首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Channel avulsion occurred on the Thomson River in Victoria, Australia, in 1952 along a 12 km length of the valley. A comparison of the old and new channels reveals considerable differences in channel characteristics. The old channel was perched above the floodplain on an alluvial ridge such that when bankfull capacity was exceeded, floodwaters concentrated on the lowest part of the floodplain some distance away. This is where the new channel formed. It is an incised channel with larger capacity and longer meander wavelength than the old channel and is also shorter and steeper. The new channel is subject to larger floodflows and a more variable flood regime than the old course because of the differences in the channel/floodplain relationship and channel capacity. The resulting concentration of stream power along the new course is responsible for the contrast in channel characteristics and for the more rapid meander migration. This example shows that river metamorphosis can occur without major environmental changes. Measures of channel geometry such as gradient, sinuosity, and meander wavelength therefore cannot be used in palaeohydrological work to infer climatic or other environmental changes without independent supporting evidence. Differences in channel geometry can arise simply from changes in the relationship between the channel and its loodplain.  相似文献   

2.
Low‐energy streams in peatlands often have a high sinuosity. However, it is unknown how this sinuous planform formed, since lateral migration of the channel is hindered by relatively erosion‐resistant banks. We present a conceptual model of Holocene morphodynamic evolution of a stream in a peat‐filled valley, based on a palaeohydrological reconstruction. Coring, ground‐penetrating radar (GPR) data, and 14C and OSL dating were used for the reconstruction. We found that the stream planform is partly inherited from the Late‐Glacial topography, reflecting stream morphology prior to peat growth in the valley. Most importantly, we show that aggrading streams in a peat‐filled valley combine vertical aggradation with lateral displacement caused by attraction to the sandy valley sides, which are more erodible than the co‐evally aggrading valley‐fill. Owing to this oblique aggradation in combination with floodplain widening, the stream becomes stretched out as channel reaches may alternately aggrade along opposed valley sides, resulting in increased sinuosity over time. Hence, highly sinuous planforms can form in peat‐filled valleys without the traditional morphodynamics of alluvial bed lateral migration. Improved understanding of the evolution of streams provides inspiration for stream restoration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
The process of channelization on river floodplains plays an essential role in regulating river sinuosity and creating river avulsions. Most channelization occurs within the channel belt (e.g. chute channels), but growing evidence suggests some channels originate outside of the channel‐belt in the floodplain. To understand the occurrence and prevalence of these floodplain channels we mapped 3064 km2 of floodplain in Indiana, USA using 1.5 m resolution digital elevation models (DEMs) derived from airborne light detection and ranging (LiDAR) data. We find the following range of channelization types on floodplains in Indiana: 6.8% of floodplain area has no evidence of channelization, 55.9% of floodplains show evidence (e.g. oxbow lakes) of chute‐channel activity in the channel belt, and 37.3% of floodplains contain floodplain channels that form long, coherent down‐valley pathways with bifurcations and confluences, and they are active only during overbank discharge. Whereas the first two types of floodplains are relatively well studied, only a few studies have recognized the existence of floodplain channels. To understand why floodplain channels occur, we compared the presence of channelization types with measured floodplain width, floodplain slope, river width, river meander rate, sinuosity, flooding frequency, soil composition, and land cover. Results show floodplain channels occur when the fluvial systems are characterized by large floodplain‐to‐river widths, relatively higher meandering rates, and are dominantly used for agriculture. More detailed reach‐scale mapping reveals that up to 75% of channel reaches within floodplain channels are likely paleo‐meander cutoffs. The meander cutoffs are connected by secondary channels to form floodplain channels. We suggest that secondary channels within floodplains form by differential erosion across the floodplain, linking together pre‐existing topographic lows, such as meander cutoffs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
The evolution of meandering river floodplains is predominantly controlled by the interplay between overbank sedimentation and channel migration. The resulting spatial heterogeneity in floodplain deposits leads to variability in bank erodibility, which in turn influences channel migration and planform development. Despite the potential significance of these feedbacks, few studies have quantified their impact upon channel evolution and floodplain construction in dynamic settings (e.g. locations characterized by rapid channel migration and high rates of overbank sedimentation). This study employs a combination of field observations, geographic information system (GIS) analysis of satellite imagery and numerical modelling to investigate these issues along a 375 km reach of the Rio Beni in the Bolivian Amazon. Results demonstrate that the occurrence of clay‐rich floodplain deposits promotes a significant reduction in channel migration rates and distinctive styles of channel evolution, including channel straightening and immobilization of bend apices leading to channel narrowing. Clay bodies act as stable locations limiting the propagation of planform disturbances in both upstream and downstream directions, and operate as ‘hinge’ points, around which the channel migrates. Spatial variations in the erodibility of clay‐rich floodplain material also promote large‐scale (10–50 km) differences in channel sinuosity and migration, although these variables are also likely to be influenced by channel gradient and tectonic effects that are difficult to quantify. Numerical model results suggest that spatial heterogeneity in bank erodibility, driven by variable bank composition, may force a substantial (c. 30%) reduction in average channel sinuosity, compared to situations in which bank strength is spatially homogeneous. