首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Precipitation of salts in confined spaces is the key mechanism for rock weathering and damage to building materials. To date there is no comprehensive study of the parameters influencing the reduction of pore space by salt crystals and the consequences for transport and damage by crystallization pressure. A novel method is presented to quantify pore clogging (i.e., the degree to which crystallization of salts interferes with transport of solution in porous materials). After drying capillary-saturated stone specimens containing salt solutions, the rate of capillary uptake of decane into the salt-contaminated specimens is measured. By treating the salt-contaminated material as a bilayer, the width of the crystallization front and the degree of pore filling can be determined. Two model materials with different pore size distributions (Indiana and Highmoor limestone) and three salts (sodium chloride, sodium sulfate and magnesium sulfate) are selected for this study. It is shown that pore clogging results from the interplay between pore size distribution and salt properties. Different scenarios are discussed to link pore clogging with salt damage.  相似文献   

2.
地热流体是沉积岩孔隙空间中的流体,这里提出的地热流体这一术语,是用来描述通过地球中孔隙空间的流体。本文讨论了地面和大气水流、压实流、对流和孔隙流体。  相似文献   

3.
此文为研究特提斯北缘前黑海地区盆地地质发展史的成果。结论是:携带有北方大陆碎屑物质的河流是其沉积作用中的主要因素。油气远景与古河流扇影响的地带有关,在那些地带出现碎屑储层的斜坡沉积。这已为古顿河—库班河和古多脑河—第聂伯尔河先三角洲的大量野外发现所证实。  相似文献   

4.
“水—岩”反应作为储层成岩作用研究的重要组成部分,其研究结果对解释储层非均质性成因机制、综合评价储层品质等方面都具有重要意义。近年来随着基础理论、分析测试手段、物理实验方法和模拟技术的进步,该领域研究取得了诸多进展。成岩物理模拟实验的进步实现了对流体—围岩/矿物体系“水—岩”作用过程的宏观尺度观测和研究,也明确了各物理化学参数对体系内矿物溶解—结晶过程的影响,但分辨率限制了其在微观(纳米)尺度解释许多现象成因机制和约束条件方面的应用。晶体生长理论的建立和发展为解释储层孔隙系统中“水—岩”作用过程的结晶动力学原理奠定了基础,特别是近年来伴随纳米科技而发展起来的各种在线和非在线测量技术大大提高了储层孔隙系统结构和内部晶体生长情况的观测精度,将“水—岩”作用研究分辨率提升至纳米级,这为从微观尺度了解孔隙系统中流体—矿物体系的溶解—结晶(沉淀)相平衡过程及其控制因素提供了方案。储层孔隙系统中流体的结晶动力学行为与孔隙介质和流体性质密切相关,是成核自由能、矿物表面电化学特征、传质速率等多因素综合作用的结果。对不同成岩环境和孔隙系统中孔隙流体结晶动力学行为的系统研究,有助于了解孔隙系统空间结构、底衬表面化学特性、表面能效应等对矿物晶体成核生长与溶解过程的影响,为进一步深入解释储层非均质性的结晶动力学原理奠定了理论基础。  相似文献   

5.
Salt weathering in dual-porosity building dolostones   总被引:2,自引:0,他引:2  
The influence of rock fabric on physical weathering due to the salt crystallization of selected brecciated dolostones is discussed. These dual-porosity dolostones are representative of heterogeneous and anisotropic building rocks, and present highly complex and heterogeneous rock fabric features. The pore structure of the matrix and clasts is described in terms of porosity and pore size distribution, whereas the relative strength for each textural component is assessed using the Knoop hardness test. The whole characterisation process was carried out using the same samples as those used in the standard salt durability test (EN-12370), including connected porosity, the water saturation coefficient, fissure density, compressional wave velocity and waveform energy.

