首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
有限长圆柱体磁异常场全空间正演方法   总被引:2,自引:0,他引:2       下载免费PDF全文
在经典位场理论中,许多简单形体位场异常难以通过积分得到全空间的解析式.圆柱体是一类很重要的理论模型体,常用于模拟圆柱状地质体或非地质体(如管线),但目前还不能用解析公式正演有限长圆柱体在三维空间里的磁异常,而多是采用近似简化为有限长磁偶极子或线模型代替.对于有限长圆柱体,特别是半径相对于上顶埋深较大时,这种近似的误差不可忽略.本文利用共轭复数变量替换法,推导出有限长圆柱体在全空间的引力位一阶、二阶导数,利用Poisson关系得到磁异常正演公式,进而利用有限长圆柱体磁异常正演公式求解管状体的磁异常,得到不同磁化方向、不同大小的管线产生的磁场的特征,并将其推广到截面为椭圆的情况.最后通过模拟计算定量给出了将圆柱体近似为线模型的条件.  相似文献   

2.
Induced polarization (IP) 3D tomography with the similar central gradient array combines IP sounding and IP profiling to retrieve 3D resistivity and polarization data rapidly. The method is characterized by high spatial resolution and large probing depth. We discuss data acquisition and 3D IP imaging procedures using the central gradient array with variable electrode distances. A 3D geoelectric model was constructed and then numerically modeled. The data modeling results suggest that this method can capture the features of real geoelectric models. The method was applied to a polymetallic mine in Gansu Province. The results suggest that IP 3D tomography captures the distribution of resistivity and polarization of subsurface media, delineating the extension of abrupt interfaces, and identifies mineralization.  相似文献   

3.
The integrated use of electrical resistivity tomography (ERT) and ground penetrating radar (GPR) measurements, and in particular the joint analysis of 2D and 3D data, can represent a valid solution for target identification at complex archaeological sites. A good example, in this respect, is given by the case study of a Phoenician–Punic necropolis in the archaeological site of Nora, in southern Sardinia (Italy), where GPR and ERT measurements were collected before site excavation. In this specific case, the mix of soil and air in the buried chambers, as well as the orientation and the complex spatial distribution of these structures into the sandstone bedrock, generated a number of anomalies difficult to interpret only using 2D results. Only the integration of all GPR and ERT data in a 3D view, and the comparison with archaeological evidence after the excavation, allowed a solid interpretation of geophysical anomalies visible in the 2D sections. Overall, this case study demonstrates the efficiency of the combined use of GPR and ERT acquisitions and shows how, in general, only the joint analysis of 2D data and in a 3D view can help the interpretation of the real distribution of the buried archaeological remains at similar archaeological complex sites.  相似文献   

4.
Forecasting of space–time groundwater level is important for sparsely monitored regions. Time series analysis using soft computing tools is powerful in temporal data analysis. Classical geostatistical methods provide the best estimates of spatial data. In the present work a hybrid framework for space–time groundwater level forecasting is proposed by combining a soft computing tool and a geostatistical model. Three time series forecasting models: artificial neural network, least square support vector machine and genetic programming (GP), are individually combined with the geostatistical ordinary kriging model. The experimental variogram thus obtained fits a linear combination of a nugget effect model and a power model. The efficacy of the space–time models was decided on both visual interpretation (spatial maps) and calculated error statistics. It was found that the GP–kriging space–time model gave the most satisfactory results in terms of average absolute relative error, root mean square error, normalized mean bias error and normalized root mean square error.  相似文献   

5.
Tumuli are artificially erected small hills that cover monumental tombs or graves. In this work, the surface three-dimensional (3D) Electrical Resistivity Tomography (ERT) method, composed of dense parallel two-dimensional (2D) tomographies, was used to investigate the properties of the tumuli filling material and to resolve buried archaeological structures inside the tumuli.The effectiveness of the method was investigated by numerical modeling and through 3D inversion of synthetic apparent resistivity data. A resistivity model that simulates the inhomogeneous tumulus material and the tombs that are buried inside the tumulus was assumed. The Dipole–Dipole (DD), Pole–Dipole (PD), Pole–Pole (PP), Gradient (GRAD), Midpoint-Potential-Referred (MPR) and Schlumberger Reciprocal (SCR) arrays, which are suitable for multichannel resistivity instruments, were tested. The tumulus topography (pyramid or capsized cup) was incorporated into the inversion procedure through a distorted finite element mesh. The inversion procedure was based on a smoothness constrained Gauss–Newton algorithm in which the Active Constraint Balancing (ACB) method was also applied in order to enhance the least-squares resolving power and stability.Synthetic modeling showed that the different tumulus layers and the horizontal contact of the artificial tumulus material with the natural background soil were reconstructed by all of the tested electrode arrays. Generally, PD and the GRAD arrays comprise the optimum choices to investigate the subsurface properties of a tumulus and locate buried tombs. The MPR model was inferior to the GRAD model, while the DD, PP and SCR models had the poorest resolution. It was also shown that the inversion models are practically independent from the survey direction and the topography shape of the tumulus.The real field data collected employing the PD array along a small tumulus from the archaeological site of Vergina in northern Greece enhanced the synthetic modeling results. The inversion model outlined a number of archaeological structures that exhibit a high possibility to correlate with graves. Overall, this work signifies that the surface 3D ERT method can provide a valuable tool in the non-destructive archaeological exploration of tumuli.  相似文献   

