首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Analyses were made of the concurrent canopy precipitation balances of a seed orchard pine and a mature forest eucalypt during protracted rainfalls selected for their representativeness of the range of variation encountered in the two canopy types at Tallanganda State Forest (ca. 990 m a.s.l.) in the Upper Shoalhaven Valley of southeastern New South Wales. Although their canopy storage capacities were widely different there was consistent interception behaviour in the pine and the eucalypt in all events. Detailed weather data and the time courses of interception loss provided circumstantial evidence for a varying and, at times, substantial influence of cloud or mist deposition on the canopy precipitation balances during rainfall that made a significant contribution to the variation in rainfall interception data. Mean evaporation rates from the saturated canopies during rainfall varied from ?0·02 mm hr?1 up to 0·68 mm hr?1 in the pine; and from ?0·04 mm hr?1 up to 0·13 mm hr?1 in the eucalypt. The implications of cloud-capture during rainfall for studies of rainfall interception in forests of southeastern Australia are discussed.  相似文献   

2.
While the hydrological balance of forest ecosystems has often been studied at the annual level, quantitative studies on the factors determining rainfall partitioning of individual rain events are less frequently reported. Therefore, the effect of the seasonal variation in canopy cover on rainfall partitioning was studied for a mature deciduous beech (Fagus sylvatica L.) tree over a 2‐year period. At the annual level, throughfall amounted to 71% of precipitation, stemflow 8%, and interception 21%. Rainfall partitioning at the event level depended strongly on the amount of rainfall and differed significantly (p < 0·001) between the leafed and the leafless period of the year. Therefore, water fluxes of individual events were described using a multiple regression analysis (ra2 > 0·85, n = 205) with foliation, rainfall characteristics and meteorological variables as predictor variables. For a given amount of rainfall, foliation significantly increased interception and decreased throughfall and stemflow amounts. In addition, rainfall duration, maximum rainfall rate, vapour pressure deficit, and wind speed significantly affected rainfall partitioning at the event level. Increasing maximum hourly rainfall rate increased throughfall and decreased stemflow generation, while higher hourly vapour pressure deficit decreased event throughfall and stemflow amounts. Wind speed decreased throughfall in the growing period only. Since foliation and the event rainfall amount largely determined interception loss, the observed net water input under the deciduous canopy was sensitive to the temporal distribution of rainfall. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
A study of partitioning of rainfall into throughfall, stemflow, and interception was conducted in a dry sclerophyll eucalypt forest and an adjacent pine plantation over a period of seven years, on a rainfall event basis. The following three issues are discussed: (1) the relationship between canopy storage capacity and interception of continuous events, (2) interception, throughfall, and stemflow, and (3) the effect on interception of thinning the pine plantation.
  • 1 The canopy storage capacity/interception interaction for the eucalypt forest was assessed by comparing a gravimetric estimate of canopy storage capacity with interception. The maximum possible value for canopy storage capacity was found to be a small proportion of interception for events of all sizes. This suggests that evaporation of intercepted water during the continuous events was responsible for most of the interception. This ‘within event’ evaporation appears to be responsible also for the net rainfall/gross rainfall estimate of canopy storage capacity being four times the gravimetric value. For the pines the regression estimate was more closely related to interception.
  • 2 Interception, throughfall, and stemflow of these forests were measured for four years. Data are presented for each year with overall average interception being 11-4 per cent of precipitation for the eucalypt forest and 18-3 per cent for the pine plantation. Topography and rainfall event type are considered in the comparison.
Species composition and tree type are considered when comparing these results with published studies from similar forest types in southeastern Australia. The periodic (annual) variations of interception in this and the other studies makes comparison difficult.
  • 3 The effect of thinning on the throughfall, stemflow, and interception in a Pinus radiata plantation is examined. Throughfall increased, interception decreased but not in proportion to the removed biomass; stemflow decreased on an area basis, but increased on a per tree basis. A positive relationshiip is established between interception and stemflow on the thinned plantation but not in the unthinned. Reasons for this are suggested. The results are compared to those reported from similar experiments in other forests.
  • 4 The periodic variations in interception and errors inherent in its estimation suggest that caution should be exercised when using average interception figures in water balance studies.
  相似文献   

4.
