profilers observations is affected also by the same periodicity. This pulsated sea-breeze is observed principally above Marseille and, at the northern and eastern shores of the Berre pond.In summary, the periodic intrusion over land of cool marine air modifies the structure of the ABL in the vicinity of the coast from the point of view of stability, turbulent motions and pollutants concentration. An explanation of the source of this pulsated sea-breeze is suggested.  相似文献   

7.
We have studied the evolution of the planetary boundary layer using both oceanic and continental stations. This has been possible through the analysis of twice-daily temperature radiosondes at three different oceanic stations (Point A; Point K; and Azores) and also at three continental stations (Berlin, Trappes and Madrid) all situated in the Northern Hemisphere. We have studied the annual evolution of mixing layers and of temperature inversion levels; an annual evolution presenting a minimum in winter and a maximum in summer has been observed in the continental stations; the oceanic stations present a lesser variation and in the opposite sense. As for the elevated inversion layers, their maximum frequency can be observed in summer at the oceanic stations and in winter at the continental stations. We have shown that considering the studied stations, both the level and the frequency of the elevated inversion layers are similar at 00 h and at 12 h; such a result is important because these layers regulate the intensity of the exchanges between the ground and the free atmosphere. Using the equivalent coefficient, we have determined the annual variation of the vertical exchanges between the surface and different altitudes. At the continental stations, the vertical exchanges are more important in summer than they are in winter; the opposite behaviour occurs at the oceanic stations.  相似文献   

8.
Some characteristics of wavelike motions in the atmospheric boundary layer observed by sodar are considered. In an experiment carried out in February 1993 in Milan, Italy, Doppler sodar measurements were accompanied by in situ measurements of temperature and wind velocity vertical profiles using a tethered balloon up to 600 m. The oscillations of elevated wavy layers containing intense thermal turbulence, usually associated with temperature-inversion zones, were studied by using correlation and spectral analysis methods. The statistics of the occurrence of wavelike and temperature-inversion events are presented. The height distributions of Brunt–Vaisala frequency and wind shear and their correlation within elevated inversion layers were determined, with a strong correlation observed between the drift rate of the wavy layers and the vertical velocity measured by Doppler sodar inside these layers. Spectral analysis showed similarities regarding their frequency characteristics. The phase speed and propagation direction of waves were estimated from the time delay of the signals at three antennae to provide estimates of wavelength. Moreover, wavelengths were estimated from the intrinsic frequency obtained from sodar measurements of the Doppler vertical velocity and oscillations of wavy turbulent layers. The two wavelength estimates are in good agreement.  相似文献   

9.
10.
Determining Boundary-Layer Height from Aircraft Measurements   总被引:1,自引:0,他引:1  
The height of the atmospheric boundary layer (ABL) is an important variable in both observational studies and model simulations. The most commonly used measurement for obtaining ABL height is a rawinsonde profile. Mesoscale or regional scale models use a bulk Richardson number based on profiles of the forecast variables. Here we evaluate the limitations of several frequently-used approaches for defining ABL height from a single profile, and identify the optimal threshold value for each method if profiles are the only available measurements. Aircraft measurements from five field projects are used, representing a variety of ABL conditions including stable, convective, and cloud-topped boundary layers over different underlying surfaces. ABL heights detected from these methods were validated against the ‘true’ value determined from aircraft soundings, where ABL height is defined as the top of the layer with significant turbulence. A detection rate was defined to denote how often the ABL height was correctly diagnosed with a particular method. The results suggest that the temperature gradient method provides the most reasonable estimates, although the detection rate and suitable detection criteria vary for different types of ABL. The Richardson number method, on the other hand, is in most cases inadequate or inferior to the other methods that were tried. The optimal range of the detection criteria is given for all ABL types examined in this study.  相似文献   

11.
The atmospheric stable boundary layer (SBL) with a low-level jet is simulated experimentally using a thermally stratified wind tunnel. The turbulence structure and flow characteristics are investigated by simultaneous measurements of velocity and temperature fluctuations and by flow visualization. Attention is focused on the effect of strong wind shear due to a low-level jet on stratified boundary layers with strong stability. Occasional bursting of turbulence in the lower portion of the boundary layer can be found in the SBL with strong stability. This bursting originates aloft away from the surface and transports fluid with relatively low velocity and temperature upward and fluid with relatively high velocity and temperature downward. Furthermore, the relationship between the occurrence of turbulence bursting and the local gradient Richardson number (Ri) is investigated. The Ri becomes larger than the critical Ri, Ricr = 0.25, in quiescent periods. On the other hand, the Ri number becomes smaller than Ricr during bursting events.  相似文献   

