首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
A set of reinforced concrete structures with gravitational loads and mechanical properties (strength and stiffness) representative of systems designed for earthquake resistance in accordance with current criteria and methods is selected to study the influence of dynamic soil–structure interaction on seismic response, ductility demands and reliability levels. The buildings are considered located at soft soil sites in the Valley of Mexico and subjected to ground motion time histories simulated in accordance with characteristic parameters of the maximum probable earthquake likely to occur during the system's expected life. For the near‐resonance condition the effects of soil–structure interaction on the ductility demands depend mainly on radiation damping. According to the geometry of the structures studied this damping is strongly correlated with the aspect ratio, obtained by dividing the building height by its width. In this way, for structures with aspect ratio greater than 1.4 the storey and global ductility demands increase with respect to those obtained with the same structures but on rigid base, while for structures with aspect ratio less than 1.4 the ductility demands decrease with respect to those for the structures on rigid base. For the cases when the fundamental period of the structure has values very different from the dominant ground period, soil–structure interaction leads in all cases to a reduction of the ductility demands, independently of the aspect ratio. The reliability index β is obtained as a function of the base shear ratio and of the seismic intensity acting on the nonlinear systems subjected to the simulated motions. The resulting reliability functions are very similar for systems on rigid or on flexible foundation, provided that in the latter case the base rotation and the lateral displacement are removed from the total response of the system. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
It is demonstrated that the difference in phase content between orthogonal, horizontal, accelerograms can directly influence the effective (band‐limited) torque energy applied to a plan asymmetric structure. This is not the case where a plan asymmetric structure is excited solely by a unidirectional, horizontal, accelerogram ground motion. It is shown that this effective torque energy is well correlated with building torsional (response) acceleration energy and element ductility demands for a broad class of multistorey structures. Nonlinear time‐history analyses employing a database of accelerogram abstracted from USGS are used to quantify the influence of the phase difference content on these building responses. Bias in nonlinear time‐history analyses based on a small sample of accelerograms caused by phase difference content is discussed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
李福民 《地震学报》1982,4(3):301-307
本文用数值积分法,对RDZ1-12-66型自动触发电流计记录式强震仪的幅频响应失真进行校正。并采用高通数字滤波的方法,修正加速度图的零线.为此编制了计算机程序,绘制了修正后的加速度、速度和位移时程曲线.计算了修正前后加速度图的傅氏谱。同时,对这些结果加以讨论。 修正后的加速度图,精确地表示了仪器基本频带在0.09HZ和25HZ之间的绝对地面加速度。   相似文献   

