首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For water supply, navigational, ecological protection or water quality control purposes, there is a great need in knowing the likelihood of the river level falling below a certain threshold. Ensemble streamflow prediction (ESP) based on simulations of deterministic hydrologic models is widely used to assess this likelihood. Raw ESP results can be biased in both the ensemble means and the spreads. In this study, we applied a modified general linear model post‐processor (GLMPP) to correct these biases. The modified GLMPP is built on the basis of regression of simulated and observed streamflow calculated on the basis of canonical events, instead of the daily values as is carried out in the original GLMPP. We conducted the probabilistic analysis of post‐processed ESP results falling below pre‐specified low‐flow levels at seasonal time scale. Raw ESP forecasts from the 1980 to 2006 periods by four different land surface models (LSMs) in eight large river basins in the continental USA are included in the analysis. The four LSMs are Noah, Mosaic, variable infiltration capacity and Sacramento models. The major results from this study are as follows: (1) a modified GLMPP was proposed on the basis of canonical events; (2) post‐processing can improve the accuracy and reduce the uncertainty of hydrologic forecasts; (3) post‐processing can help deal with the effect of human activity; and (4) raw simulation results from different models vary greatly in different basins. However, post‐processing can always remove model biases under different conditions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, optimal operating rules for water quality management in reservoir–river systems are developed using a methodology combining a water quality simulation model and a stochastic GA-based conflict resolution technique. As different decision-makers and stakeholders are involved in the water quality management in reservoir–river systems, a new stochastic form of the Nash bargaining theory is used to resolve the existing conflict of interests related to water supply to different demands, allocated water quality and waste load allocation in downstream river. The expected value of the Nash product is considered as the objective function of the model which can incorporate the inherent uncertainty of reservoir inflow. A water quality simulation model is also developed to simulate the thermal stratification cycle in the reservoir, the quality of releases from different outlets as well as the temporal and spatial variation of the pollutants in the downstream river. In this study, a Varying Chromosome Length Genetic Algorithm (VLGA), which has computational advantages comparing to other alternative models, is used. VLGA provides a good initial solution for Simple Genetic Algorithms and comparing to Stochastic Dynamic Programming (SDP) reduces the number of state transitions checked in each stage. The proposed model, which is called Stochastic Varying Chromosome Length Genetic Algorithm with water Quality constraints (SVLGAQ), is applied to the Ghomrud Reservoir–River system in the central part of Iran. The results show, the proposed model for reservoir operation and waste load allocation can reduce the salinity of the allocated water demands as well as the salinity build-up in the reservoir.  相似文献   

3.
Following a general representation of the regression analysis, especially concerning the relations between flow and concentrations of matter and loads, these relations are represented and discussed for the suspended solids, nitrate concentration, chloride content and oxygen concentration for seven sections of the Spree river. There result clear connections to the structure and utilizations of all of the parts of the river basin. Finally, the covering of the total river basin by models of water quality management in the form of regression, self-purification and eutrophication models-and their coupling is represented.  相似文献   

4.
一种水污染的综合控制模型   总被引:1,自引:1,他引:0  
扎黑尔  崔广柏 《湖泊科学》2002,14(2):125-133
本文将水质预测及水污染控制措施有机地结合,选取水环境容量和污染指数作为水污染控制的参数,这样,一给对流-扩散水质方程的求解除就是实现本研究目的的关键,本研究彩和的模型在现有的水质模型基础上有所改进,因为其采用四点隐格式对水质进行预测,推求可接给污染物的环境容量值有为保证水质而陷定的污染物浓度值,从而制定相应的水污染控制措施,为整体考虑各种污染物的情况,建议彩和河流的污染指数进而推求综合污染指数,总之,本研究为水质保护提供了科学的计算方法,该法对水污染及污水对河道水质的影响是实用有效的。  相似文献   