6.
Muro Leccese (Lecce) contains one the most important Messapian archaeological sites in southern Italy.The archaeological interest of the site arises from the discovery of the remains of Messapian walls, tombs, roads, etc. (4th–2nd centuries BC) in the neighbourhood. The archaeological remains were found at about 0.3 m depth.At present the site belongs to the municipality, which intends to build a new sewer network through it. The risk of destroying potentially interesting ancient archaeological structures during the works prompted an archaeological survey of the area. The relatively large dimensions of the area (almost 10,000 m2), together with time and cost constraints, made it necessary to use geophysical investigations as a faster means to ascertain the presence of archaeological items. Since the most important targets were expected to be located at a soil depth of about 0.3 m, a ground-penetrating radar (GPR) survey was carried out in an area located near the archaeological excavations. Unfortunately the geological complexity did not allow an easy interpretation of the GPR data.Therefore a 3D electrical resistivity tomography (ERT) scan was conducted in order to resolve these interpretation problems.A three-way comparison of the results of the dense ERT measurements parallel to the x axis, the results of the measurements parallel to the y axis and the combined results was performed.Subsequently the synthetic model approach was used to provide a better characterization of the resistivity anomalies visible on the ERT field data.The 3D inversion results clearly illustrate the capability to resolve in view of quality 3D structures of archaeological interest. According to the presented data the inversion models along one direction (x or y) seems to be adequate in reconstructing the subsurface structures.Naturally field data produce good quality reconstructions of the archaeological features only if the x-line and y-line measurements are considered together. Despite the increased computational time required by the 3D acquisition and 3D inversion schemes, good quality results can be produced.  相似文献   

7.
3D stochastic inversion of magnetic data   总被引:1,自引:0,他引:1  
  相似文献   

8.
A new method for the 2D inversion of induced polarization (IP) data in the time domain has been developed. The entire IP transients were observed and inverted into 2D Cole-Cole earth models, including resistivity, chargeability, relaxation time and the frequency constant. Firstly, a modified 1D time-domain electromagnetic algorithm was used to calculate the response of a layered polarizable ground. The transient signals were then inverted using the Marquardt method to derive the Cole-Cole parameters of each layer. However, model calculations showed that the EM effects could be neglected for the time range (>1 ms) and for the transmitter–receiver distances (<50 m) used in this study. Therefore, the induction effects were not considered for the solution of the 2D inverse problem and a DC solution was applied. An approximative forward algorithm was introduced in order to calculate the IP transients directly in the time domain and in order to speed up the inverse procedure. The approximation is highly accurate, and this is demonstrated by comparing the approximations with their exact solutions up to 3D. The inverse algorithm presented consists of two steps. The transient voltages of an array data set were inverted separately into a two-dimensional resistivity model for each time channel. The time-dependent resistivity of each cell was then interpreted as the response of a homogeneous half-space. In the 2D inversion algorithm, a 3D DC algorithm was used as a forward operator. The method only requires a standard 2D DC inversion and a homogenous half-space Cole-Cole inversion. The developed algorithm has been successfully applied to synthetic data sets and to a field data set obtained from a waste site situated close to Düren in Germany.  相似文献   

9.
A set of geophysical data collected in an area in Iran are analyzed to check the validity of a geological map that was prepared in connection to a mineral prospecting project and also to image the spatial electrical resistivity distribution. The data set includes helicopter electromagnetic (HEM), airborne magnetic and ground electrical resistivity measurement. Occam approach was used to invert the HEM data to model the resistivity using a layered earth model with fixed thicknesses. The algorithm is based on a nonlinear inverse problem in a least-squares sense.The algorithm was tested on a part of an HEM dataset acquired with a DIGHEM helicopter EM system at Kalat-e-Reshm, Semnan in Iran. The area contains a resistive porphyry andesite that is covered by Eocene sedimentary units. The results are shown as resistivity sections and maps confirming the existence of an arc like resistive structure in the survey area. The resistive andesite seems to be thicker than it is indicated in the geological maps. The results are compared with the reduced to the pole (RTP) airborne magnetic anomaly field data as well as with two ground resistivity profiles. We found reasonable correlations between the HEM 1D resistivity models and 2D models from electrical resistivity tomography (ERT) inversions. A 3D visualization of the 1D models along all flight lines provided a useful tool for the study of spatial variations of the resistivity structure in the investigation area.  相似文献   