The partitioning of gross rainfall into throughfall, stemflow, and interception loss and their relationships with forest structure was studied for a period of four years (October 2002–September 2006) and two years (October 2005–September 2007) in seven experimental catchments of temperate rainforest ecosystems located in the Andes of south‐central Chile (39°37′S, 600–925 m a.s.l.). The amount of throughfall, stemflow, and interception loss was correlated with forest structure characteristics such as basal area, canopy cover, mean quadratic diameter (MQD), and tree species characteristics in evergreen and deciduous forests. Annual rainfall ranged from 4061 to 5308 mm at 815 m a.s.l. and from 3453 to 4660 mm at 714 m a.s.l. Throughfall ranged from 64 to 89% of gross rainfall. Stemflow contributed 0·3–3·4% of net precipitation. Interception losses ranged from 11 to 36% of gross rainfall and depended on the amount of rainfall and characteristics as well as on forest structure, particularly the MQD. For evergreen forests, strong correlations were found between stemflow per tree and tree characteristics such as diameter at breast height (R2 = 0·92, P < 0·01) and crown projection area (R2 = 0·65, P < 0·01). Stemflow per tree was also significantly correlated with epiphyte cover of trunks in the old‐growth evergreen forests (R2 = 0·29, P < 0·05). The difference in the proportion of throughfall and interception loss among stands was significant only during winter. The reported relationships between rainfall partitioning and forest structure and composition provide valuable information for management practices, which aimed at producing other ecosystem services in addition to timber in native rainforests of southern Chile. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Rainfall erosivity represents the primary driver for particle detachment in splash soil erosion. Several raindrop erosivity indices have been developed in order to quantify the potential of rainfall to cause soil erosion. Different types of rainfall simulators have been used to relate rainfall characteristics to soil detachment. However, rainfall produced by different rainfall simulators has different characteristics, specifically different relationships between rainfall intensity and rainfall erosivity. For this reason, the effect of rainfall characteristics produced by a dripper‐type rainfall simulator on splash soil erosion (Ds) has been investigated. The simulated rainfall kinetic energy (KE) and drop size distribution (DSD) were measured using piezoelectric transducers, modified from the Vaisala RAINCAP® rain sensor. The soil splash was evaluated under various simulated rainfall intensities ranging from 10 to 100 mm h?1 using the splash‐cup method. The simulated rainfall intensity (I) and kinetic energy relationship (IKE) was found to be different from natural rainfall. The simulated rainfall intensity and splash soil erosion relationship (IDs) also followed this same trend. The IKE relationship was found to follow the natural rainfall trend until the rainfall intensity reached 30 mm h?1 and above this limit the KE started to decrease. This emphasizes the importance of the IKE relationship in determining the IDs relationship, which can differ from one rainfall simulator to another. Ds was found to be highly correlated with KE (r = 0·85, P < 0·001), when data produced by the rainfall intensity ranged from 10 to 100 mm h?1. However, when the threshold rainfall intensity (30 mm h?1) was considered, the correlation coefficient further improved (r = 0·89, P = 0·001). Accordingly, to improve the soil splash estimation of simulated rainfall under various rainfall intensities the I–KE characterization relationship for rainfall simulators has to be taken into account. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Measurements of sap flow, meteorological parameters, soil water content and tension were made for 4 months in a young cashew (Anacardium occidentale L.) plantation during the 2002 rainy season in Ejura, Ghana. This experiment was part of a sustainable water management project in West Africa. The Granier system was used to measure half‐hourly whole‐tree sap flow. Weather variables were observed with an automatic weather station, whereas soil moisture and tension were measured with a Delta‐T profile probe and tensiometers respectively. Clearness index (CI), a measure of the sky condition, was significantly correlated with tree transpiration (r2 = 0·73) and potential evaporation (r2 = 0·86). Both diurnal and daily stomata conductance were poorly correlated with the climatic variables. Estimated daily canopy conductance gc ranged from 4·0 to 21·2 mm s−1, with a mean value of 8·0 ± 3·3 mm s−1. Water flux variation was related to a range of environmental variables: soil water content, air temperature, solar radiation, relative humidity and vapour pressure deficit. Linear and non‐linear regression models, as well as a modified Priestley–Taylor formula, were fitted with transpiration, and the well‐correlated variables, using half‐hourly measurements. Measured and predicted transpiration using these regression models were in good agreement, with r2 ranging from 0·71 to 0·84. The computed measure of accuracy δ indicated that a non‐linear model is better than its corresponding linear one. Furthermore, solar radiation, CI, clouds and rain were found to influence tree water flux. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