5.
《国际泥沙研究》2016,(2):139-148
Applications of sediment transport and water flow characteristics based sediment transport simulation models for a river system are presented in this study. An existing water–sediment model and a new sediment–water model are used to formulate the simulation models representing water and sediment movement in a river system. The sediment–water model parameters account for water flow characteristics embodying sediment transport properties of a section. The models are revised formulations of the multiple water inflows model describing water movement through a river system as given by the Muskingum principle. The models are applied to a river system in Mississippi River basin to estimate downstream sediment concentration, sediment discharge, and water discharge. River system and the river section parameters are estimated using a revised and the original multiple water inflows models by applying the genetic algorithm. The models estimate downstream sediment transport rates on the basis of upstream sediment/water flow rates to a system. Model performance is evaluated by using standard statistical criteria;downstream water discharge resulting from the original multiple water inflows model using the estimated river system parameters indicate that the revised models satisfactorily describe water movement through a river system. Results obtained in the study demonstrate the applicability of the sediment transport and water flow characteristics-based simulation models in predicting downstream sediment transport and water flow rates in a river system.  相似文献   

6.
Abstract

Multidisciplinary models are useful for integrating different disciplines when addressing water planning and management problems. We combine water resources management, water quality and habitat analysis tools that were developed with the decision support system AQUATOOL at the basin scale. The water management model solves the allocation problem through network flow optimization and considers the environmental flows in some river stretches. Once volumes and flows are estimated, the water quality model is applied. Furthermore, the flows are evaluated from an ecological perspective using time series of aquatic species habitat indicators. This approach was applied in the Tormes River Water System, where agricultural demands jeopardize the environmental needs of the river ecosystem. Additionally, water quality problems in the lower part of the river result from wastewater loading and agricultural pollution. Our methodological framework can be used to define water management rules that maintain water supply, aquatic ecosystem and legal standards of water quality. The integration of ecological and water management criteria in a software platform with objective criteria and heuristic optimization procedures allows realistic assessment and application of environmental flows to be made. Here, we improve the general methodological framework by assessing the hydrological alteration of selected environmental flow regime scenarios.
Editor D. Koutsoyiannis; Guest editor M. Acreman

Citation Paredes-Arquiola, J., Solera, A., Martinez-Capel, F., Momblanch, A., and Andreu, J., 2014. Integrating water management, habitat modelling and water quality at the basin scale and environmental flow assessment: case study of the Tormes River, Spain. Hydrological Sciences Journal, 59 (3–4), 878–889.  相似文献   

7.
Methodologies are presented for minimization of risk in a river water quality management problem. A risk minimization model is developed to minimize the risk of low water quality along a river in the face of conflict among various stake holders. The model consists of three parts: a water quality simulation model, a risk evaluation model with uncertainty analysis and an optimization model. Sensitivity analysis, First Order Reliability Analysis (FORA) and Monte–Carlo simulations are performed to evaluate the fuzzy risk of low water quality. Fuzzy multiobjective programming is used to formulate the multiobjective model. Probabilistic Global Search Laussane (PGSL), a global search algorithm developed recently, is used for solving the resulting non-linear optimization problem. The algorithm is based on the assumption that better sets of points are more likely to be found in the neighborhood of good sets of points, therefore intensifying the search in the regions that contain good solutions. Another model is developed for risk minimization, which deals with only the moments of the generated probability density functions of the water quality indicators. Suitable skewness values of water quality indicators, which lead to low fuzzy risk are identified. Results of the models are compared with the results of a deterministic fuzzy waste load allocation model (FWLAM), when methodologies are applied to the case study of Tunga–Bhadra river system in southern India, with a steady state BOD–DO model. The fractional removal levels resulting from the risk minimization model are slightly higher, but result in a significant reduction in risk of low water quality.  相似文献   

8.
Operational stochastic models with different time discretisation levels have been developed for generation of meteorological input processes for hydrologic models. These stochastic models can also supply the input simulation for water quality management models. In this paper they are outlined with special regard to the threshold model for intermittend processes of short time intervals (less than about ten days) with is based on a “pressed” power transformation to normality and a method of quantiles or alternatively a modified method of moments for estimating the correlation coefficients.  相似文献   

9.
Natural and anthropogenic forcing factors and their changes significantly impact water resources in many river basins around the world. Information on such changes can be derived from fine scale in situ and satellite observations, used in combination with hydrological models. The latter need to account for hydrological changes caused by human activities to correctly estimate the actual water resource. In this study, we consider the catchment area of the Garonne river (in France) to investigate the capabilities of space-based observations and up-to-date hydrological modeling in estimating water resources of a river basin modified by human activities and a changing climate. Using the ISBA–MODCOU and SWAT hydrological models, we find that the water resources of the Garonne basin display a negative climate trend since 1960. The snow component of the two models is validated using the moderate-resolution imaging spectroradiometer snow cover extent climatology. Crop sowing dates based on remote sensing studies are also considered in the validation procedure. Use of this dataset improves the simulated evapotranspiration and river discharge amounts when compared to conventional data. Finally, we investigate the benefit of using the MAELIA multi-agent model that accounts for a realistic agricultural and management scenario. Among other results, we find that changes in crop systems have significant impacts on water uptake for agriculture. This work constitutes a basis for the construction of a future modeling framework of the sociological and hydrological system of the Garonne river region.  相似文献   