Results show the most important rock fabric elements to be considered are the matrix and clast properties and the nature of fissures. Firstly, a relatively weak matrix was the focus of major granular disintegration as it presents high porosity, low pore radius and reduced strength. Secondly, narrow micro-fissures appear to be important in the decay process due to the effectiveness of crystallization pressure generated by salt growth. On the contrary, macro-fissures do not contribute greatly to rock decay since they act as sinks to consume the high supersaturations caused by growth of large crystals. Additionally, an analysis of stress generated by crystallization was carried out based on the general situation of a lenticular crystal geometry. Finally, the relationships between whole petrophysical properties and durability were established using a principal component analysis. This analysis has clearly established that the durability of rocks affected by salt crystallization mechanisms diminishes in weaker and anisotropic rocks with high porosity and fissure density.  相似文献   


6.
流体是地球的重要物质组成,其构造作用与动力学是地质力学与构造学重要的研究方向。流体构造动力学是介于流体地质学、地质力学和构造地质学之间的一个交叉学科。文章介绍了流体构造动力学的概念、主要研究内容、流体的构造作用方式及构造类型与特征,总结了近年来在流体构造动力学与成矿研究过程中取得的一系列重要进展。主要有提出液压致裂的新动力学机制、发现斑晶堆积构造并指出斑岩是岩浆房中部分结晶残余岩浆再侵位的产物及发现并厘定构造混积岩等多个方面,总结了存在的问题并指出了进一步研究的方向;指出流体作为构造作用的主要参与者和重要组织者,不仅对成矿流体的运移通道及其沉淀与就位的空间进行开拓,更重要的是作为载体运移、富集成矿元素并为最终成矿奠定基础。   相似文献   

7.
针对致密砂岩气储层复杂的微观孔隙结构进行岩石物理建模,在模型中比较了单一孔隙纵横比、双孔隙模型两种表征孔隙结构的表征方式。岩石物理正演分析表明,两种孔隙结构模型均可解释致密砂岩复杂的速度-孔隙度关系。岩石物理反演结果表明,双孔隙模型对测井横波速度的预测精度更高,说明该模型更适用于表征研究区致密砂岩的孔隙结构,反演的软孔比例参数能够反映地层中孔隙结构的非均匀分布。应用双孔隙模型计算致密砂岩地层岩石骨架的弹性模量,与Krief及Pride等传统经验公式相比,该方法考虑了岩石骨架模量与矿物基质、孔隙度和孔隙结构等微观物性因素的关系,理论上更具有严谨性。对致密砂岩骨架模量计算结果的分析表明,少量微裂隙的存在即能够显著影响致密砂岩骨架的弹性性质,同时孔隙空间中的球形孔隙是致密气的主要赋存空间。并且,通过致密砂岩骨架弹性模量,进一步计算了可用于地层评价的Biot系数等岩石物理参数。致密砂岩骨架模量的预测结果可为Gassmann流体替换理论、BISQ孔隙弹性介质理论等岩石物理方法提供关键参数。  相似文献   

8.
The accurate estimation of hydraulic conductivity is important for many geotechnical engineering applications, as the presence of fluids affects all aspects of soil behaviour, including its strength. Darcy’s law is the key experimental (or phenomenological) equation employed to model ground water flow. Yet, this phenomenological equation can be linked to a more fundamental microscale model of flow through the pore spaces of the porous material. This paper provides an experimental verification of the relationships between Darcy’s law (macroscale) and the Navier–Stokes equations (microscale) for actual complex pore geometries of a granular material. The pore geometries are experimentally obtained through state-of-the-art X-ray computer assisted micro-tomography. From the numerical modelling of the microscale flow based on actual pore geometries, it is possible to quantify and visualize the development of pore-scale fluid preferential flow-paths through the porous material, and to assess the importance of pore connectivity in soil transport properties.  相似文献   

