首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Experiments were undertaken to determine the feasibility of tracing sediment movement in interrill overland flow. Crushed magnetite was introduced as a source-line 10 cm wide by 8 m long on a runoff plot 18 m wide by 29 m long located in southern Arizona. Initial magnetic susceptibilities along this source line, and along three transects located 0·25, 2·95 and 5 m downslope of the source-line, were measured. Movement of the magnetite in response to three rainfall simulation experiments was monitored. During the first two experiments, overland flow discharge was sampled at miniature flumes located along two cross sections on the plot downslope of the source-line, and at a supercritical flume at the plot outlet. Magnetic susceptibilities along the source-line and transects were measured after all three experiments. Results show that the magnetite moves very early in the experiments and that it reaches one of the flumes 2 m downslope of the source-line in 3 min. Most of the tracer moves a very short distance: 29·7 per cent is deposited within 25 cm of the source-line and only 2·2 per cent is deposited 2·95 m away. The deposition rate appears to decrease exponentially away from the source-line. Very little magnetite is recorded in the flow through the miniature flumes: in general it makes up less than 1 per cent of the total sediment load. No temporal pattern in these percentages is observed. Magnetite appears to be an effective tracer of sediment movement in interrill overland flow, though its higher density than natural soil may affect its detachment and transport.  相似文献   

2.
1 INTRODUCTIONThe prediction of future impacts on terrestrial ecosystems by atmospheric, climatic and land-usechanges is the aim of watershed management. Meeting these requirements scientists, managers and policymakers try to achieve the sustainable management of the vitally important resources of watersheds due toan integrated ecosystem approach at the catchment scale. As composite landscapes often have a highdegree of contingency between its elements, the transport over these landscape s…  相似文献   

3.
This paper presents a case study of runoff and sediment generation under Submediterranean rangeland conditions (Ardèche drainage basin, France). Measurements indicate that on a rough hillslope interrill runoff and sediment are not produced uniformly over the slope surface. It is observed that runoff concentrates immediately in non-permanent interrill flow paths, which under average storm conditions vary in length from 1.0 to 12.5 m. Long interrill flow paths may eventually become permanent. These permanent flow paths, called pre-rills, are introduced as a new source area, and are considered to be the initial stage in the development of rills. Along pre-rills considerable quantities of runoff and sediment are carried away. This study also shows that calculations based on interrill, pre-rill, and rill runoff will only have significance if storm and soil conditions are specified in detail. It is concluded from a correlation analysis between the runoff volume and the amount of soil loss on a storm-by-storm basis that the runoff volume alone cannot explain the amount of sediment that is generated in each source area; soil availability is an additional factor that must be taken into account.  相似文献   

4.
A Gumbel distribution for maxima is proposed as a model for the depths of interrill overland flow. The model is tested against three sets of field measurements of interrill overland flow depths obtained on shrubland and grassland hillslopes at Walnut Gulch Experimental Watershed, southern Arizona. The model is found to be a satisfactory fit to 81 of the 90 measured distributions. The shape δ and location λ parameters of all fitted distributions are strongly correlated with discharge. However, whereas a common relationship exists between discharge and δ for all depth distributions, the relationships with λ vary systematically downslope. Using the Gumbel distribution as a model for the distribution of overland flow depths, a probabilistic model for the initiation of rills is developed, drawing upon the previous work of Nearing. As an illustration of this approach, we apply this model to the shrubland and grassland hillslopes at Walnut Gulch. It is concluded that the presence of rills on the shrubland, but not on the grassland, is due to the greater runoff coefficient for the shrubland and/or the greater propensity of the shrubland for soil disturbance compared with the grassland. Finally, a generalized conceptual model for rill initiation is proposed. This model takes account of the depth distribution of overland flow, the probability of flow shear stress in excess of local soil shear strength, the spatial variability in soil shear strength and the diffusive effect of soil detachment by raindrops. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Physically based soil erosion simulation models require input parameters of soil detachment and sediment transport owing to the action and interactions of both raindrops and overland flow. A simple interrill soil water transport model is applied to a laboratory catchment to investigate the application of raindrop detachment and transport in interrill areas explicitly. A controlled laboratory rainfall simulation study with slope length simulation by flow addition was used to assess the raindrop detachment and transport of detached soil by overland flow in interrill areas. Artificial rainfall of moderate to high intensity was used to simulate intense rain storms. However, experiments were restricted to conditions where rilling and channelling did not occur and where overland flow covered most of the surface. A simple equation with a rainfall intensity term for raindrop detachment, and a simple sediment transport equation with unit discharge and a slope term were found to be applicable to the situation where clear water is added at the upper end of a small plot to simulate increased slope length. The proposed generic relationships can be used to predict raindrop detachment and the sediment transport capacity of interrill flow and can therefore contribute to the development of physically‐based erosion models. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
The aim of this study was to identify the mechanisms of runoff generation and routing and their controlling factors at the hillslope scale, on artificial slopes derived from surface coal mining reclamation in a Mediterranean–continental area. Rainfall and runoff at interrill and microcatchment scales were recorded for a year on two slopes with different substrata: topsoil cover and overburden cover. Runoff coefficient and runoff routing from interrill areas to microcatchment outlets were higher in the overburden substratum than in topsoil, and greater in the most developed rill network. Rainfall volume is the major parameter responsible for runoff response on overburden, suggesting that this substratum is very impermeable—at least during the main rainfall periods of the year (late spring and autumn) when the soil surface is sealed. In such conditions, most rainfall input is converted into runoff, regardless of its intensity. Results from artificial rainfall experiments, conducted 3 and 7 years after seeding, confirm the low infiltration capacity of overburden when sealed. The hydrological response shows great seasonal variability on the overburden slope in accordance with soil surface changes over the year. Rainfall volume and intensities (I30, I60) explain runoff at the interrill scale on the topsoil slope, where rainfall experiments demonstrated a typical Hortonian infiltration curve. However, no correlation was found at the microcatchment level, probably because of the loss of functionality of the only rill as ecological succession proceeded. The runoff generation mechanism on the topsoil slope is more homogeneous throughout the year. Runoff connectivity, defined as the ratio between runoff rates recorded at the rill network scale and those recorded at the interrill area scale in every rainfall event, was also greater on the rilled overburden slope, and in the most developed rill network. The dense rill networks of the overburden slope guarantee very effective runoff drainage, regardless of rainfall magnitude. Rills drain overland flow from interrill‐sealed areas, reducing the opportunity of reinfiltration in areas not affected by siltation. Runoff generation and routing on topsoil slopes are controlled by grass cover and soil moisture content, whereas on overburden slopes rill network density and soil moisture content are the main controlling factors. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
The connectivity and upscaling of overland runoff and sediment transport are important issues in hillslope hydrology to identify water flux and sediment transport within landscape. These processes are highly variable in time and space with regard to their interactions with vegetation and soil surface conditions. The generation of overland runoff and its spatial connectivity were examined along a slope to determine the variations in the transport mechanism of runoff and soil particles by rain splash and overland runoff. Field experiments were conducted by erosion plots on a steep hillslope at lengths of 5, 10, and 15 m. The overland runoff connectivity and flow transport distance decreased with the slope length, while spatial variability of infiltration increased significantly with the slope length. Observation of subsurface flow revealed that surface soil and litter layer could have important role in water transport. However, the surface soil water content and water flux transport along the slope was highly variable for different storm events; the variability was related to the complexity of the system, mainly by way of the initial wetness conditions and infiltration characteristics. Only net rain‐splashed soil was measurable, but examination of the water flux, overland runoff and sediment transport connectivity, characteristics of sheetwash, and the variability in spatial infiltration indicated an increase in the contribution of the rain splash transport mechanism along the slope. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Quantifying the relative proportions of soil losses due to interrill and rill erosion processes during erosion events is an important factor in predicting total soil losses and sediment transport and deposition. Beryllium‐7 (7Be) can provide a convenient way to trace sediment movement over short timescales providing information that can potentially be applied to longer‐term, larger‐scale erosion processes. We used simulated rainstorms to generate soil erosion from two experimental plots (5 m × 4 m; 25° slope) containing a bare, hand‐cultivated loessal soil, and measured 7Be activities to identify the erosion processes contributing to eroded material movement and/or deposition in a flat area at the foot of the slope. Based on the mass balance of 7Be detected in the eroded soil source and in the sediments, the proportions of material from interrill and rill erosion processes were estimated in the total soil losses, the deposited sediments in the flat area, and in the suspended sediments discharged from the plots. The proportion of interrill eroded material in the discharged sediment decreased over time as that of rill eroded material increased. The amount of deposited material was greatly affected by overland flow rates. The estimated amounts of rill eroded material calculated using 7Be activities were in good agreement with those based on physical measurements of total plot rill volumes. Although time lags of 45 and 11 minutes existed between detection of sediment being removed by rill erosion, based on 7Be activities, and observed rill initiation times, our results suggest that the use of 7Be tracer has the potential to accurately quantify the processes of erosion from bare, loessal cultivated slopes and of deposition in flatter, downslope areas that occur in single rainfall events. Such measurements could be applied to estimate longer‐term erosion occurring over larger areas possessing similar landforms. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Post‐fire runoff and erosion from wildlands has been well researched, but few studies have researched the degree of control exerted by fire on rangeland hydrology and erosion processes. Furthermore, the spatial continuity and temporal persistence of wildfire impacts on rangeland hydrology and erosion are not well understood. Small‐plot rainfall and concentrated flow simulations were applied to unburned and severely burned hillslopes to determine the spatial continuity and persistence of fire‐induced impacts on runoff and erosion by interrill and rill processes on steep sagebrush‐dominated sites. Runoff and erosion were measured immediately following and each of 3 years post‐wildfire. Spatial and temporal variability in post‐fire hydrologic and erosional responses were compared with runoff and erosion measured under unburned conditions. Results from interrill simulations indicate fire‐induced impacts were predominantly on coppice microsites and that fire influenced interrill sediment yield more than runoff. Interrill runoff was nearly unchanged by burning, but 3‐year cumulative interrill sediment yield on burned hillslopes (50 g m?2) was twice that of unburned hillslopes (25 g m?2). The greatest impact of fire was on the dynamics of runoff once overland flow began. Reduced ground cover on burned hillslopes allowed overland flow to concentrate into rills. The 3‐year cumulative runoff from concentrated flow simulations on burned hillslopes (298 l) was nearly 20 times that measured on unburned hillslopes (16 l). The 3‐year cumulative sediment yield from concentrated flow on burned and unburned hillslopes was 20 400 g m?2 and 6 g m?2 respectively. Fire effects on runoff generation and sediment were greatly reduced, but remained, 3 years post‐fire. The results indicate that the impacts of fire on runoff and erosion from severely burned steep sagebrush landscapes vary significantly by microsite and process, exhibiting seasonal fluctuation in degree, and that fire‐induced increases in runoff and erosion may require more than 3 years to return to background levels. Published in 2008 by John Wiley & Sons, Ltd.  相似文献   

10.
Although numerous studies have acknowledged that vegetation can reduce erosion, few process-based studies have examined how vegetation cover affect runoff hydraulics and erosion processes. We present field observations of overland flow hydraulics using rainfall simulations in a typical semiarid area in China. Field plots (5 × 2 m2) were constructed on a loess hillslope (25°), including bare soil plot as control and three plots with planted forage species as treatments—Astragalus adsurgens, Medicago sativa and Cosmos bipinnatus. Both simulated rainfall and simulated rainfall + inflow were applied. Forages reduced soil loss by 55–85% and decreased overland flow rate by 12–37%. Forages significantly increased flow hydraulic resistance expressed by Darcy–Weisbach friction factor by 188–202% and expressed by Manning's friction factor by 66–75%; and decreased overland flow velocity by 28–30%. The upslope inflow significantly increased overland flow velocity by 67% and stream power by 449%, resulting in increased sediment yield rate by 108%. Erosion rate exhibited a significant linear relationship with stream power. M. sativa exhibited the best in reducing soil loss which probably resulted from its role in reducing stream power. Forages on the downslope performed better at reducing sediment yield than upslope due to decreased rill formation and stream power. The findings contribute to an improved understanding of using vegetation to control water and soil loss and land degradation in semiarid environments.  相似文献   

11.