10.
The study aims to address the long‐term impacts of six different downscaled Regional Climate Models (RCM) climate models on the quantity (river flow) and quality (sediment load, total nitrogen load and total phosphorus load) state of surface waters in the river Reka catchment, in the northern Mediterranean. Mediterranean areas are – due to high population density, favourable natural conditions for agriculture, limited water resources, diverse ecosystems biodiversity and expected climate change impacts – a global hotspot in climate research. Additionally, the study area lies on the border with the alpine climate zone, with a strong orographic effect on weather patterns. The location, and a wide range of studied parameters, provides an interesting insight into how various emerging climate change models may impact the status of surface waters and procedures for the governance of water resources. The study contributes to the knowledge and understanding of the climate change impact on the local catchment level, using the ensemble of the RCMs. It opens discussion about the impact of RCM selection on modelling climate changes with catchment models like Soil and Water Assessment Tool. This article also questions the usability of the results for the policy and decision makers in relation to the implementation of the results into short or long‐term water strategies or water/river management plans. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
引调水是改善平原河网地区水环境的重要方法之一,通过构建太湖流域走马塘东南片平原河网区一维水动力水质数学模型,研究不同引调水方案对区域水环境改善效果,确定引调水过程中的异质性因子.从决策目标、水质指标、空间指标3个层面综合考虑,构建环境效益与经济效益结合的多目标函数及评价体系,对引调水方案进行评估优选.结果表明:引调水流量较大时,能够在一定程度上改善区域水环境状况,规划方案下引调水5 d后,高锰酸盐指数、氨氮、总磷的平均改善率分别为30.7%、22.2%、26.4%;引调水时,区域河网中不同空间点位、不同水质指标之间的水质改善过程与效果都存在一定异质性;引调水水量、调度模式及污染源分布都会对调水后的河网区水质产生差异性影响;本研究建立的多目标评价体系较现有方法能够有效涵盖引调水中存在的异质性因子,从多个目标层面优选引调水方案,实现水量水质综合优化调控,为平原河网地区水环境长效管理与科学决策提供理论参考.  相似文献   

12.
Abstract

Abstract Current research suggests that strategies to control sediment and phosphorus loss from non-point sources should focus on different runoff components and their spatial and temporal variations within the river basin. This is a prerequisite for determining effective management measures for reducing diffuse source pollution. Therefore, non-point source models, especially in humid climatic regions, should consider variable hydrologically active source areas. These models should be able to consider runoff generation by saturated overland flow, as well as Hortonian overland flow. A combination of the hydrological model WaSiM-ETH and the erosion and P-transport model AGNPS was chosen for this study. The models were run in the WaSiM runoff generation mode (Green & Ampt/TOPMODEL or Richards equation approach) and the SCS curve number mode to assess the effect of these different runoff calculation procedures on the dissolved phosphorus yield. A small and a medium-sized river basin, of the area of 1.44 and 128.9 km2, respectively, in central Germany were selected for the investigation. The results show that the WaSiM–AGNPS coupling produces more accurate results than the SCS curve number method. For the spatial distribution, the more physically-based model approach computed a much more realistic distribution of water and phosphorus yield-producing areas.  相似文献   