9.
The local pore spaces in granular materials tend to be aligned parallel to the major principal stress direction upon particle mobilization. Manifestation of this response has been numerically validated in our previous studies with the aid of discrete element method modeling and image processing techniques during creep and shearing. We now extend the modeling of pore geometry, constructed with spherical particles, to assemblies of particle clumps. Two-dimensional simulations are performed for both loose and dense assemblies of spherical particles and particle clumps. Each particle packing is bound by rigid or flexible walls and subjected to biaxial compression and the particle mobilization effect on the evolution of pore orientation is explored. Randomly shaped pores surrounded by adjacent particles are geometrically quantified by Delaunay tessellation and fitted with ellipses. Results show that localization is apparent in dense assemblies, in particular for clumped particle packing, while loose assemblies exhibit diffusive failure. Small pores within well-defined shear bands tend to align either parallel to the direction of the shear band or perpendicular to the major principal stress. On the other hand, small pores within the blocks and large pores have a tendency to become elongate towards the major principal stress direction. This study reveals for the first time that pore orientation is dependent upon particle shape, pore size, and assembly conditions on the pore and global scales.  相似文献   

10.
Abstract: Pore spaces and microcracks in representative oil, gas and geothermal reservoir rocks from the Green Tuff region, Japan, were examined using a fluorescent technique. This technique was developed to visualize microscopically pore spaces and microcracks filled with synthetic resin mixed with fluorescent paint under ultraviolet light. Various morphology of pore spaces and microcracks was clearly identified. Spaces in studied reservoir rocks are classified into following three types: pore spaces in matrix, pore spaces in particles, and microcracks. It is observed that valuable oil and gas reservoir rocks relatively include many pore spaces, while microcracks are important for geothermal rocks. Correlation between textural characteristics and porosity or permeability was found in the oil reservoir rocks. Effective permeability depends upon pore spaces in matrix more than upon other components such as pore spaces in particles and microcracks. Looseness in matrix caused by larger grain size of particles is strongly correlated with permeability. Pore spaces play an important role as a reservoir in oil and gas fields, but are less important in geothermal field. Instead, microcracks are important for geothermal reservoir system.  相似文献   

11.
流体构造动力学及其研究现状与进展   总被引:14,自引:1,他引:14  
流体构造动力学是介于流体地质学和构造地质学之间的一个重要前沿领域 ,主要研究由流体的温度和压力等物理状态及其变化、流体的迁移与运动和流体与岩石矿物发生化学反应等物理与化学过程所引起的构造作用和动力学机制 ,研究内容涉及流体与构造的关系、流体的构造作用方式、流体构造类型与动力学成因机制。对流体构造动力学主要研究方向的研究成果进行了总结和回顾 ,介绍了流体构造动力学的一些研究进展 ,并指出流体是地壳运动、造山作用及岩石的褶皱和断裂等构造过程的重要参与者和组织者。  相似文献   

12.
多孔介质中天然气水合物稳定性的实验研究进展   总被引:8,自引:0,他引:8  
勘探表明天然气水合物多产出于细碎屑沉积物中,其分布和赋存形式受温度、压力、水化学条件等多种物理化学因素的影响。前人的实验研究表明不同孔径尺度中的甲烷水合物稳定性有别于块状、层状水合物,同时孔隙表面的润湿性也是影响因素之一。在综合分析前人研究成果的基础上,系统阐述了孔隙的孔径、孔隙内表面润湿性对所含天然气水合物稳定性的影响规律,总结了可能的内在机理;并指出了当前应当尽快建立包括空间效应、温度、压力和组分等因素的综合天然气水合物相图,查明含天然气水合物沉积物的孔隙结构和表界面特征,建立天然气水合物的稳定性模型,将有助于精确预测天然气水合物的分布和规模,对于水合物开发和甲烷存储技术的研发也有着重要的意义。  相似文献   