4.
The inelastic (design) spectra characterizing a seismic hazard are generally obtained by the scaling‐down of the elastic (design) spectra via a set of response modification factors. The component of these factors, which accounts for the ductility demand ratio, is known as the strength reduction factor (SRF), and the variation of this factor with initial period of the oscillator is called an SRF spectrum. This study considers scaling of the SRF spectrum in the case of an elasto‐plastic oscillator with strength and stiffness degradation characteristics. Two models are considered: one depending directly on the characterization of source and site parameters and the other depending on the normalized design spectrum characterization of the seismic hazard. The first model is the same as that proposed earlier by the second author, and is given in terms of earthquake magnitude, strong‐motion duration, predominant period, geological site conditions, ductility demand ratio, and ductility supply‐related parameter. The second model is a new model proposed here in terms of the normalized pseudo‐spectral acceleration values (to unit peak ground acceleration), ductility demand ratio and ductility supply‐related parameter. For each of these models, least‐square estimates of the coefficients are obtained through regression analyses of the data for 956 recorded accelerograms in western U.S.A. Parametric studies carried out with the help of these models confirm the dependence of SRFs on strong‐motion duration and earthquake magnitude besides predominant period and site conditions. It is also seen that degradation characteristics make a slight difference for high ductility demands and may lead to lower values of SRFs, unless the oscillators are very flexible. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
In damage‐based seismic design it is desirable to account for the ability of aftershocks to cause further damage to an already damaged structure due to the main shock. Availability of recorded or simulated aftershock accelerograms is a critical component in the non‐linear time‐history analyses required for this purpose, and simulation of realistic accelerograms is therefore going to be the need of the profession for a long time to come. This paper attempts wavelet‐based simulation of aftershock accelerograms for two scenarios. In the first scenario, recorded main shock and aftershock accelerograms are available along with the pseudo‐spectral acceleration (PSA) spectrum of the anticipated main shock motion, and an accelerogram has been simulated for the anticipated aftershock motion such that it incorporates temporal features of the recorded aftershock accelerogram. In the second scenario, a recorded main shock accelerogram is available along with the PSA spectrum of the anticipated main shock motion and PSA spectrum and strong motion duration of the anticipated aftershock motion. Here, the accelerogram for the anticipated aftershock motion has been simulated assuming that temporal features of the main shock accelerogram are replicated in the aftershock accelerograms at the same site. The proposed algorithms have been illustrated with the help of the main shock and aftershock accelerograms recorded for the 1999 Chi–Chi earthquake. It has been shown that the proposed algorithm for the second scenario leads to useful results even when the main shock and aftershock accelerograms do not share the same temporal features, as long as strong motion duration of the anticipated aftershock motion is properly estimated. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
樊剑  曾志和 《地震学报》2010,32(6):733-743
利用谐小波变换对实际强震记录的时变谱进行估计,并统计分析了远场3类不同场地上地震波的时变谱特征,分析发现对于硬场地上的远场地震波在时域内平稳段较短,下降段衰减较快,而在频域内则具有较大的中心频率和较宽的频带.利用均匀调制非平稳模型和时变修正Kanai-Tajimi非平稳模型模拟地震波的时变谱,把非线性函数的参数识别问题转化成求解无约束优化问题,利用拟牛顿迭代法求得最优解,得到3类不同场地上这两种模型的参数具体取值以及参数函数集的具体表达式.为了定量地确定模拟模型的精度,定义了误差函数,验证了所提时变谱参数识别方法的精度,给出了与建筑抗震规范相对应的不同场地不同烈度下多遇和罕遇地震的谱强度因子的大小.最后提出了利用求解时变线性微分方程组来合成非平稳地震波的方法.  相似文献   

7.
A previously developed simplified model of ground motion amplification is applied to the simulation of acceleration time histories at several soft‐soil sites in the Valley of Mexico, on the basis of the corresponding records on firm ground. The main objective is to assess the ability of the model to reproduce characteristics such as effective duration, frequency content and instantaneous intensity. The model is based on the identification of a number of parameters that characterize the complex firm‐ground to soft‐soil transfer function, and on the adjustment of these parameters in order to account for non‐linear soil behavior. Once the adjusted model parameters are introduced, the statistical properties of the simulated and the recorded ground motions agree reasonably well. For the sites and for the seismic events considered in this study, it is concluded that non‐linear soil behavior may have a significant effect on the amplification of ground motion. The non‐linear soil behavior significantly affects the effective ground motion duration for the components with the higher intensities, but it does not have any noticeable influence on the lengthening of the dominant ground period. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
Earthquake simulation technologies are advancing to the stage of enabling realistic simulations of past earthquakes as well as characterizations of more extreme events, thus holding promise of yielding novel insights and data for earthquake engineering. With the goal of developing confidence in the engineering applications of simulated ground motions, this paper focuses on validation of simulations for response history analysis through comparative assessments of building performance obtained using sets of recorded and simulated motions. Simulated ground motions of past earthquakes, obtained through a larger validation study of the Southern California Earthquake Center Broadband Platform, are used for the case study. Two tall buildings, a 20‐story concrete frame and a 42‐story concrete core wall building, are analyzed under comparable sets of simulated and recorded motions at increasing levels of ground motion intensity, up to structural collapse, to check for statistically significant differences between the responses to simulated and recorded motions. Spectral shape and significant duration are explicitly considered when selecting ground motions. Considered demands include story drift ratios, floor accelerations, and collapse response. These comparisons not only yield similar results in most cases but also reveal instances where certain simulated ground motions can result in biased responses. The source of bias is traced to differences in correlations of spectral values in some of the stochastic ground motion simulations. When the differences in correlations are removed, simulated and recorded motions yield comparable results. This study highlights the utility of physics‐based simulations, and particularly the Southern California Earthquake Center Broadband Platform as a useful tool for engineering applications.  相似文献   