To predict the long‐term sustainability of water resources on the Boreal Plain region of northern Alberta, it is critical to understand when hillslopes generate runoff and connect with surface waters. The sub‐humid climate (PET) and deep glacial sediments of this region result in large available soil storage capacity relative to moisture surpluses or deficits, leading to threshold‐dependent rainfall‐runoff relationships. Rainfall simulation experiments were conducted using large magnitude and high intensity applications to examine the thresholds in precipitation and soil moisture that are necessary to generate lateral flow from hillslope runoff plots representative of Luvisolic soils and an aspen canopy. Two adjacent plots (areas of 2·95 and 3·4 m2) of contrasting antecedent moisture conditions were examined; one had tree root uptake excluded for two months to increase soil moisture content, while the second plot allowed tree uptake over the growing season resulting in drier soils. Vertical flow as drainage and soil moisture storage dominated the water balances of both plots. Greater lateral flow occurred from the plot with higher antecedent moisture content. Results indicate that a minimum of 15–20 mm of rainfall is required to generate lateral flow, and only after the soils have been wetted to a depth of 0·75 m (C‐horizon). The depth and intensity of rainfall events that generated runoff > 1 mm have return periods of 25 years or greater and, when combined with the need for wet antecendent conditions, indicate that lateral flow generation on these hillslopes will occur infrequently. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Seasonal changes in the water and energy exchanges over a pine forest in eastern Siberia were investigated and compared with published data from a nearby larch forest. Continuous observations (April to August 2000) were made of the eddy‐correlation sensible heat flux and latent heat flux above the canopy. The energy balance was almost closed, although the sum of the turbulent fluxes sometimes exceeded the available energy flux (Rn ? G) when the latent heat flux was large; this was related to the wind direction. We examined the seasonal variation in energy balance components at this site. The seasonal variation and magnitude of the sensible heat flux (H) was similar to that of the latent heat flux (λE), with maximum values occurring in mid‐June. Consequently, the Bowen ratio was around 1·0 on many days during the study period. On some clear days just after rainfall, λE was very large and the sum of H and λE exceeded Rn ? G. The evapotranspiration rate above the dry canopy from May to August was 2·2 mm day?1. The contributions of understory evapotranspiration (Eu) and overstory transpiration (Eo) to the evapotranspiration of the entire ecosystem (Et) were both from 25 to 50% throughout the period analysed. These results suggest that Eu plays a very important role in the water cycle at this site. From snowmelt through the tree growth season (23 April to 19 August 2000), the total incoming water, comprised of the sum of precipitation and the water equivalent of the snow at the beginning of the melt season, was 228 mm. Total evapotranspiration from the forest, including interception loss and evaporation from the soil when the canopy was wet, was 208–254 mm. The difference between the incoming and outgoing amounts in the water balance was from +20 to ?26 mm. The water and energy exchanges of the pine and larch forest differed in that λE and H increased slowly in the pine forest, whereas λE increased rapidly in the larch forest and H decreased sharply after the melting season. Consequently, the shape of the Bowen ratio curves at the two sites differed over the period analysed, as a result of the differences in the species in each forest and in soil thawing. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
Litterfall was measured in a dry schlerophyll eucalypt forest and a nearby Pinus radiata plantation of similar tree density and basal area near Canberra in south-eastern Australia. Total annual litterfall for the eucalypts was 329 g m−2, compared with 180 g m−2 for the pines, with the bark component being 52 g m−2 for eucalypts and zero for pines. Barkfall did not occur for the eucalypts during the drought of 1982–1983 but complete bark shedding occurred during the subsequent very wet year when barkfall was 177 g m−2 for Eucalyptus rossii and 146 g m−2 for Eucalyptus mannifera (9·3 and 7·6 g m−2 of basal area, respectively). Barkfall of E. rossii responded to rainfall in the period autumn to early summer, whereas E. mannifera responded to summer rainfall. In the eucalypt forest floor-litter was stratified into a surface layer where the components were substantially intact, and a cohesive layer where the components were fragmented and bound together by fungal hyphae. The amount and residence times of loose and cohesive floor-litter were 1056 g m−2 and 3·2 years, respectively, for the loose litter layer; and 1164 g m−2 and 3·5 years for the cohesive layer. The litter biomass represented 17% of the estimated total above-ground biomass of 127 tonnes ha−1. A previous study showed roots to be 25% of total biomass, suggesting a total biomass of 167 tonnes ha−1. © 1998 John Wiley & Sons, Ltd.  相似文献   

10.