There is a growing opinion that poorly managed plantation forests in Japan are contributing to increased storm runoff and erosion. Here we present evidence to the contrary from runoff plots at two scales (hillslope and 0·5 × 2 m plots) for several forest conditions in the Mie and Nariki catchments. Runoff coefficients from small plots in untended hinoki forests were variable but typically higher than from better managed or deciduous forests during small storms at Nariki; at Mie, runoff during small events was highly variable from all small plots but runoff coefficients were similar for hinoki plots with and without understory vegetation, while the deciduous plot had lower runoff coefficients. Storm runoff was less at the hillslope scale than the plot scale in Mie; these results were more evident at sites with better ground cover. During the largest storms at both sites, differences in runoff due to forest condition were not evident regardless of scale. Dynamic soil moisture tension measurements at Nariki indicated that during a large storm, flow in the upper organic‐rich and root‐permeated soil horizons was 3·2 times higher than measured overland runoff from a small hinoki plot with poor ground cover and 8·3 times higher than runoff from a deciduous forest plot. On the basis of field observations during storms, at least a portion of the monitored ‘Hortonian overland flow’ was actually occurring in this near‐surface ‘biomat’. Therefore our field measurements in both small and large plots potentially included biomat flow in addition to short‐lived Hortonian runoff. Because overland flow decreased with increasing scale, rill erosion did not occur on hillslopes. Additionally, runoff coefficients were not significantly different among cover conditions during large storms; thus, the ‘degraded’ forest conditions appear not to greatly enhance peak flows or erosion potential at larger scales, especially when biomat flow is significant. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Changing fire regimes and prescribed‐fire use in invasive species management on rangelands require improved understanding of fire effects on runoff and erosion from steeply sloping sagebrush‐steppe. Small (0·5 m2) and large (32·5 m2) plot rainfall simulations (85 mm h–1, 1 h) and concentrated flow methodologies were employed immediately following burning and 1 and 2 years post‐fire to investigate infiltration, runoff and erosion from interrill (rainsplash, sheetwash) and rill (concentrated flow) processes on unburned and burned areas of a steeply sloped sagebrush site on coarse‐textured soils. Soil water repellency and vegetation were assessed to infer relationships in soil and vegetation factors that influence runoff and erosion. Runoff and erosion from rainfall simulations and concentrated flow experiments increased immediately following burning. Runoff returned to near pre‐burn levels and sediment yield was greatly reduced with ground cover recovery to 40 per cent 1 year post‐fire. Erosion remained above pre‐burn levels on large rainfall simulation and concentrated flow plots until ground cover reached 60 per cent two growing seasons post‐fire. The greatest impact of the fire was the threefold reduction of ground cover. Removal of vegetation and ground cover and the influence of pre‐existing strong soil‐water repellency increased the spatial continuity of overland flow, reduced runoff and sediment filtering effects of vegetation and ground cover, and facilitated increased velocity and transport capacity of overland flow. Small plot rainfall simulations suggest ground cover recovery to 40 per cent probably protected the site from low‐return‐interval storms, large plot rainfall and concentrated flow experiments indicate the site remained susceptible to elevated erosion rates during high‐intensity or long duration events until ground cover levels reached 60 per cent. The data demonstrate that the persistence of fire effects on steeply‐sloped, sandy sagebrush sites depends on the time period required for ground cover to recover to near 60 per cent and on the strength and persistence of ‘background’ or fire‐induced soil water repellency. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

13.
IINTRODUCTIONTheinterrillerosiononafieldplotisaffectedbythekineticenergyoftherainfall,wind,topographyfactors,propertiesofsoilandthecanopy.Theinterrillerosionoccursasthefirstdropimpactsthehillslopes.Theinterrillerosionoccursinallkindsofrainfallandtheamountofthesplasherosion,whichisthemainpartofinterrillerosion,canaccountforagreatpanofthetotalerosionamountinaheavystorm(Baner1990,Glymph1957,QianandWan1986,Zhou1981).Therefore,itisveryimportanttorevealthemechanismtoestimatetheamountofinterri…  相似文献   

14.
Sediment delivery on rill and interrill areas   总被引:4,自引:0,他引:4  
Equations which relate sediment delivery to a power function of flow rate and slope gradient were evaluated in this study. The data used to parameterize the equations were obtained from sites where crop residues had been removed, and moldboard plowing and disking had occurred. Measurements of sediment delivery resulting from simulated rainfall were obtained from preformed rills and interrill areas. The equations provided reliable sediment delivery estimates for selected soils located throughout the United States. To use the sediment delivery equations, soil-related parameter values must be identified. Multiple regression analyses were performed to relate parameter values used in the equations to selected soil properties. Equations were also developed for estimating rill sediment delivery under rainfall conditions from rill soil loss and discharge data collected without the addition of rainfall. The equations identified in this study, and appropriate soils information, can be used to predict sediment delivery on both rill and interrill areas.  相似文献   

15.