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Based on the data from alluvial rivers in China, the complex mechanical behaviour of sediment‐carrying streamflow of natural rivers has been observed. Channel geometry also exhibits complex behaviour in response to variation in suspended concentration. With the increase in suspended concentration, channel width : depth ratio increases, reaches a maximum and then decreases. The inverse is true for channel sinuosity. When suspended concentration is low, a meandering pattern is dominant. The increase in suspended concentration leads to a transformation from a meandering to a braided pattern. But when the suspended concentration increases further and enters the range of hyperconcentrated flows, the meandering pattern appears. The complex behaviour of channel pattern change may be regarded as a reflection of the complex behaviour of sediment‐carrying streamflows at the river reach scale. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
7.
We explore the fluvial response to faulting in three low‐gradient, sand‐bed rivers in south‐eastern Louisiana, USA, that flow across active normal faults from footwall (upstream) to hangingwall (downstream). We calculate sinuosity, migration rate and migration direction in order to identify anomalies spatially associated with fault scarps. In two of the rivers we model one‐dimensional steady water flow to identify anomalies in surface water slope, width‐to‐depth ratio, and shear stress. In each of these rivers there is one location where flow modeling suggests potential channel incision through the footwall, as indicated by relatively high surface water slopes and shear stress values. In one of these footwall locations, the river straightens and width‐to‐depth ratios decrease, likely contributing to higher surface water slopes and shear stress. This is in contrast to previous studies that have proposed increased sinuosity across fault footwalls and decreased sinuosity across hangingwalls. However, in two hangingwall locations we also observe relatively less sinuous channels. Other planform changes on the hangingwall include topographic steering of channels along and towards the fault and one example of an avulsion. The most notable anomaly in migration rate occurs on the hangingwall of a fault where a river has cut off a meander loop. Although fluvial response to faulting varies here, comparatively large and small channels exhibit similar responses. Further, Pleistocene fault slip rates are orders of magnitude lower than the channel migration rates, suggesting that faulting should not be a major influence on the fluvial evolution. Nonetheless, notable channel anomalies exist near faults, suggesting that recent fault slip rates are higher than Pleistocene rates, and/or that low‐gradient alluvial channels are more sensitive to faulting than previous studies have suggested. Rivers appear to be influenced by faulting in this setting, however background rates of meander loop cutoff may be just as influential as faulting. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Air photo interpretation and field survey were used to examine rates and patterns of planform change over the last 40 years on an 80 km reach of the Luangwa River, Zambia. The river, a tributary of the Zambezi, is a 100–200 m wide, medium sinuosity sand‐bed river (sinuosity index 1·84). High rates of channel migration (<33 m a−1) and cutoffs on meandering sections are frequent. Some meandering reaches, however, have remained relatively stable. A form of anastomosing with anabranches up to 14 km in length is also a characteristic. Patterns of meander development vary between bends but all can be described in relation to traditional geomorphic models; change occurs by translation, rotation, double‐heading, concave bank bench formation and cutoff causing river realignment. At the local scale spatial variability in bank resistance, induced by floodplain sedimentology, controls rate of bank erosion, and valley‐side channel ‘deflection’ is also apparent. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
Two reaches of Aguapeí River, a left‐bank tributary of the Paraná River in western São Paulo state, Brazil, were studied with the objective of assessing the role of bend curvature on channel migration in this wet‐tropical system and examining if land‐use changes or ENSO (El Niño Southern Oscillation) driven climate anomalies over nearly half a century have changed migration behaviour and planform geometry. Meander‐bend migration rates and morphometric parameters including meander‐bend curvature, sinuosity, meander wavelength and channel width, were measured and the frequency of bend cutoffs was analysed in order to determine the rate of change of channel adjustment over a 48 year period to 2010. Results show that maximum average channel migration rates occur in bends with curvatures of about 2–3 rc/w, similar to other previously studied temperate and subarctic freely meandering rivers although not as pronounced and with a tendency to favour tighter curvature. From 1962 to 2010 the Aguapeí River has undergone a significant reduction in sinuosity, a shift from tightly curving to more open bends, an overall decline in channel migration rates, an associated decrease in the frequency of neck‐cutoffs and an overall increase in channel width. As the majority of the drainage basin (96%) was already deforested in 1962, channel form and process changes were, unlike an interpretation for an adjacent river system, not attributed to altered land‐use but rather to a sharp ENSO‐driven increase in the magnitude of peak flow‐discharges of some 32% since 1972. In summary, this research revealed that recent climate and associated flow regime changes are having a pronounced effect on river channel behaviour in the Aguapeí River investigated here. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

10.