12.
We report on a novel approach for the Reynolds-averaged Navier-Stokes (RANS) modelling of the neutral atmospheric boundary layer (ABL), using the standard k-ek-{\varepsilon} turbulence model. A new inlet condition for turbulent kinetic energy is analytically derived from the solution of the k-ek-{\varepsilon} model transport equations, resulting in a consistent set of fully developed inlet conditions for the neutral ABL. A modification of the standard k-ek-{\varepsilon} model is also employed to ensure consistency between the inlet conditions and the turbulence model. In particular, the turbulence model constant C μ is generalized as a location-dependent parameter, and a source term is introduced in the transport equation for the turbulent dissipation rate. The application of the proposed methodology to cases involving obstacles in the flow is made possible through the implementation of an algorithm, which automatically switches the turbulence model formulation when going from the region where the ABL is undisturbed to the region directly affected by the building. Finally, the model is completed with a slightly modified version of the Richards and Hoxey rough-wall boundary condition. The methodology is implemented and tested in the commercial code Ansys Fluent 12.1. Results are presented for a neutral boundary layer over flat terrain and for the flow around a single building immersed in an ABL.  相似文献   

13.
Summary The article brings together theoretical knowledge about the structure of the atmospheric boundary layer (ABL) which should be typical for smog situations and ABL features observed during two severe smog episodes. It can be shown that the convective boundary layer (CBL) as a special ABL type is very favourable for the occurrence of smog and that at first glance simple modelling of the CBL seems to recommend itself for forecasting purposes.However, the real smog situations show much more complexity, and even high reaching (up to 1500 m) stable boundary layers (SBL) occur. Simple modelling fails because important input parameters (such as vertical wind and advection terms) cannot be derived neither from measurements nor from meso-scale models in sufficient accuracy. Even the most advanced forecast models cannot describe the ABL structure correctly or in sufficient detail to estimate the development of a smog situation.With 19 Figures  相似文献   

14.
The atmospheric boundary layer (ABL) over a given coastal station is influenced by the presence of mesoscale sea breeze circulation, together with the local and synoptic weather, which directly or indirectly modulate the vertical thickness of ABL (z ABL). Despite its importance in the characterization of lower tropospheric processes and atmospheric modeling studies, a reliable climatology on the temporal evolution of z ABL is not available over the tropics. Here, we investigate the challenges involved in determination of the ABL heights, and discuss an objective method to define the vertical structure of coastal ABL. The study presents a two year morphology on the diurnal evolution of the vertical thickness of sea breeze flow (z SBF) and z ABL in association with the altitudes of lifting condensation level (z LCL) over Thiruvananthapuram (8.5° N, 76.9° E), a representative coastal station on the western coastline of the Indian sub-continent. We make use of about 516 balloon-borne GPS sonde measurements in the present study, which were carried out as part of the tropical tropopause dynamics field experiment under the climate and weather of the sun-earth system (CAWSES)–India program. Results obtained from the present study reveal major differences in the temporal evolution of the ABL features in relation to the strength of sea breeze circulation and monsoonal wind flow during the winter and summer monsoon respectively. The diurnal evolution in z ABL is very prominent in the winter monsoon as against the summer monsoon, which is attributed to the impact of large-scale monsoonal flow over the surface layer meteorology. For a majority of the database, the z LCL altitudes are found to be higher than that of the z ABL, indicating a possible decoupling of the ABL with the low-level clouds.  相似文献   

15.
The paper describes some aspects of the convective boundary-layer structure based on simultaneous sodar and tethersonde measurements during a field experiment in the urban area of Milan in the period 8 to 20 February, 1993. During this period, fog episodes and strong low-level elevated inversions (with lower boundaries < 400 m) were observed most of the time. A close agreement in the mixing height values, derived from the sodar and tethersonde profiles, has been achieved under these conditions. The validity of the similarity relationships, which have been originally derived to describe the vertical velocity variance and heat flux profiles over horizontally homogeneous terrain under quasi-stationary conditions, was evaluated when applied to the urban boundary layer.  相似文献   

16.
In the present study, an attempt is made to assess the atmospheric boundary-layer (ABL) depth over an urban area, as derived from different ABL schemes employed by the mesoscale model MM5. Furthermore, the relationship of the mixing height, as depicted by the measurements, to the calculated ABL depth or other features of the ABL structure, is also examined. In particular, the diurnal evolution of ABL depth is examined over the greater Athens area, employing four different ABL schemes plus a modified version, whereby urban features are considered. Measurements for two selected days, when convective conditions prevailed and a strong sea-breeze cell developed, were used for comparison. It was found that the calculated eddy viscosity profile seems to better indicate the mixing height in both cases, where either a deep convective boundary layer develops, or a more confined internal boundary layer is formed. For the urban scheme, the incorporation of both anthropogenic and storage heat release provides promising results for urban applications.  相似文献   