On the basis of detailed rill surveys carried out on bare plots of different lengths at slopes of 12 per cent, basic rill parameters were derived. Rill width and maximum depth increased with plot length, whereas rill amount and cross‐sectional area, expressed per unit length, remained similar. On smaller plots, all rills were connected in a continuous transport system reaching the plot outlet, whilst on larger plots (10 and 20 m long) part of the rills ended with a deposition areas inside the plots. Amounts of erosion, calculated from rill volume and soil bulk density, were compared with soil loss measured at the plot outlets. On plots 10 and 20 m long, erosion estimated from volume of all rills was larger than measured soil loss. The latter was larger than erosion estimated from volume of contributing rills. To identify contributing soil loss area on these plots, two methods were applied: (i) ratio of total soil loss to maximum soil loss per unit area, and (ii) partition of plot area according to the ratio of contributing to total rill volume. Both methods resulted in similar areas of 21·8–23·5 m2 for the plot 10 m long and 31·2 m2 for the plot 20 m long. Identification of contributing areas enabled rill (5·9 kg m?2) and interrill (2·6 kg m?2) erosion rate to be calculated, the latter being very close to the value predicted from the Universal Soil Loss Equation. Although rill and interrill rates seemed to be similar on all plots, their ratio increased slightly with plot length. Application of this ratio to compute slope length factor of the Revised Universal Soil Loss Equation resulted in similar values to those predicted with the model. The achieved balance of soil loss suggested that all the sediment measured at the plot outlet originated from contributing rills and associated contributing rill areas. The results confirmed the utility of different plot lengths as a research tool for analysing the dynamic response of soil to rainfall–runoff. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
Sediment transport in rill flows exhibits the characteristics of non‐equilibrium transport, and the sediment transport rate of rill flow gradually recovers along the flow direction by erosion. By employing the concept of partial equilibrium sediment transport from open channel hydraulics, a dynamic model of rill erosion on hillslopes was developed. In the model, a parameter, called the restoration coefficient of sediment transport capacity, was used to express the recovery process of sediment transport rate, which was analysed by dimensional analysis and determined from laboratory experimental data. The values of soil loss simulated by the model were in agreement with observed values. The model results showed that the length and gradient of the hillslope and rainfall intensity had different influences on rill erosion. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Soil moisture dynamics have a significant effect on overland flow generation. Catchment aspect is one of the major controlling factors of overland flow and soil moisture behaviour. A few experimental studies have been carried out in the uneven topography of the Himalayas. This study presents plot‐scale experiments using portable rainfall simulator at an altitude of 1,230 m above mean sea level and modelling of overland flow using observed datasets. Two plots were selected in 2 different aspects of Aglar watershed of Lesser Himalaya; the agro‐forested (AF) plot was positioned at the north aspect whereas the degraded (DE) plot was located at the south aspect of the hillslope. HS flumes and rain gauges were installed to measure the runoff at the outlet of the plot and the rainfall depth during rainfall simulation experiments. Moreover, 10 soil moisture sensors were installed at upslope and downslope locations of both the plots at 5, 15, 25, 35, and 45 cm depth from ground level to capture the soil moisture dynamics. The tests were conducted at intensities of 79.8 and 75 mm/hr in AF plot and 82.2 and 72 mm/hr in the DE plot during Test 1 and Test 2, respectively. The observed data indicate the presence of reinfiltration process only in the AF plot. The high water holding capacity and the presence of reinfiltration process results in less runoff volume in the AF plot compared with the DE plot. The Hortonian overland flow mechanism was found to be the dominant overland flow mechanism as only a few layers of top soil get saturated during all of the rainfall–runoff experiments. The runoff, rainfall, and soil moisture data were subsequently used to calibrate the parameters of HYDRUS‐2D overland flow module to simulate the runoff hydrograph and soil moisture. The components of hydrograph were evaluated in terms of peak discharge, runoff volume and time of concentration, the results were found to be within the satisfactory range. The goodness of fit of simulated hydrographs were more than 0.85 and 0.95 for AF and DE plot, respectively. The model produced satisfactory simulation results of soil moisture for all of the rainfall–runoff experiments. The HYDRUS‐2D overland flow module was found promising to simulate the runoff hydrograph and soil moisture in plot‐scale research.  相似文献   

18.