9.
10.
Power spectral density which describes frequency content is considered one of the most significant properties to be taken into account when generating ground motions through the use of stochastic processes. Using a smoothed and normalized Fourier amplitude spectrum, frequency content for components of motion along a set of principal axes is estimated. Fourier amplitude spectra obtained by this moving-window technique are presented which show the time dependency of frequency content for motions produced by the San Fernando earthquake of 9 February 1971. A mathematical model to simulate ground motion processes is proposed for which both the intensity and frequency content are non-stationary. Using this mathematical model with parameter characteristics along principal axes similar to those of the motions recorded during the San Fernando earthquake, three-dimensional ground motions are synthetically generated. The properties of the simulated motions show general characteristics similar to the characteristics observed in real accelerograms. The suggested model is considered adequate for engineering purposes.  相似文献   

11.
The modified stochastic finite fault modelling technique based on dynamic corner frequency has been used to simulate the strong ground motions of M w 4.8 earthquake in the Kachchh region of Gujarat, India. The accelerograms have been simulated for 14 strong motion accelerographs sites (11 sites in Kachchh and three sites in Saurashtra) where the earthquake has been recorded. The region-specific source, attenuation and generic site parameters, which are derived from recordings of small to moderate earthquakes, have been used for the simulations. The main characteristics of the simulated accelerograms, comprised of peak ground acceleration (pga), duration, Fourier and response spectra, predominant period, are in general in good agreement with those of observed ones at most of the sites. The rate of decay of simulated pga values with distance is found to be similar with that of observed values. The successful modelling of the empirical accelerograms indicates that the method can be used to prepare wide range of scenarios based on simulation which provide the information useful for evaluating and mitigating the seismic hazard in the region.  相似文献   

12.
An orthogonal set of principal axes is defined for earthquake ground motions. These principal axes are obtained such that the corresponding variances of motion have maximum, minimum and intermediate values and the covariances equal zero. This indicates that the corresponding components of motion along the principal axes are uncorrelated with respect to each other. Since real earthquake accelerograms are assumed to be reasonably well represented by Gaussian random processes, the three components of motion along the principal axes are statistically independent of each other. Using these principal axes and applying the moving-window technique to the ground accelerograms recorded during the San Fernando earthquake of 9 February 1971, time-dependent characteristics of three-dimensional ground motions along principal axes are determined. Results of the analysis indicate significant correlation between directions of principal axes and directions from the recording stations to the fault slip zone. It is concluded that three components of ground motion can be generated stochastically with statistical independence being maintained, provided they are assumed to be directed along principal axes.  相似文献   