13.
非常规油气资源的孔隙结构及其连通性非常复杂,其孔隙尺度从毫米到纳米跨越多个量级.多孔介质中气体的输运过程不仅依赖于介质的多尺度微观结构特征,还依赖于气体的相关属性.气体在多尺度多孔介质中的输运过程包括无滑流、滑脱流和过渡流,涉及分子扩散和努森扩散等多种机制,因此很难用唯一的连续介质理论来描述气体的输运特征.大量的数据表明真实多孔介质中的内部孔隙具有分形标度特征,因此采用分形几何表征多尺度多孔介质的孔隙结构,引入孔隙分形维数和迂曲度分形维数定量表征多孔介质的微结构和弯曲流道,建立多尺度多孔介质气体输运过程的细观模型;推导了多尺度多孔介质中气体的有效渗透率和有效扩散系数,并讨论了多尺度多孔介质微结构参数和气体属性对于气体等效输运特性的定量影响.该研究不仅可以丰富渗流理论,且有利于深入理解非常规油气藏的产出机制.   相似文献   

14.
周云  梁新权  蔡永丰  付伟 《地球科学》2017,42(10):1647-1657
黑云母的化学组成特征对揭示花岗岩的源区特征、形成环境、后期热液作用以及成矿元素富集特征具有重要的指示意义.对与锡田钨锡多金属矿床成矿作用密切相关的锡田燕山早期花岗岩黑云母和长石成分进行了系统的电子探针分析.分析结果表明,黑云母具有富铁贫镁、高铝低钠的特征,其MgO和FeOT含量分别为0.12%~1.35%和15.47%~23.24%,类似于高铁黑云母;其含铁指数Fe/(Fe+Mg)较高,集中在0.87~0.99,属于铁叶云母;其长石主要以正长石和钠长石为主.这些特征暗示了寄主岩石源区以壳源为主.结合相关区域地质资料,表明锡田燕山早期花岗质岩浆具有较高的温度和较低的氧逸度.黑云母具有高的含铁指数、较高的结晶温度和低的氧逸度等特征均有利于锡成矿,可以作为勘探锡矿的标志之一.综合分析认为,在锡田花岗质岩浆演化过程中,岩浆结晶期后分异出的流体趋向于向富锡的方向演化,是锡田多金属矿床成矿流体的重要来源.   相似文献   

15.
Finite element simulations of two centrifuge tests on the same cantilever retaining wall model holding liquefiable backfill were conducted using the Biot formulation‐based program DIANA–SWANDYNE II. To demonstrate the effects due to different pore fluids in seismic centrifuge experiments, water was used as the pore fluid in one experiment whereas a substitute pore fluid was used in the second experiment. The cantilever wall model parameters were determined by comparing simulations with measurements from free‐vibration tests performed on the model wall without backfill. The initial stress conditions for dynamic analysis for the soil backfill were obtained by simulating static loads on the retaining wall from the soil backfill. Level‐ground centrifuge model results were used to select the parameters of the Pastor–Zienkiewicz mark III constitutive model used in the dynamic simulations of the soil. The effects due to different pore fluids were captured well by the simulations. The magnitudes of excess pore pressures in the soil, lateral thrust and its line of action on the wall, and wall bending strains, deflections, and accelerations were predicted well. Predictions of settlements and accelerations in the backfill were less satisfactory. Relatively high levels of Rayleigh damping were needed to be used in the retaining wall simulations in order to obtain numerically stable results, which is one of the shortcomings of the model. The procedure may be used for engineering purpose dealing with seismic analysis of flexible retaining walls where lateral pressures, bending strains and deflections in the wall are typically of importance. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
孔隙水在冻结过程中产生的冰结晶压力导致了多孔材料的冻胀及破坏。本文通过理论分析分别给出了不同形状晶体的结晶压力计算模型,并分析了经典结晶压力计算公式的使用条件。建立了降温过程中孔隙冰晶生长模型,实现冰晶生长过程中的孔隙变形计算,分析了晶核密度、孔径大小、荷载和冰晶体积对孔隙冻胀变形的影响机制。结果表明:起始孔隙直径和长宽比的增大对结晶变形抑制作用的机理在于减少了冰晶体积中膨胀结晶的比例。荷载对孔隙变形的抑制机制在于,荷载的增大迫使冰晶更多地横向生长(长宽比增大),导致膨胀结晶所占比例减小。孔隙中的晶体生长有完全填充模式和部分填充模式,在部分填充模式下,晶核密度、荷载和孔径的增大都会导致晶体在孔隙中的填充率增大,从而对孔隙结晶变形产生影响。本模型揭示了单个孔隙中冻胀变形机制,为解决多孔介质的冻胀变形与破坏问题提供了新的思路。  相似文献   