A series of large rainfall simulator experiments was conducted in 2002 and 2003 on a small plot located in an experimental catchment in the North Island of New Zealand. These experiments measured both runoff and sediment transport under carefully controlled conditions. A physically based hydrological modelling system (SHETRAN) was then applied to reproduce the observed hydrographs and sedigraphs. SHETRAN uses physically based equations to represent flow and sediment transport, and two erodibility coefficients to model detachment of soil particles by raindrop erosion and overland flow erosion. The rate of raindrop erosion also depended on the amount of bare ground under the simulator; this was estimated before each experiment. These erodibility coefficients were calibrated systematically for summer and winter experiments separately, and lower values were obtained for the summer experiments. Earlier studies using small rainfall simulators in the vicinity of the plot also found the soil to be less erodible in summer and autumn. Limited validation of model parameters was carried out using results from a series of autumn experiments. The modelled suspended sediment load was also sensitive to parameters controlling the generation of runoff from the rainfall simulator plot; therefore, we found that accurate runoff predictions were important for the sediment predictions, especially from the experiments where the pasture cover was good and overland flow erosion was the dominant mechanism. The rainfall simulator experiments showed that the mass of suspended sediment increased post‐grazing, and according to the model this was due to raindrop detachment. The results indicated that grazing cattle or sheep on steeply sloping hill‐country paddocks should be carefully managed, especially in winter, to limit the transport of suspended sediment into watercourses. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
A replicated field study using rainfall simulation and overland flow application was conducted in central Oahu, Hawaii, on a clay‐dominated Oxisol with a 9% slope. Three main treatment groups were examined: a bare treatment, a group of four rolled erosion control systems (RECSs) with open weave designs, and a group of five randomly oriented fibre RECSs. A total of 1122 measurements of runoff and erosion were made to examine treatment differences and to explore temporal patterns in runoff and sediment flux. All erosion control systems significantly delayed the time required to generate plot runoff under both simulated rainfall (35 mm h?1) and the more intense trickle flow application (114 mm h?1). Once runoff was generated during the rainfall application phase, the bare treatment runoff coefficients were significantly lower than those from the two groups of RECSs, as surface seal disruption by rilling is inferred to have enhanced infiltration in the bare treatments. During the more intense phase of overland flow application, the reverse pattern was observed. Interrill contributing‐area roughness was reduced on the bare treatment, facilitating increased runoff to well‐developed rill networks. Meanwhile, the form roughness associated with the RECSs delayed interrill flow to the poorly organized rills that formed under some of the RECSs. Regardless of runoff variations between treatments, sediment output was significantly lower from all surfaces covered by RECSs. The median cumulative sediment output from the bare surfaces was 6·9 kg, compared with 1·2 kg from the open‐weave RECSs and 0·2 kg from the random‐fibre RECSs. The random‐fibre systems were particularly effective under the more stressful overland flow application phase, with 63 times less sediment eroded than the bare treatments and 12 times less than that from the open‐weave systems. Architectural design differences between the two groups of RECSs are discussed in light of their relation to erosion process dynamics and shear stress partitioning. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Although unpaved roads are well‐recognized as important sources of Hortonian overland flow and sediment in forested areas, their role in agriculturally‐active rural settings still lacks adequate documentation. In this study, we assessed the effect of micro‐catchment size, slope, and ground cover on runoff and sediment generation from graveled roadbeds servicing a rural area in southern Brazil. Fifteen replications based on 30‐min‐long simulated rainfall experiments were performed at constant rainfall intensities of 22–58 mm h?1 on roadbeds with varying characteristics including ~3–7 m2 micro‐catchment areas, 2–11° slopes, 2–9.7‐m‐long shallow rill features, and 30–100% gravel cover. The contributions of micro‐catchment size and rill length were the most important physical characteristics affecting runoff response and sediment production; both the size of the micro‐catchment and the length of the rills were inversely related to sediment loss and this contradicts most of the rill erosion literature. The effect of micro‐catchment size on runoff and sediment response suggests a potentially problematic spatial‐scale subjectivity of experimental plot results. The inverse relationship between rill length and sediment generation is interpreted here as related to the predominance of coarse fragments within rills, the inability of the shallow flows generated during the simulations to erode this sediment, and their role as zones of net sediment storage. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号