13.
The calculated nonlinear structural responses of a building can vary greatly, even if recorded ground motions are scaled to the same spectral acceleration at a building's fundamental period. To reduce the variation in structural response at a particular ground‐motion intensity, this paper proposes an intensity measure (IMcomb) that accounts for the combined effects of spectral acceleration, ground‐motion duration, and response spectrum shape. The intensity measure includes a new measure of spectral shape that integrates the spectrum over a period range that depends on the structure's ductility. The new IM is efficient, sufficient, scalable, transparent, and versatile. These features make it suitable for evaluating the intensities of measured and simulated ground motions. The efficiency and sufficiency of the new IM is demonstrated for the following: (i) elastic‐perfectly plastic single‐degree‐of‐freedom (SDOF) oscillators with a variety of ductility demands and periods; (ii) ductile and brittle deteriorating SDOF systems with a variety of periods; and (iii) collapse analysis for 30 previously designed frames. The efficiency is attributable to the inclusion of duration and to the ductility dependence of the spectral shape measure. For each of these systems, the transparency of the intensity measure made it possible to identify the sensitivity of structural response to the various characteristics of the ground motion. Spectral shape affected all structures, but in particular, ductile structures. Duration only affected structures with cyclic deterioration. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The inelastic seismic response behaviour for a range of simplified single-degree-of-freedom models has been analysed using 180 random phase angle synthetic accelerograms with different frequency contents and different durations and 105 real accelerograms collected from different regions worldwide. Results from the analyses have identified that the frequency content of the excitation can greatly influence the ductility demand ratio due to inelastic amplification effects. Consequently, results derived from intraplate earthquake records (typically of higher frequency content) were generally different to those from interplate records. However, the commonly used El Centro accelerogram has significantly lower ductility demand in the low period range than the average of records with similar elastic response spectral shape. Apart from this, there was little evidence to suggest any inherent differences in the inelastic response behaviour of buildings from intraplate and interplate earthquakes which possessed similar frequency content. Thus, the average ductility demand ratios from future earthquakes in an area can be predicted by interpolation of the results presented in this paper assuming the elastic response spectrum has been defined. Ductility demand ratios derived from the synthetic accelerograms and the real accelerograms with similar frequency content have been shown to be consistent. However, results from synthetic records derived for the idealised code design spectra (such as the Uniform Building Code and the Australian Standard AS1170.4) indicate a significantly higher ductility demand in the long period range.  相似文献   

15.

Although intensive research of the influence of ground motion duration on structural cumulative damage has been carried out, the influence of dynamic responses in underground tunnels remains a heated debate. This study attempts to highlight the importance of the ground motion duration effect on hydraulic tunnels subjected to deep-focus earthquakes. In the study, a set of 18 recorded accelerograms with a wide-range of durations were employed. A spectrally equivalent method serves to distinguish the effect of duration from other ground motion features, and then the seismic input model was simulated using SV-wave excitation based on a viscous-spring boundary, which was verified by the time-domain waves analysis method. The nonlinear analysis results demonstrate that the risk of collapse of the hydraulic tunnel is higher under long-duration ground motion than that of short-duration ground motion of the same seismic intensity. In a low intensity earthquake, the ground motion duration has little effect on the damage energy consumption of a hydraulic tunnel lining, but in a high intensity earthquake, dissipation of the damage energy and damage index of concrete shows a nonlinear growth trend accompanied by the increase of ground motion duration, which has a great influence on the deformation and stress of hydraulic tunnels, and correlation analysis shows that the correlation coefficient is greater than 0.8. Therefore, the duration of ground motion should be taken into consideration except for its intensity and frequency content in the design of hydraulic tunnel, and evaluation of seismic risk.

  相似文献   

16.
The response of linear elastic and non-linear hysteretic systems having a single degree of freedom to recorded and simulated ground motions is studied. The objective is to evaluate whether the commonly used simulated motions are appropriate for predicting inelastic response of structures and elastic response of long period structures. Eight simulated motions were generated to model properties of horizontal ground motions recorded during four earthquakes. The simulated motions are sample functions of a stationary, Gaussian white noise process, multiplied by a temporal intensity function and passed through a linear single-degree-of-freedom filter. Two versions, corresponding to parabolic and ‘standard’ base line corrections (BLC), of each of the simulated and recorded accelerograms were considered. The following general conclusions are deduced. Simulated ground motions should be subjected to the standard BLC, because it results in more reliable ground velocities and displacements, which in turn would lead to more reliable predictions of response of long period structures. Furthermore, the spectral density of the underlying random process, from which the simulated motions are obtained, should be modified to be more representative of the frequency content of recorded motions, especially in the low frequency range. Such an improved model can be expected to lead to better agreement, over a broad range of periods, in the average response spectra of simulated and recorded motions, for elastic as well as inelastic systems.  相似文献   