13.
Attempts to reduce the number of parameters in distributed rainfall–runoff models have not yet resulted in a model that is accurate for both natural and anthropogenic hillslopes. We take on the challenge by proposing a distributed model for overland flow and channel flow based on a combination of a linear response time distribution and the hillslope geomorphologic instantaneous unit hydrograph (GIUH), which can be calculated with only a digital elevation model and a map with field boundaries and channel network as input. The spatial domain is subdivided into representative elementary hillslopes (REHs) for each of which we define geometric and flow velocity parameters and compute the GIUH. The catchment GIUH is given by the sum of all REH responses. While most distributed models only perform well on natural hillslopes, the advantage of our approach is that it can also be applied to modified hillslopes with for example a rectangular drainage network and terrace cultivation. Tests show that the REH‐GIUH approach performs better than classical routing functions (exponential and gamma). Simulations of four virtual hillslopes suggest that peak flow at the catchment outlet is directly related to drainage density. By combining the distributed flow routing model with a lumped‐parameter infiltration model, we were also able to demonstrate that terrace cultivation delays the response time and reduces peak flow in comparison to the same hillslope, but with a natural stream network. The REH‐GIUH approach is a first step in the process of coupling distributed hydrological models to erosion and water quality models at the REH (associated with agricultural management) and at the catchment scale (associated with the evaluation of the environmental impact of human activities). It furthermore provides a basis for the development of models for large catchments and urban or peri‐urban catchments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
By utilizing functional relationships based on observations at plot or field scales, water quality models first compute surface runoff and then use it as the primary governing variable to estimate sediment and nutrient transport. When these models are applied at watershed scales, this serial model structure, coupling a surface runoff sub-model with a water quality sub-model, may be inappropriate because dominant hydrological processes differ among scales. A parallel modeling approach is proposed to evaluate how best to combine dominant hydrological processes for predicting water quality at watershed scales. In the parallel scheme, dominant variables of water quality models are identified based entirely on their statistical significance using time series analysis. Four surface runoff models of different model complexity were assessed using both the serial and parallel approaches to quantify the uncertainty on forcing variables used to predict water quality. The eight alternative model structures were tested against a 25-year high-resolution data set of streamflow, suspended sediment discharge, and phosphorous discharge at weekly time steps. Models using the parallel approach consistently performed better than serial-based models, by having less error in predictions of watershed scale streamflow, sediment and phosphorus, which suggests model structures of water quantity and quality models at watershed scales should be reformulated by incorporating the dominant variables. The implication is that hydrological models should be constructed in a way that avoids stacking one sub-model with one set of scale assumptions onto the front end of another sub-model with a different set of scale assumptions.  相似文献   

15.
Models for predicting river water quality could assist protection and utilization of water resources under alternative management strategies. The model of the water quality characteristics of the Danube is based on an ecosystem approach. Considered are all waste water discharges and inflow of tributaries among the catchment area. The identification of model parameters is realized according to the method of integral transformation. For the performance of the model a computer program was elaborated. It is applied in predicting the water quality of the Danube considering almost 20 indicators for the abiotic and biotic parameters of river ecosystem.  相似文献   

16.
A stream-aquifer simulation model was developed to evaluate different conjunctive use management strategies in the South Platte River in Colorado. A component of this model simulates the allocation of surface and ground water for agricultural use. The water law based on the doctrine of prior appropriation provides the basic framework for water allocation in the study area. The physical sequence in which the river diversions are located along the river is different from the sequence in which the water has to be allocated according to the priority of rights. An algorithm is designed to allocate the river flows computed by the physical simulation component of the model to the appropriators according to the water rights and other imposed criteria as specified by the conjunctive management scheme under study. The algorithm is demonstrated on a management problem involving the evaluation of a streamflow augmentation scheme in the study reach.  相似文献   

17.
湖泊富营养化响应与流域优化调控决策的模型研究进展   总被引:2,自引:0,他引:2  
湖泊富营养化是全球水环境领域面临的长期挑战,富营养化响应与流域优化决策模型是制定经济和高效调控方案的关键.然而已有的模型研究综述主要集中于模型开发、案例应用、敏感性分析、不确定性分析等单一方面,而缺少针对非线性响应、生态系统长期演变等最新湖泊治理挑战的研究总结.本文对数据驱动的统计模型、因果驱动的机理模型和决策导向的优化模型进行了综述.其中,统计模型包含经典统计、贝叶斯统计和机器学习模型,常用于建立响应关系、时间序列特征分析以及预报预警;机理模型包含流域的水文与污染物输移模拟以及湖泊的水文、水动力、水质、水生态等过程的模拟,用于不同时空尺度的变化过程模拟,其中复杂机理模型的敏感性分析、参数校验、模型不确定性等需要较高的计算成本;优化模型结合机理模型形成“模拟优化”体系,在不确定性条件下衍生出随机、区间优化等多种方法,通过并行计算、简化与替代模型可一定程度上解决计算时间成本的瓶颈.本文识别了湖泊治理面临的挑战,包括:①如何定量表征外源输入的非线性叠加和湖泊氮、磷、藻变化的非均匀性?②如何提高优化调控决策和水质目标的关联与精准性?③如何揭示湖泊生态系统的长期变化轨迹与驱动因素?最后,本文针对这些挑战提出研究展望,主要包括:①基于多源数据融合与机器学习算法以提升湖泊的短期水质预测精度;②以生物量为基础的机理模型与行为驱动的个体模型的升尺度或降尺度耦合以表达多种尺度的物质交互过程;③机器学习算法与机理模型的直接耦合或数据同化以降低模拟误差;④时空尺度各异的多介质模拟模型融合以实现精准和动态的优化调控.  相似文献   