In 1820, the lower Canadian River meandered through a densely forested floodplain. By 1898, most of the floodplain had been cleared for agriculture and changes in channel geometry and specific stream power followed, particularly channel widening and straightening with a lower potential specific stream power. In 1964, a large upstream hydropower dam was constructed, which changed the flow regime in the lower Canadian River and consequently the channel geometry. Without destructive overbank floods, the channel narrowed rapidly and considerably due to encroachment by floodplain vegetation. The lower Canadian River, which was once a highly dynamic floodplain‐river system, has now been transformed into a relatively static river channel. These changes over the past 200 years have not been linear or independent. In this article, we use a variety of data sources to assess these historical changes along the lower Canadian River floodplain and identify feedbacks among floodplain cultivation, dam construction, specific stream power, and channel width, slope, and sinuosity. Finally, we combine the results of our study with others in the region to present a biogeomorphic response model for large Great Plains rivers that characterizes channel width changes in response to climate variability and anthropogenic disturbances. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Floodplain wetlands are common features of rivers in southern Africa, but they have been little studied from a geological or geomorphological perspective. Study of the upper Klip River, eastern Free State, South Africa, indicates strong geological controls on the formation of alluvial meanders and associated floodplain wetlands. Along this river, pronounced and abrupt changes in valley width are strongly linked to lithological variations. Where weakly cemented sandstone crops out, the Klip has laterally eroded bedrock and carved valleys up to 1500 m wide. In these valleys, the river meanders (sinuosity up to ~1·75) on moderate gradients (<0·001) within extensive floodplains marked by numerous oxbow lakes, backswamps and abandoned channels, many of which host substantial wetlands. In contrast, where highly resistant dolerite crops out, lateral erosion of bedrock is restricted, with the Klip tending instead to erode vertically along joints or fractures. Here, valleys are narrower (<200 m), channel‐bed gradients are steeper (>0·003), the river follows a much straighter course (sinuosity ~1·10–1·34), and floodplains are restricted in width. Long‐term landscape development in the Klip and numerous similar catchments depends on the interaction between fluvial processes in the sandstone and dolerite valleys. In the sandstone valleys, vertical erosion rates are controlled by erosion rates of the more resistant dolerites downstream. Hence, in the short‐ to medium‐term (decades to tens of thousands of years), lateral erosion dominates over vertical erosion, with the river concomitantly planing sandstone in the channel floor and reworking floodplain sediments. The thickness of alluvial fill in the sandstone valleys is limited (<4 m), but the resultant meanders are naturally dynamic, with processes such as point bar deposition, cutoff formation and channel avulsion resulting in an assemblage of fluvial landforms. In the longer term (greater than tens of thousands of years), however, vertical erosion will occur in the sandstone valleys as the downstream dolerites are lowered by erosion, resulting in channel incision, floodplain abandonment, and desiccation of the wetlands. Identification of the geological controls on meander and wetland formation provides information vital for the design of effective management guidelines for these ecologically rich habitats, and also contributes to a better understanding of rivers that are intermediate between fully alluvial and fully bedrock. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
This study examined the temporal dynamics and longitudinal distribution of wood over a multi‐decadal timescale at the river reach scale (36 km) and a meander bend scale (300–600 m) in the Ain River, a large gravel‐bed river flowing through a forested corridor, and adjusting to regulation and floodplain land‐use change. At the 36 km scale, more wood was recruited by bank erosion in 1991–2000 than since the 1950s. The longitudinal distribution of accumulations was similar between 1989 and 1999, but in both years individual pieces occurred homogeneously throughout the reach, while jam distribution was localized, associated with large concave banks. A relationship between the mean number of pieces and the volume recruited by bank erosion (r2 = 0·97) indicated a spatial relationship between areas