Rates of splash detachment from a sandy soil of the Cottenham Series, subjected to a five-minute design storm of 50 mm/h with a kinetic energy of 127 J/m2 and a median volume drop size of 3·2 mm supplied from a rotating-disc rainfall simulator, are determined without a plant cover and with the cover of a single Brussels sprouts plant. Measurements are made at regular intervals throughout the growing season. Plant canopies of 10 to 25 per cent result in reductions of 10 to 25 per cent in rainfall volume and 10 to 81 per cent in rainfall energy. The volume and energy of the rain beneath the plant are significantly (P < 0·05) correlated with its number of leaves (r = ?0·84 and ?0·92 respectively for n = 49). No reduction was observed in the rate of splash detachment which averages 1·2 kg/m2 for the design storm with and without the plant. The detachment rate was found rather surprisingly to be inversely related to the energy of the rainfall under the plant and positively related to the number of leaves. As the number of leaves increases, so does the detachment rate per unit of rainfall energy.  相似文献   

11.
Solute concentrations and fluxes in rainfall, throughfall and stemflow in two forest types, and stream flow in a 90 ha catchment in southern Chile (39°44′S, 73°10′W) were measured. Bulk precipitation pH was 6·1 and conductivity was low. Cation concentrations in rainfall were low (0·58 mg Ca2+ l?1, 0·13 mg K+ l?1, 0·11 mg Mg2+ l?1 and <0·08 mg NH4–N l?1), except for sodium (1·10 mg l?1). Unexpected high levels of nitrate deposition in rainfall (mean concentration 0·38 mg NO3–N l?1, total flux 6·3 kg NO3–N ha?1) were measured. Concentrations of soluble phosphorous in bulk precipitation and stream flow were below detection limits (<0·09 mg l?1) for all events. Stream‐flow pH was 6·3 and conductivity was 28·3 μs. Stream‐water chemistry was also dominated by sodium (2·70 mg l?1) followed by Ca, Mg and K (1·31, 0·70 and 0·36 mg l?1). The solute budget indicated a net loss of 3·8 kg Na+ ha?1 year?1, 5·4 kg Mg2+ ha?1 year?1, 1·5 kg Ca2+ ha?1 year?1 and 0·9 kg K+ ha?1 year?1, while 4·9 kg NO3–N ha?1 year?1 was retained by the ecosystem. Stream water is not suitable for domestic use owing to high manganese and, especially, iron concentrations. Throughfall and stemflow chemistry at a pine stand (Pinus radiata D. Don) and a native forest site (Siempreverde type), both located within the catchment, were compared. Nitrate fluxes within both forest sites were similar (1·3 kg NO3–N ha?1 year?1 as throughfall). Cation fluxes in net rainfall (throughfall plus stemflow) at the pine stand generally were higher (34·8 kg Na+ ha?1 year?1, 21·5 kg K+ ha?1 year?1, 5·1 kg Mg2+ ha?1 year?1) compared with the secondary native forest site (24·7 kg Na+ ha?1 year?1, 18·9 kg K+ ha?1 year?1 and 4·4 kg Mg2+ ha?1 year?1). However, calcium deposition beneath the native forest stand was higher (15·9 kg Ca2+ ha?1 year?1) compared with the pine stand (12·6 kg Ca2+ ha?1 year?1). Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
ABSTRACT

The evaporation losses from the container of an old galvanized Hellmann gauge, 7·1 cm2 aperture area, were five times greater than the losses from the container of a new gauge, 1·8 cm2 aperture area, of almost the same grey colour. The maximum evaporation from the old gauge amounted to 0·75 mm per day. The same evaporation losses in the Baye of Montreux basin over a period of 10 years from April to September amounted to 0·09 mm per measurement or to 0·7 per cent of the precipitation catch. There is a relationship between the monthly percentage evaporation losses and the ratio of evaporation time and rainfall duration (r = 0·803).  相似文献   

13.