17.
The quantitative analysis of the pore characteristics of granular materials has been often challenging due to arbitrarily shaped geometry of pores despite its significant implications. In this study, we investigate the size distribution and orientation of pores in dilative and contractive assemblies in the direct shear test by performing 3D discrete element simulations in conjunction with image processing of pore geometry. We quantitatively define unit pores by the Delaunay Tessellation followed by pore mergence and fitting them with ellipsoids. It is observed that the evolution of pore size distribution depends on the dilatancy of assemblies. Results also show that the direction of principal stresses governs the orientations of pores during shearing, with respect to the size of pores. This study highlights that the dominant factors of the pore characteristics upon shearing are stress anisotropy and particle mobilization to make the internal structure stable.  相似文献   

18.
We explore the impact of fluids migrating through a fault network on the dynamics of lithosphere, both on slow movements and seismicity. For that purpose fluids in the fault zones are incorporated into modelling of blocks-and-faults systems, which takes into account driving forces and the system's geometry. Simulations have been performed for two-dimensional models: an idealised “brick wall” structure, and a coarse image of Sinai Subplate. Migrating fluids originating in different locations are considered, as well as fluids trapped in closed pockets. Basic features of the modelled and observed seismicity are in good accord, as shown by comparison with the earthquake catalog compiled by Geophysical Institute of Israel.  相似文献   

19.
Crystallization of sodium sulfate salts in limestone   总被引:1,自引:0,他引:1  
Crystallization pressure of salt crystals growing in confined pores is found to be the main cause for damage to stone and masonry. In this work, the crystallization of sodium sulfate salts in Cordova Cream and Indiana limestones is investigated using differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The DSC experiments indicate that sodium heptahydrate always precipitates prior to the decahydrate (mirabilite), at a temperature between 15 and 7°C in the selected stones. The threshold supersaturation for the nucleation of heptahydrate is less than 2. In constrast, mirabilite precipitates close to or below 0°C and its crystallization pattern is completely different: precipitation takes place abruptly when the threshold supersaturation is reached, which is greater than 7. Indeed, the DSC and the DMA experiments reveal the rare nature of the nucleation of mirabilite for the investigated stones. The crystallization pressure exerted by heptahydrate does not cause damage under the conditions of the cooling experiments. In contrast, mirabilite exerts a very high crystallization pressure on the pore wall causing damage of the stone; moreover, the transient stress can remain for a long period of time since the relaxation process is slow.  相似文献   

20.
火山岩储层已成为油气勘探的一个新领域。由于火山岩储层的复杂性和特殊性,对其的研究还比较薄弱。在总结国内外火山岩储层研究成果的基础上,通过对准噶尔盆地与松辽等盆地的火山岩储层的分析,本文认为火山岩储层的储集空间主要有孔洞和裂缝,而裂缝连通了孤立的孔洞。当孔、洞、缝相互交织在一起时,才可形成有效的火山岩储集空间。在火山岩储层储集空间的演化过程中,由于受自身因素和外部条件的影响,火山岩储层的内部结构比较复杂。岩性岩相、成岩作用、风化淋滤作用、构造作用等在对火山岩储集空间的改造中起着关键作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号