10.
A new methodology for magnetic resonance sounding (MRS) data acquisition and interpretation was developed for locating water-filled karst cavities. This methodology was used to investigate the Ouysse karst system in the Poumeyssens shaft in the Causse de Gramat (France). A new 2D numerical MRS response model was designed for improved accuracy over the previous 1D MRS approach. A special survey performed by cave divers confirmed the accuracy of the MRS results. Field results demonstrated that in favourable conditions (a low EM noise environment and a relatively shallow, large target) the MRS method, used with a coincident transmitter/receiver loop, can be an effective tool for locating a water-filled karst conduit. It was shown numerically that because an a priori orientation of the MRS profile with the karst conduit is used in the inversion scheme (perpendicular for instance), any error in this assumption introduces an additional error in locating the karst. However, the resulting error is within acceptable limits when the deviation is less than 30°. The MRS results were compared with an electrical resistivity tomography (ERT) survey. It was found that in Poumeyssens, ERT is not able to locate the water-filled karst. On the other hand, ERT provides additional information about heterogeneities in the limestone.  相似文献   

11.
A 3D ERT study of solute transport in a large experimental tank   总被引:2,自引:0,他引:2  
A high resolution, cross-borehole, 3D electrical resistivity tomography (ERT) study of solute transport was conducted in a large experimental tank. ERT voxels comprising the time sequence of electrical images were converted into a 3D array of ERT estimated fluid conductivity breakthrough curves and compared with direct measurements of fluid conductivity breakthrough made in wells. The 3D ERT images of solute transport behaviour were also compared with predictions based on a 3D finite-element, coupled flow and transport model, accounting for gravity induced flow caused by concentration differences.The tank (dimensions 185×245×186 cm) was filled with medium sand, with a gravel channel and a fine sand layer installed. This heterogeneous system was designed to complicate solute transport behaviour relative to a homogeneous sand tank, and to thus provide a challenging but insightful analysis of the ability of 3D ERT to resolve transport phenomena. Four ERT arrays and 20 piezometers were installed during filling. A NaCl tracer (conductivity 1.34 S/m) was injected and intensively monitored with 3D ERT and direct sampling of fluid chemistry in piezometers.We converted the bulk conductivity estimate for 250 voxels in the ERT imaged volume into ERT estimated voxel fluid conductivity by assuming that matrix conduction in the tank is negligible. In general, the ERT voxel response is in reasonable agreement with the shape of fluid conductivity breakthrough observed in six wells in which direct measurements of fluid conductivity were made. However, discrepancies occur, particularly at early times, which we attribute to differences between the scale of the image voxels and the fluid conductivity measurement, measurement errors mapped into the electrical inversion and artificial image roughness resulting from the inversion.ERT images revealed the 3D tracer distribution at 15 times after tracer injection. The general pattern and timing of solute breakthrough observed with ERT agreed with that predicted from the flow/transport modelling. However, the ERT images indicate a vertical component of tracer transport and preferential flow paths in the medium sand. We attribute this to transient vertical gradients established during tracer injection, and heterogeneity caused by sorting of the sand resulting from the filling procedure. In this study, ERT provided a unique dataset of 250 voxel breakthrough curves in 1.04 m3. The use of 3D ERT to generate an array of densely sampled estimated fluid conductivity breakthrough curves is a potentially powerful tool for quantifying solute transport processes.  相似文献   

12.
I used theoretical forward models to show that a cavity embedded in a stratified sedimentary sequence can induce an equivalence problem in the ERT data inversion. Conductive top soil increases the misfit between the ground feature and the ERT model. The misfit depends on array and stratigraphy sequences. The latter induce an equivalence problem that manifests itself as wrong cavity depth positioning. The misfit is greater in the data acquired with Schlumberger array than with dipole–dipole.The ambiguity of ERT data inversion problems was tested in the detection of cavities linked to an 8th–6th century B.C. Sabine tomb, 3 m wide × 3 m long × 2 m high, excavated from a shaly gray volcanic ash (cinerite) layer covered by semi-lithoid tuff and top soil layers. In the real study I reduced the ambiguity in the inverse problem of ERT data using a priori information on geometry and resistivity of the cavity. The constrains were carried out from georadar data acquired with 80 and 200 MHz antenna. I demonstrate that this procedure has a practical application in cavity detection, and is a key to the reduction of the uncertainty inherent in the inversion process of ERT data.  相似文献   