17.
The effect of peak ground velocity (PGV) on single‐degree‐of‐freedom (SDOF) deformation demands and for certain ground‐motion features is described by using a total of 60 soil site records with source‐to‐site distances less than 23 km and moment magnitudes between 5.5 and 7.6. The observations based on these records indicate that PGV correlates well with the earthquake magnitude and provides useful information about the ground‐motion frequency content and strong‐motion duration that can play a role on the seismic demand of structures. The statistical results computed from non‐linear response history analyses of different hysteretic models highlight that PGV correlates better with the deformation demands with respect to other ground motion intensity measures. The choice of PGV as ground motion intensity decreases the dispersion due to record‐to‐record variability of SDOF deformation demands, particularly in the short period range. The central tendencies of deformation demands are sensitive to PGV and they may vary considerably as a function of the hysteretic model and structural period. The results provided in this study suggest a consideration of PGV as a stable candidate for ground motion intensity measure in simplified seismic assessment methods that are used to estimate structural performance for earthquake hazard analysis. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
A method for generating synthetic strong motion accelerograms for use in engineering design is presented. This method utilizes the model proposed by Trifunac in 197127 in conjunction with the recent empirical scaling functions for characterization of amplitudes and duration of strong shaking in terms of (i) earthquake magnitude, M, and epicentral distance, R, or (ii) Modified Mercalli Intensity (MMI) at the recording station. The method also enables one to consider the desired levels of confidence that the synthetic motion will not be exceeded, direction of ground motion (horizontal or vertical) and the dispersive properties of geologic environment beneath and surrounding the station. The principal features of this approach are that the resulting accelerograms have non-stationary frequency and amplitude characteristics which are in full agreement with known principles of wave propagation through a stratified medium, and that the Fourier amplitudes and the frequency-dependent duration are scaled in accordance with known trends as in recorded accelerograms.  相似文献   

19.
A numerical approach to the earthquake ground motion analysis is proposed for regions where no accelerograms are available. Using Haskell matrix techniques, the response spectra of a layered substratum for SV waves were calculated and then multiplied by the spectra corresponding to Brune's type pulses. The ground acceleration spectra were obtained for different angles of pulse incidence at the substratum base. The spectrum shape depends upon the substratum response and the pulse shape, while its level was related to the maximum ground acceleration corresponding to the expected maximum intensity. Transformation of the ground spectra into the time domain produced numerical accelerograms for horizontal and vertical components and for different angles of pulse incidence. Finally, a standard statistical procedure was applied to obtain the design response spectra used in engineering applications.  相似文献   

20.
Ground motion duration effects on nonlinear seismic response   总被引:1,自引:0,他引:1  
The study presented in this paper addresses the question of which nonlinear demand measures are sensitive to ground motion duration by statistical analyses of several case studies. A number of single degree of freedom (SDOF) structures were selected considering: (1) four oscillation periods; (2) three evolutionary and non‐evolutionary hysteretic behaviours; (3) two target ductility levels. Effects of duration are investigated, by nonlinear dynamic analysis, with respect to six different demand indices ranging from displacement ductility ratio to equivalent number of cycles. Input is made of six real accelerogram sets representing three specific duration scenarios (small, moderate and large duration). For all considered demand quantities time‐history results are formally compared by statistical hypothesis test to asses the difference, if any, in the demand concerning different scenarios. Incremental dynamic analysis curves are used to evaluate duration effect as function of ground motion intensity (e.g. spectral acceleration corresponding to the SDOF's oscillation period). Duration impact on structural failure probability is evaluated by fragility curves. The results lead to the conclusion that duration content of ground motion is statistically insignificant to displacement ductility and cyclic ductility demand. The conclusions hold regardless of SDOF's period and hysteretic relationship investigated. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号