Hydrological processes of lowland watersheds of the southern USA are not well understood compared to a hilly landscape due to their unique topography, soil compositions, and climate. This study describes the seasonal relationships between rainfall patterns and runoff (sum of storm flow and base flow) using 13 years (1964–1976) of rainfall and stream flow data for a low‐gradient, third‐order forested watershed. It was hypothesized that runoff–rainfall ratios (R/P) are smaller during the dry periods (summer and fall) and greater during the wet periods (winter and spring). We found a large seasonal variability in event R/P potentially due to differences in forest evapotranspiration that affected seasonal soil moisture conditions. Linear regression analysis results revealed a significant relationship between rainfall and runoff for wet (r2 = 0·68; p < 0·01) and dry (r2 = 0·19; p = 0·02) periods. Rainfall‐runoff relationships based on a 5‐day antecedent precipitation index (API) showed significant (r2 = 0·39; p < 0·01) correspondence for wet but not (r2 = 0·02; p = 0·56) for dry conditions. The same was true for rainfall‐runoff relationships based on 30‐day API (r2 = 0·39; p < 0·01 for wet and r2 = 0·00; p = 0·79 for dry). Stepwise regression analyses suggested that runoff was controlled mainly by rainfall amount and initial soil moisture conditions as represented by the initial flow rate of a storm event. Mean event R/P were higher for the wet period (R/P = 0·33), and the wet antecedent soil moisture condition based on 5‐day (R/P = 0·25) and 30‐day (R/P = 0·26) prior API than those for the dry period conditions. This study suggests that soil water status, i.e. antecedent soil moisture and groundwater table level, is important besides the rainfall to seasonal runoff generation in the coastal plain region with shallow soil argillic horizons. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
To investigate the impacts of the invasion by bamboo on fluxes of nutrients and pollutants, the nutrient/pollutant fluxes and canopy interactions, including neutralization of acidity, leaching and uptake of nitrogen (N), were characterized in conjunction with rainfall partitioning in a Moso‐bamboo (Phyllostachys pubescens) forest. Measurements of precipitation volume, pH, major ions, and silicate (SiO2) in rainfall, throughfall and stemflow were collected weekly in a Moso‐bamboo forest located in Munakata City, Western Japan for 1 year. Results showed that rainfall partitioning into stemflow was larger than that for other types of forest, which may be due to the properties of Moso‐bamboo forest structure, such as a straight and smooth culm. Inorganic N (NO3 + NH4+) and S (SO42−) fluxes of throughfall and stemflow were approximately 1·6 and 1·3 times higher than that of rainfall, respectively. Contribution of stemflow flux to inorganic N and S fluxes to the forest floor was high. This could be due to lower uptake of inorganic N through culm and a higher rainfall partitioning into stemflow than that for other types of forest. The Moso‐bamboo canopy neutralized rainfall acidity, reducing the fluxes of potentially acidifying compounds via throughfall and stemflow. Canopy leaching of K+ was distinctly higher than that of Mg2+ and Ca2+ and could be related to the high mobility of K+ in plant tissues. Cl and SiO2 were readily leached as for K+. The impact of the invasion by bamboo on nutrient cycling was discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
A Note has been published for this article in Hydrological Processes 18(4) 2004, 825. Both water and heat balances were studied in a conifer plantation watershed in south‐west Japan, within the warm‐temperate East Asia monsoon area. Forest cover in the watershed consists mainly of Japanese cedar (Cryptomeria japonica) and Japanese cypress (Chamaecyparis obtusa) plantations. Precipitation and runoff have been observed since 1991, so evapotranspiration can be compared with the water balance. Two meteorological observation towers were built to monitor evapotranspiration in the watershed. The annual average precipitation, amount of runoff and losses were 2166, 1243 and 923 mm, respectively. The evapotranspiration (latent heat flux) agreed well with the water balance losses. The average annual evapotranspiration at the tower built in the centre of the watershed was 902 mm; evapotranspiration at the other tower, further upslope, was 875 mm. The observed evapotranspiration was 39% to 40% of the average precipitation (2166 mm). The mean net radiation was c. 2·6 GJ m?2 year?1, and is considered a representative value of the net radiation (Rn) in coniferous plantations in this region. This region is classified in the humid zone based on the ratio of net radiation (Rn) to the energy required to evaporate the rainfall (λR). The mean annual evaporation of canopy‐intercepted water was 356 mm or about 15% of the average precipitation. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper two models are presented for calculating the hourly evapotranspiration λE (W m?2) using the Penman–Monteith equation. These models were tested on four irrigated crops (grass, soya bean, sweet sorghum and vineyard), with heights between 0·1 and 2·2 m at the adult growth stage. In the first model (Katerji N, Perrier A. 1983. Modélisation de l'évapotranspiration réelle ETR d'une parcelle de luzerne : rôle d'un coefficient cultural. Agronomie 3(6): 513–521, KP model), the canopy resistance rc is parameterized by a semi‐empirical approach. In the second model (Todorovic M. 1999. Single‐layer evapotranspiration model with variable canopy resistance. Journal of Irrigation and Drainage Engineering—ASCE 125: 235–245, TD model), the resistance rc is parameterized by a mechanistic model. These two approaches are critically analysed with respect to the underlying hypotheses and the limitations of their practical application. In the case of the KP model, the mean slope between measured and calculated values of λE was 1·01 ± 0·6 and the relative correlation coefficients r2 ranged between 0·8 and 0·93. The observed differences in slopes, between 0·96 and 1·07, were not associated with the crop height. This model seemed to be applicable to all the crops examined. In the case of the TD model, the observed slope between measured and calculated values of λE for the grass canopy was 0·79. For the other crops, it varied between 1·24 and 1·34. In all the situations examined, the values of r2 ranged between 0·73 and 0·92. The TD model underestimated λE in the case of grass and overestimated it in the cases of the other three crops. The under‐ or overestimation of λE in the TD model were due: (i) to some inaccuracies in the theory of this model, (ii) to not taking into account the effect of aerodynamic resistance ra in the canopy resistance modelling. Therefore, the values of rc were under‐ or overestimated in consequence of mismatching the crop height. The high value of air vapour pressure deficit also contributed to the overestimation of λE, mainly for the tallest crop. The results clarify aspects of the scientific controversy in the literature about the mechanistic and semi‐empirical approaches for estimating λE. From the practical point of view the results also present ways for identifying the most appropriate approach for the experimental situations encountered. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Postfire runoff and erosion are a concern, and more data are needed on the effects of wildfire at the watershed‐scale, especially in the Colorado Front Range. The goal of this study was to characterize and compare the streamflow and suspended sediment yield response of two watersheds (Bobcat Gulch and Jug Gulch) after the 2000 Bobcat fire. Bobcat Gulch had several erosion control treatments applied after the fire, including aerial seeding, contour log felling, mulching, and straw wattles. Jug Gulch was partially seeded. Study objectives were to: (1) measure precipitation, streamflow, and sediment yields; (2) assess the effect of rainfall intensity on peak discharges, storm runoff, and sediment yields; (3) evaluate short‐term hydrologic recovery. Two months after the fire, a storm with a maximum 30 min rainfall intensity I30 of 42 mm h?1 generated a peak discharge of 3900 l s?1 km?2 in Bobcat Gulch. The same storm produced less than 5 l s?1 km?2 in Jug Gulch, due to less rainfall and the low watershed response. In the second summer, storms with, I30 of 23 mm h?1 and 32 mm h?1 generated peak discharges of 1100 l s?1 km?2 and 1700 l s?1 km?2 in the treated and untreated watersheds respectively. Maximum water yield efficiencies were 10% and 17% respectively, but 18 of the 23 storms returned ≤2% of the rainfall as runoff, effectively obscuring interpretation of the erosion control treatments. I30 explained 86% of the variability in peak discharges, 74% of the variability in storm runoff, and >80% of the variability in sediment yields. Maximum single‐storm sediment yields in the second summer were 370 kg ha?1 in the treated watershed and 950 kg ha?1 in the untreated watershed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
The eddy covariance and energy balance method was employed to determine evapotranspiration (LE) over a wet temperate C3–C4 co‐existing grassland in Japan. After sensible heat flux (H) was estimated via the eddy covariance technique, LE was calculated as the residual of the energy budget with calibration against the direct measurements of LE by a lysimeter. Daily mean LE varied from 0·8 to 10·5 MJ d−1, with a peak at 16·5 MJ d−1 in late July to early August. Day‐to‐day and seasonal variability in LE was affected appreciably by net radiation (Rn), atmospheric vapour pressure deficit (VPD), canopy surface conductance (gc) and leaf area index (LAI). Before the canopy closure, LE responded to LAI in a linear manner. However, LE decreased with increasing LAI later in summer. Daytime variation in the decoupling coefficient (Ω) demonstrates that the canopy decoupled from the atmosphere in the morning and LE was primarily driven by the available energy, while in the afternoon the canopy partially coupled to the atmosphere so that LE was sensitive to VPD and gc. Throughout the whole measurement period, Ω was generally larger than 0·5, suggesting that the available energy contributes more to LE than VPD. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