13.
The decrease of density contrast in sedimentary basins may be approximated by a quadratic function. A sedimentary basin may be viewed as a number of prisms placed in juxtaposition. Equations in closed form for the gravity anomalies of 3D and 2½ D prismatic models are derived. Approximate equations for these models are also derived for rapid calculations. Efficient methods are developed for anomaly calculation by an appropriate use of the exact and approximate equations, and hence, for 3D and 2½ D modelling. The depths to the basement are adjusted iteratively by comparing the calculated anomalies with the observed anomalies. These methods are applied for analysis of the residual anomaly map of the Los Angeles Basin, California.  相似文献   

14.
To develop an effective method to identify ore-controlling faults, we studied the Jiaojia gold metallogenic belt, a most typical altered tectonite-type gold metallogenic belt in the Jiaodong Peninsula, China, and conducted experiments using the 3D distributed direct current-induced polarization (DC/IP) method. Firstly, we tested the ability of using 3D distributed DC/IP method to identify altered tectonite-type gold ore deposits by 3D synthetic modelling. We then collected real data of the Sizhuang gold deposit using the 3D distributed DC/IP method. The resistivity model obtained of this region is generally consistent with the known geological setting. Moreover, to obtain the information about the southern extension of the Jiaojia gold metallogenic belt, we conducted a 3D distributed DC/IP experiment in the Shijia area in the southern segment of the Jiaojia fault. The southern extension of the Jiaojia fault and tectonic evolution of shallow magma in this region were inferred from the 3D resistivity and chargeability models. Based on all the information above, we concluded that the 3D distributed DC/IP method has the advantages of 3D observations, high spatial resolution and great detection depth and will be one of the most effective methods for detecting altered tectonite-type gold ore deposits.  相似文献   

15.
Geoelectrical and induced polarization data from measurements along three profiles and from one 3D survey are acquired and processed in the central Skellefte District, northern Sweden. The data were collected during two field campaigns in 2009 and 2010 in order to delineate the structures related to volcanogenic massive sulphide deposits and to model lithological contacts down to a maximum depth of 1.5 km. The 2009 data were inverted previously, and their joint interpretation with potential field data indicated several anomalous zones. The 2010 data not only provide additional information from greater depths compared with the 2009 data but also cover a larger surface area. Several high‐chargeability low‐resistivity zones, interpreted as possible massive sulphide mineralization and associated hydrothermal alteration, are revealed. The 3D survey data provide a detailed high‐resolution image of the top ~450 m of the upper crust around the Maurliden East, North, and Central deposits. Several anomalies are interpreted as new potential prospects in the Maurliden area, which are mainly concentrated in the central conductive zone. In addition, the contact relationship between the major geological units, e.g., the contact between the Skellefte Group and the Jörn Intrusive Complex, is better understood with the help of 2010 deep‐resistivity/chargeability data. The bottommost part of the Vargfors basin is imaged using the 2010 geoelectrical and induced polarization data down to ~1‐km depth.  相似文献   

16.
Earthen flood defence embankments are linear structures, raised above the flood plain, that are commonly used as flood defences in rural settings; these are often relatively old structures constructed using locally garnered material and of which little is known in terms of design and construction. Alarmingly, it is generally reported that a number of urban developments have expanded to previously rural areas; hence, acquiring knowledge about the flood defences protecting these areas has risen significantly in the agendas of basin and asset managers. This paper focusses, by reporting two case studies, on electromagnetic induction (EMI) methods that would efficiently complement routine visual inspections and would represent a first step to more detailed investigations. Evaluation of the results is presented by comparison with ERT profiles and intrusive investigation data. The EM data, acquired using a GEM-2 apparatus for frequency sounding and an EM-31 apparatus for geometrical sounding, has been handled using the prototype eGMS software tool, being developed by the eGMS international research consortium; the depth sounding data interpretation was assisted by 1D inversions obtained with the EM1DFM software developed by the University of British Columbia. Although both sounding methods showed some limitations, the models obtained were consistent with ERT models and the techniques were useful screening methods for the identification of areas of interest, such as material interfaces or potential seepage areas, within the embankment structure: 1D modelling improved the rapid assessment of earthen flood defence embankments in an estuarine environment; evidence that EMI sounding could play an important role as a monitoring tool or as a first step towards more detailed investigations.  相似文献   