of wood production and storage. Wood mass stored and produced and channel sinuosity increased from 1993 to 2004 at three meander bends. Sinuosity was related to wood mass recruited by bank erosion during the previous decade (r2 = 0·73) and both of these parameters were correlated to the mean mass of wood/plot (r2 = 0·98 and 0·69 respectively), appearing to control wood storage and delivery at the bend scale. This suggests a local origin of wood stored in channel, not input from upstream trapped by preferential sites. The increase in wood since 1950 is a response to floodplain afforestation, to a change from braided to meandering channel pattern in response to regulation, and to recent large floods. We observed temporal stability of supply and depositional sectors over a decade (on a reach scale). Meander bends were major storage sites, trapping wood with concave banks, also delivering wood. These results, and the link between sinuosity and wood frequency, establish geomorphology as a dominant wood storage and recruitment control in large gravel‐bed rivers. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
This paper explores the use of planview morphological metrics to quantitatively describe and distinguish mixed bedrock–alluvial multichannel networks from alluvial multichannel networks. The geometries of the channel planforms of two bedrock‐constrained networks (Mekong and Orange rivers) are compared with the classic alluvial anastomosed Upper Columbia River and the wandering Ganga River. Widely recognized indices utilized include: channel link count and channel sinuosity, with additional emphasis being given to the less common metrics: network bifurcation angles and island shape characteristics (i.e. aspect ratio, compactness, roundness and convexity). Link count data, with one notable exception, conform to theoretical expectations. Bifurcation angles for all four multichannel rivers are significantly greater than angles reported for braiding rivers. Island convexity clearly discriminates the two alluvial rivers from the two bedrock‐influenced rivers. The width of the macrochannel, in which each network develops, has a positive influence on the number of channel links and is further related to channel slope variations which, in turn, are influenced by terrain structure revealed using trend‐surface analysis. The geometry of multichannel networks are often laterally constrained such that the values of channel bifurcation angles and link sinuosity values reduce as the network intensifies and channel links are shortened. These latter observations go some way to explain the oft‐noted relatively ‘straight’ links seen within multichannel networks which are a necessary adjustment to space‐filling constraints placed on a network. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper the spatial and temporal responses of the Some?u Mic River (Romania) to natural and anthropogenic controls over the past 150 years are analysed, based on a series of morphometric parameters extracted from five successive sets of topographic maps and one set of orthophotos. Prior to the intensive hydrotechnical interventions of the last four decades, the river was characterized by a complex alternation of different channel types, resulting in a mixture of alluvial and mixed sinuous – meandering – sinuous anabranched – meandering anabranched reaches, each a few hundred metres to a few kilometres long. The main cause for this spatial behaviour was the local geology. Its effects were intensified by a larger scale slope, slightly higher than along a longitudinal profile with normal concavity, as a consequence of the presence of a 400 m elevation knick‐point located in the catchment area. A generalized maintenance of river in the floodplain perimeter during the entire interval of study (centennial scale), with local planform adjustments and lack of median scale avulsion in lateral tilting areas and along the anabranched reaches, channel lengthening and meander development during hydrological stable periods and channel shortening and increasing of natural cutoffs during periods with higher incidence of floods (decadal scale), and the incapacity of local morphologic changes resulted from human interventions to completely counterbalance general trends (decadal scale), supports the idea of decreasing the amplitude and frequency of important floods, after the end of the Little Ice Age. Channel metamorphosis by canalization, diminishing/elimination of overflows and medium‐scale avulsions by changes in flow regimes (dams) and the presence of dykes in the floodplain perimeter, channel narrowing (43%) and incision (at least after 1945) downstream from dams, and probably because of in‐channel gravel mining are the main anthropically induced changes along the Some?u Mic River. Even if human impact is important, both at the drainage basin scale and along the Some?u Mic River, it has only local impacts, subordinated to climate. The low level of human impact on this river could be the consequence of the higher general slope downstream from 400 m elevation knick‐point, which probably forces the positioning of its effects under an important internal threshold of the fluvial system. This boundary condition defines Some?u Mic River as an atypical river. This study supports the idea that climate has a more important role in the post‐Little Ice Age (LIA) rivers' behaviour than currently accepted. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Geomorphological analyses of the morphology, lithostratigraphy and chronology of Holocene alluvial fills in a 2·75 km long piedmont reach of the wandering gravel‐bed River South Tyne at Lambley in Northumberland, northern England, have identified spatial and temporal patterns of late Holocene channel and floodplain development and elucidated the relationship between reach‐ and subreach‐scale channel transformation and terrace formation. Five terraced alluvial fills have been dated to periods sometime between c. 1400 BC –AD 1100, AD 1100–1300, AD 1300–1700, AD 1700–1850 and from AD 1850 to the present. Palaeochannel morphology and lithofacies architecture of alluvial deposits indicate that the past 3000 years has been characterized by episodic channel and floodplain change associated with development and subsequent recovery of subreach‐scale zones of instability which have been fixed in neither time nor space. Cartographic and photographic evidence spanning the past 130 years suggests channel transformation can be accomplished in as little as 50 years. The localized and episodic nature of fluvial adjustment at Lambley points to the operation of subreach‐scale controls of coarse sediment transfers. These include downstream propagation of sediment waves, as well as internal controls imposed by differing valley floor morphology, gradient and boundary materials. However, the preservation of correlated terrace levels indicates that major phases of floodplain construction and entrenchment have been superimposed over locally complex patterns of sediment transfer. Reach‐scale lateral and vertical channel adjustments at Lambley appear to be closely related to climatically driven changes in flood frequency and magnitude, with clusters of extreme floods being particularly important for accomplishing entrenchment and reconfiguring the pattern of localized instability zones. Confinement of flood flows by valley entrenchment, and contamination of catchment river courses by metal‐rich fine sediments following recent historic mining operations, have combined to render the South Tyne at Lambley increasingly sensitive to changes in flood regimes over the past 1000 years. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

16.
We evaluated controls on locations of channel incision, variation in channel evolution pathways and the time required to reconnect incised channels to their historical floodplains in the Walla Walla and Tucannon River basins, northwestern USA. Controls on incision locations are hierarchically nested. A first‐order geological control defines locations of channels prone to incision, and a second‐order control determines which of these channels are incised. Channels prone to incision are reaches with silt‐dominated valley fills, which have sediment source areas dominated by loess deposits and channel slopes less than 0·1(area)?0·45. Among channels prone to incision, channels below a second slope–area threshold (slope = 0·15(area)?0·8) did not incise. Once incised, channels follow two different evolution models. Small, deeply incised channels follow Model I, which is characterized by the absence of a significant widening phase following incision. Widening is limited by accumulation of bank failure deposits at the base of banks, which reduces lateral channel migration. Larger channels follow Model II, in which widening is followed by development of an inset floodplain and aggradation. In contrast to patterns observed elsewhere, we found the widest incised channels upstream of narrower reaches, which reflects a downstream decrease in bed load supply. Based on literature values of floodplain aggradation rates, we estimate recovery times for incised channels (the time required to reconnect to the historical floodplain) between 60 and 275 years. Restoration actions such as allowing modest beaver recolonization can decrease recovery time by 17–33 per cent. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   

17.