18.
Water quality management along rivers involves making water-allocation plans, establishing water quality goals, and controlling pollutant discharges, which is complicated itself but further challenged by existence of uncertainties. In this study, an inexact two-stage stochastic downside risk-aversion programming (ITSDP) model is developed for supporting regional water resources allocation and water quality management problems under uncertainties. The ITSDP method is a hybrid of interval-parameter programming, two-stage stochastic programming, and downside risk measure to tackle uncertainties described in terms of interval values and probability distributions. A water quality simulation model was provided for reflecting the relationship between the water resources allocation, wastewater discharge, and environmental responses. The proposed approach was applied to a hypothetical case for a shared stream water quality management with one municipal, three industrial and two agricultural sectors. A number of scenarios corresponding to different river inflows and risk levels were examined. The results demonstrated that the model could effectively communicate the interval-format and random uncertainties, and risk-aversion into optimization process, and generate a trade-off between the system economy and stability. They could be helpful for seeking cost-effective management strategies under uncertainties, and gaining an in-depth insight into the water quality management system characteristics, and make cost-effective decisions.  相似文献   

19.
River water temperature is a common target of water quality models at the watershed scale, owing to its principal role in shaping biogeochemical processes and in stream ecology. Usually, models include physically‐based, deterministic formulations to calculate water temperatures from detailed meteorological information, which usually comes from meteorological stations located far from the river reaches. However, alternative empirical approaches have been proposed, that usually depend on air temperature as master variable. This study explored the performance of a semidistributed water quality application modelling river water temperature in a Mediterranean watershed, using three different approaches. First, a deterministic approach was used accounting for the different heat exchange components usually considered in water temperature models. Second, an empirical approximation was applied using the equilibrium temperature concept, assuming a linear relationship with air temperature. And third, a hybrid approach was constructed, in which the temperature equilibrium concept and the deterministic approach were combined. Results showed that the hybrid approach gave the best results, followed by the empirical approximation. The deterministic formulation gave the worst results. The hybrid approach not only fitted daily river water temperatures, but also adequately modelled the daily temperature range (maximum–minimum daily temperature). Other river water features directly dependent on water temperature, such as river intrusion depth in lentic systems (i.e. the depth at which the river inflow plunges to equilibrate density differences with lake water), were also correctly modelled even at hourly time steps. However, results for the different heat fluxes between river and atmosphere were very unrealistic. Although direct evidence of discrepancies between meteorological drivers measured at the meteorological stations and the actual river microclimate was not found, the use of models including empirical or hybrid formulations depending mainly on air temperature is recommended if only meteorological data from locations far from the river reaches are available. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
针对现有的河道水流洪水演算模型只能模拟单一变量(流量或水位)的问题,以水流连续方程和河段蓄水量的两种不同表达形式(蓄水量等于平均过水断面面积与河段长乘积,蓄水量等于河段平均流量与传播时间的乘积)为基础,对马斯京根模型进行了通用性改进,提出了双变量耦合通用演算模型.选取了四大水系(包括内陆河流和入海河流)的16个河段汛期洪水资料进行模型检验,模型验证考虑了地理范围、不同的河段特征和水力特征、洪水量级等因素,全面地检验了模型结构的合理性和模拟实际洪水的有效性.将双变量耦合通用演算模型与传统的马斯京根法进行了效果比较,结果表明双变量耦合通用演算模型的模拟精度高于马斯京根法,模拟效果比马斯京根法稳定一些,而且具有较好的通用性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号