17.
3D modeling of geological bodies based on 3D seismic data is used to define the shape and volume of the bodies, which then can be directly applied to reservoir prediction, reserve estimation, and exploration. However, multiattributes are not effectively used in 3D modeling. To solve this problem, we propose a novel method for building of 3D model of geological anomalies based on the segmentation of multiattribute fusion. First, we divide the seismic attributes into edge- and region-based seismic attributes. Then, the segmentation model incorporating the edge- and region-based models is constructed within the levelset-based framework. Finally, the marching cubes algorithm is adopted to extract the zero level set based on the segmentation results and build the 3D model of the geological anomaly. Combining the edge-and region-based attributes to build the segmentation model, we satisfy the independence requirement and avoid the problem of insufficient data of single seismic attribute in capturing the boundaries of geological anomalies. We apply the proposed method to seismic data from the Sichuan Basin in southwestern China and obtain 3D models of caves and channels. Compared with 3D models obtained based on single seismic attributes, the results are better agreement with reality.  相似文献   

18.
电偶源频率电磁测深激发极化效应研究   总被引:3,自引:1,他引:2       下载免费PDF全文
本文研究含激电效应(IP)电偶源频率电磁测深问题.首先,通过对电偶源频率电磁测深电磁场分量分辨率的分析,提出利用电场Ex分量提取IP信息的合理性;然后,给出了同时存在激电和电磁效应时的理论计算公式和算法,对一些典型地电断面进行理论计算并对计算结果进行分析;最后,提出提取IP信息的几种可能方案.这些工作不仅为野外实测资料...  相似文献   

19.
Modern optimization approaches for electrode configurations can significantly improve the resolution of 2.5D resistivity imaging surveys. This study presents a brief review of the 2.5D optimization approach, particularly for borehole–borehole surveys with applications for mapping virtual CO2 plumes sequestrated in deep saline reservoir formations. The applied algorithm searches for arrays that maximize the spatial resolution of the survey among the comprehensive dataset of best possible spatial resolution (i.e. least temporal resolution). A main goal of this study is to increase the temporal resolution of ERT borehole–borehole surveys by selecting optimized electrode configurations in order to minimise the required data acquisition time while sustaining a high spatial resolution. The optimized dataset starts with a base set and is iteratively increased based on the model resolution matrix (R ) until the required number of data points is achieved. Among four different optimization methods, the compare R (CR) method of the best resolution is applied to directly calculate R for each new array added to the optimized dataset. Small optimized datasets generated by this technique are only <5% of their comprehensive sets but of an average resolution ratio (R r) of >0.95 (i.e. almost the same resolution). With increasing the size of the optimized dataset (during its generation), the algorithm progressively enhances R r values in the central interwell region (of low sensitivities and low resolution) far higher than in the near borehole region (of high sensitivities). Also the inverted tomogram reliability increases by increasing the optimized data size. Briefly, the optimized arrays improve the resolution in the interwell region which is commonly low in borehole–borehole ERT studies. The inverted output model is evaluated quantitatively using the model difference relative to the input model. The results reflect the common smearing effects and artefacts of varying degrees that overpredict volumes, underpredict magnitudes and blur boundaries of the target anomalies. This input model is a synthetic resistivity model that was used to generate synthetic (forward solution) data used during the inversion. Applications on synthetic CO2 models show that the mapping resolution for optimized datasets is better than that for other highly resolving arrays of the same number of data points. Problems of smeared boundaries and thin layers are less visible in the optimized array than in the other highly resolving arrays.  相似文献   

20.
一种激发极化法2.5维正演的自适应有限元方法(英文)   总被引:2,自引:2,他引:0  
传统的基于结构化网格有限元法采用的单元比较规则如矩形等,且网格剖分和加密要靠手动实现,所以传统的基于结构化网格有限元法不能准确和灵活地模拟复杂介质。本文采用易于模拟复杂介质模型的非结构化三角形网格进行剖分,且利用对偶加权后验误差估计指导网格自动细化过程,然后在电位模拟的基础上计算雅可比偏导矩阵,并依据Seigel(1959)理论实现激发极化法2.5维自适应有限元正演模拟算法。通过对垂直接触面模型进行正演分析,接收点附近网格得到了明显加密,电位数值解平均相对误差收敛到0.4%,视极化率平均相对误差收敛到1.2%,表明经自适应网格细化后,该算法数值解最终能收敛到精确解附近。最后对两个较复杂模型进行了正演计算与分析,进一步验证了该算法的准确性和灵活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号