Sedimentary deposits provide records of environmental change quantifying erosion fluxes conditioned by natural and anthropogenic disturbances. These fluxes are lagged by internal storage, particularly within floodplains, complicating reconstruction of environmental changes. The time sediment remains in storage underpins the interpretation of sedimentary records and accurate monitoring of pollutant fluxes. Turnover time is a measure of the timeframe to erode every floodplain surface. CAESAR-Lisflood is used to simulate fluvial evolution at reach scale, providing a basis for quantifying environmental changes on the timescales of sediment storage. We evaluate the accuracy of CAESAR-Lisflood simulations of channel changes and turnover times for alluvial floodplains using historical channel changes reconstructed for 10 reaches in northern England to quantify model accuracy in replicating mean annual erosion, deposition and channel lateral migration rates, alongside planform morphology. Here, a split-sample testing approach is adopted, whereby five of the reaches were calibrated and the resulting parameter values were applied to the other reaches to evaluate the transferability of parameter settings. The lowest overall integrated error identified the best-fit simulations and showed that modelled process rates were within ~25–50% of rates from historical reconstructions, generally. Calibrated parameters for some reaches are widely transferable, producing accurate geomorphic changes for some uncalibrated sites. However, large errors along some reaches indicate that reach-specific parameterization is recommended. Turnover times are underpinned by the assumption that areas of floodplain previously unvisited by the channel are reworked. This assumption has been challenged by studies that show floodplain (re)occupation rates vary spatially. However, this limitation is less important for the short-duration simulations presented here. The simulations reconstruct floodplain turnover times estimated by mapped rates mostly successfully, demonstrating the potential applicability of calibrated parameters over much longer timescales. Errors in the form of under-predicted erosion rates propagated, resulting in over-predicted turnover times by even greater magnitudes. © 2020 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd.  相似文献   

18.
Across 1·7 km2 of the Umatilla River floodplain (Oregon, USA), we investigated the influences of an ephemeral tributary and perennial ‘spring channel’ (fed only by upwelling groundwater) on hyporheic hydrology. We derived maps of winter and summer water‐table elevations from data collected at 46 monitoring wells and 19 stage gauges and used resulting maps to infer groundwater flow direction. Groundwater flow direction varied seasonally across the floodplain and was influenced by main channel stage, flooding, the tributary creek, and the location and direction of hyporheic exchange in the spring channel. Hyporheic exchange in the spring channel was evaluated with a geochemical mixing model, which confirmed patterns of floodplain groundwater movement inferred from water‐table maps and showed that the spring channel was fed predominantly by hyporheic water from the floodplain aquifer (87% during winter, 80% during summer), with its remaining flow supplied by upslope groundwater from the adjacent catchment aquifer. Summertime growth of aquatic macrophytes in the spring channel also influenced patterns of hyporheic exchange and groundwater flow direction in the alluvial aquifer by increasing flow resistance in the spring channel, locally raising surface water stage and adjacent water‐table elevation, and thereby altering the slope of the water‐table in the hyporheic zone. The Umatilla River floodplain is larger than most sites where hyporheic hydrology has been investigated in detail. Yet, our results corroborate other research that has identified off‐channel geomorphic features as important drivers of hyporheic hydrology, including previously published modeling efforts from a similar river and field observations from smaller streams. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
The morphometric and anthropogenic risk factors of floods in a typical lowland Lower Kura R. are studied. The isolation of the channel from the floodplain is the major cause of floods in the river. The high channel tortuosity makes the flow turbulent. In addition, the high sediment concentration, the turbid and disperse character of the liquid, the gentle bed slope, and the alluvial character of the soil underlying the bed and embankments contribute to the vertical and horizontal dynamics of the channel.  相似文献   

20.
We exploit a natural experiment caused by an extreme flood (~500 year recurrence interval) and sediment pulse derived from more than 2500 concurrent landslides to explore the influence of valley‐scale geomorphic controls on sediment slug evolution and the impact of sediment pulse passage and slug deposition and dispersion on channel stability and channel form. Sediment slug movement is a crucial process that shapes gravel‐bed rivers and alluvial valleys and is an important mechanism of downstream bed material transport. Further, increased bed material transport rates during slug deposition can trigger channel responses including increases in lateral mobility, channel width, and alluvial bar dominance. Pre‐ and post‐flood LiDAR and aerial photographs bracketing the 2007 flood on the Chehalis River in south‐western Washington State, USA, document the channel response with high spatial and temporal definition. The sediment slug behaved as a Gilbert Wave, with both channel aggradation and sequestration of large volumes of material in floodplains of headwaters' reaches and reaches where confined valleys enter into broad alluvial valleys. Differences between the valley form of two separate sub‐basins impacted by the pulse highlight the important role channel and channel‐floodplain connectivity play in governing downstream movement of sediment slug material. Finally, channel response to the extreme flood and sediment pulse illustrate the connection between bed material transport and channel form. Specifically, the channel widened, lateral channel mobility increased, and the proportion of the active channel covered by bars increased in all reaches in the study area. The response scaled tightly with the relative amount of bed material sediment transport through individual reaches, indicating that the amount of morphological change caused by the flood was conditioned by the simultaneous introduction of a sediment pulse to the channel network. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号