Rainfall interception in forests is influenced by properties of the canopy that tend to vary over small distances. Our objectives were: (i) to determine the variables needed to model the interception loss of the canopy of a lower montane forest in south Ecuador, i.e. the storage capacity of the leaves S and of the trunks and branches St, and the fractions of direct throughfall p and stemflow pt; (ii) to assess the influence of canopy density and epiphyte coverage of trees on the interception of rainfall and subsequent evaporation losses. The study site was located on the eastern slope of the eastern cordillera in the south Ecuadorian Andes at 1900–2000 m above sea level. We monitored incident rainfall, throughfall, and stemflow between April 1998 and April 2001. In 2001, the leaf area index (LAI), inferred from light transmission, and epiphyte coverage was determined. The mean annual incident rainfall at three gauging stations ranged between 2319 and 2561 mm. The mean annual interception loss at five study transects in the forest varied between 591 and 1321 mm, i.e. between 25 and 52% of the incident rainfall. Mean S was estimated at 1·91 mm for relatively dry weeks with a regression model and at 2·46 mm for all weeks with the analytical Gash model; the respective estimates of mean St were 0·04 mm and 0·09 mm, of mean p were 0·42 and 0·63, and of mean pt were 0·003 and 0·012. The LAI ranged from 5·19 to 9·32. Epiphytes, mostly bryophytes, covered up to 80% of the trunk and branch surfaces. The fraction of direct throughfall p and the LAI correlated significantly with interception loss (Pearson's correlation coefficient r = −0·77 and 0·35 respectively, n = 40). Bryophyte and lichen coverage tended to decrease St and vascular epiphytes tended to increase it, although there was no significant correlation between epiphyte coverage and interception loss. Our results demonstrate that canopy density influences interception loss but only explains part of the total variation in interception loss. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
We used stable isotopes (δ18O and δ2H) and water chemistry to characterize the water balance and hydrolimnological relationships of 57 shallow aquatic basins in the Peace‐Athabasca Delta (PAD), northern Alberta, Canada, based on sampling at the end of the 2000 thaw season. Evaporation‐to‐inflow ratios (E/I) were estimated using an isotope mass‐balance model tailored to accommodate basin‐specific input water compositions, which provided an effective, first‐order, quantitative framework for identifying water balances and associated limnological characteristics spanning three main, previously identified drainage types. Open‐drainage basins (E/I < 0·4; n = 5), characterized by low alkalinity, low concentrations of nitrogen, dissolved organic carbon (DOC) and ions, and high minerogenic turbidity, include large, shallow basins that dominate the interior of the PAD and experience frequent or continuous river channel connection. Closed‐drainage basins (E/I ≥ 1·0; n = 16), in contrast, possess high alkalinity and high concentrations of nitrogen, DOC, and ions, and low minerogenic turbidity, and are located primarily in the relict and infrequently flooded landscape of the northern Peace sector of the delta. Several basins fall into the restricted‐drainage category (0·4 # E/I < 1·0; n = 26) with intermediate water chemistries and are predominant in the southern Athabasca sector, which is subject to active fluviodeltaic processes, including intermittent flooding from riverbank overflow. Integration of isotopic and limnological data also revealed evidence for a new fourth drainage type, mainly located near the large open‐drainage lakes that occupy the central portion of the delta but within the Athabasca sector (n = 10). These basins were very shallow (<50 cm deep) at the time of sampling and isotopically depleted, corresponding to E/I characteristic of restricted‐ and open‐drainage conditions. However, they are limnologically similar to closed‐drainage basins except for higher conductivity and higher concentrations of Ca2+ and Na+, and lower concentrations of SiO2 and chlorophyll c. These distinct features are due to the overriding influence of recent summer rainfall on the basin water balance and chemistry. The close relationships evident between water balances and limnological conditions suggest that past and future changes in hydrology are likely to be coupled with marked alterations in water chemistry and, hence, the ecology of aquatic environments in the PAD. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号