17.
The characteristics of low-level jets (LLJ) observed at the “Centro de Investigacion de la Baja Atmósfera” (CIBA) site in Spain are analysed, focussing on the turbulence generated in the upper part of the jet, a feature that is still to be thoroughly understood. During the Stable Boundary Layer Experiment in Spain (SABLES) 1998, captive balloon soundings were taken intensively, and their analyses have highlighted the main characteristics of the jet’s wind and temperature structure, leading to a composite profile. There are indications that the turbulence has a minimum at the level of the wind maximum, with elevated turbulence in a layer at a height between two and three times that of the LLJ maximum, but no direct measurements of turbulence were available at these heights. In September 2001, a 100-m tower at the same site was re-instrumented to give turbulence measurements up to 96.6 m above ground level. All occurrences of LLJ below this height between September 2002 and June 2003 have been selected and significant turbulence above the LLJ has been found. Simulations with a single-column turbulence kinetic energy model have been made in order to further investigate the generation of elevated turbulence. The results correlate well with the measurements, showing that in the layer above the LLJ, where there is significant shear and weakly stable stratification, conditions are conducive to the development of turbulence.  相似文献   

18.
The diurnal variations of gaseous pollutants and the dynamical and thermodynamic structures of the atmospheric boundary layer (ABE) in the Beijing area from January to March 2001 are analyzed in this study using data from the Beijing City Air Pollution Observation Field Experiment (BECAPEX). A heavy pollution day (22 February) and a good air quality day (24 February) are selected and individually analyzed and compared to reveal the relationships between gaseous pollutants and the diurnal variations of the ABL. The results show that gaseous pollutant concentrations exhibit a double-peak-double-valley-type diurnal variation and have similar trends but with different magnitudes at different sites in Beijing. The diurnal variation of the gaseous pollutant concentrations is closely related to (with a 1-2 hour delay of) changes in the atmospheric stability and the mean kinetic energy in the ABL.  相似文献   

19.
Summary An aircraft-based experimental investigation of the atmospheric boundary layer (ABL) structure and of the energy exchange processes over heterogeneous land surfaces is presented. The measurements are used for the validation of the mesoscale atmospheric model “Lokal-Modell” (LM) of the German Weather Service with 2.8 km resolution. In addition, high-resolution simulations using the non-hydrostatic model FOOT3DK with 250 m resolution are performed in order to resolve detailed surface heterogeneities. Two special observation periods in May 1999 show comparable convective boundary layer (CBL) conditions. For one case study vertical profiles and area averages of meteorological quantities and energy fluxes are investigated in detail. The measured net radiation is highly dependent on surface albedo, and the latent heat flux exhibits a strong temporal variability in the investigation area. A reduction of this variability is possible by aggregation of multiple flight patterns. To calculate surface fluxes from aircraft measurements at low altitude, turbulent energy fluxes were extrapolated to the ground by the budget method, which turned out to be well applicable for the sensible heat flux, but not for the latent flux. The development of the ABL is well captured by the LM simulation. The comparison of spatiotemporal averages shows an underestimation of the observed net radiation, which is mainly caused by thin low-level clouds in the LM compared to observed scattered CBL clouds. The sensible heat flux is reproduced very well, while the latent flux is highly overestimated especially above forests. The realistic representation of surface heterogeneities in the investigation area in the FOOT3DK simulations leads to improvements for the energy fluxes, but an overestimation of the latent heat flux still persists. A study of upscaling effects yields more structures than the LM fields when averaged to the same scale, which are partly caused by the non-linear effects of parameter aggregation on the LM scale.  相似文献   

20.
A network of remote and in-situ sensors was deployed in a Paris suburb in order to evaluate the mesoscale evolution of the daily cycle of CO2 and related tracers in the atmospheric boundary layer (ABL) and its relation to ABL dynamics and nearby natural and anthropogenic sources and sinks. A 2-μm heterodyne Doppler differential absorption lidar, which combines measurements of, (1) structure of the atmosphere, (2) radial velocity, and (3) CO2 differential absorption was a particularly unique element of the observational array. We analyse the differences in the diurnal cycle of CO, CO2, lidar reflectivity (a proxy for aerosol content) and H2O using the lidar, airborne measurements in the free troposphere and ground-based measurements made at two sites located few kilometres apart. We demonstrate that vertical mixing dominates the early morning drawdown of CO and aerosol content trapped in the former nocturnal layer but not the H2O and CO2 mixing ratio variations. Surface fluxes, vertical mixing and advection all contribute to the ABL CO2 mixing ratio decrease during the morning transition, with the relative importance depending on the rate and timing of ABL rise. We also show evidence that when the ABL is stable, small-scale (0.1-km vertical and 1-km horizontal) gradients of CO2 and CO are large. The results illustrate the complexity of inferring surface fluxes of CO2 from atmospheric budgets in the stable boundary layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号