首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 416 毫秒
1.
It is well known that magnetic activity in late‐type stars increases with increasing rotation rate. Using inversion techniques akin to medical imaging, the rotationally broadened profiles from such stars can be used to reconstruct ‘Doppler images’ of the distribution of cool, dark starspots on their stellar surfaces. Interacting binaries, however, contain some of the most rapidly rotating late‐type stars known and thus provide important tests of stellar dynamo models. Furthermore, magnetic activity is thought to play a key role in their evolution, behaviour and accretion dynamics. Despite this, we know comparatively little about the magnetic activity and its influence on such binaries. In this review we summarise the concepts behind indirect imaging of these systems, and present movies of the starspot distributions on the cool stars in some interacting binaries. We conclude with a look at the future opportunities that such studies may provide. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
3.
We analyse 81 optical spectra of the composite-spectrum binary HD 216572, and show that the primary is a cool giant of type G8 III while the secondary is a double-lined binary consisting of two nearly identical B9 dwarfs in a 1.18-d orbit. The inner system undergoes partial eclipses, whose photometry we model to derive the physical parameters of both secondary stars. The outer system does not eclipse. We isolate the combined spectrum of the secondary by spectral subtraction, and from 48 separate radial-velocity measurements of both secondary components we obtain a triple-lined orbit solution from which we determine the individual masses of all three stars and the inclinations of both the inner and the outer orbits. The period of the outer system is 55 d, which is surprisingly short for a giant star, and our detection of small but non-negligible amounts of variable chromospheric emission in the Ca  ii K line is not unlike that detected in other systems with comparably short periods. The secondary components are in a circular orbit and are rotating at about  95 ± 10 km s−1  ; although their surface-to-surface separation is only  4 R  the stars are not noticeably distorted geometrically by such close proximity. All three stars appear to be in synchronous rotation in their respective orbits. We derive fairly accurate Hertzsprung–Russell diagram positions for all three stars and compare them to evolutionary tracks calculated for the respective stellar masses, but cannot reconcile the age of the cool giant with that of the B stars.  相似文献   

4.
We present a search for the near-infrared spectroscopic signature of the close orbiting extrasolar giant planet HD 75289b. We obtained ∼230 spectra in the wavelength range 2.18–2.19 μm using the Phoenix spectrograph at Gemini South. By considering the direct spectrum, derived from irradiated model atmospheres, we search for the absorption profile signature present in the combined star and planet light. Since the planetary spectrum is separated from the stellar spectrum at most phases, we apply a phase-dependent orbital model and tomographic techniques to search for absorption signatures.
Because the absorption signature lies buried in the noise of a single exposure we apply a multiline deconvolution to the spectral lines available in order to boost the effective signal-to-noise ratio (S/N) of the data. The wavelength coverage of 80 Å is expected to contain ∼100 planetary lines, enabling a mean line with S/N of 800 to be achieved after deconvolution. We are nevertheless unable to detect the presence of the planet in the data and carry out further simulations to show that broader wavelength coverage should enable a planet like HD 75289b to be detected with 99.9 per cent confidence. We investigate the sensitivity of our method and estimate detection tolerances for mismatches between observed and model planetary atmospheres.  相似文献   

5.
We present narrow-band red light curves and surface maps of the short-period RS CVn binary system XY UMa, obtained between 1997 January and 2000 March. The light-curve morphology of this system is known to vary on time-scales of a few days. We have used eclipse-mapping techniques to map the distribution of cool starspots on the surface of the primary star. The resulting maps show the continued evolution of spot features on time-scales of a few days to a week. By comparison with the images of Collier Cameron & Hilditch, we also find evidence for longer term trends, including a decline to an activity minimum during 1997 and a rise in activity during 1998–2000. We also find marginal evidence from the O–C ephemeris curves for a periodicity and a peak corresponding to the time of activity minimum.  相似文献   

6.
In this paper, we develop a spectral differential technique with which the dynamical mass of low‐mass companions can be found. This method aims at discovering close companions to late‐type stars by removing the stellar spectrum through a subtraction of spectra obtained at different orbital phases and discovering the companion spectrum in the difference spectrum in which the companion lines appear twice (positive and negative signal). The resulting radial velocity difference of these two signals provides the true mass of the companion, if the orbital solution for the radial velocities of the primary is known. We select the CO line region in the K band for our study, because it provides a favourable star‐to‐companion brightness ratio for our test case GJ 1046, an M2V dwarf with a low‐mass companion that most likely is a brown dwarf. Furthermore, these lines remain largely unblended in the difference spectrum so that the radial velocity amplitude of the companion can be measured directly. Only if the companion rotates rapidly and has a small radial velocity due to a high mass, does blending occur for all lines so that our approach fails. We also consider activity of the host star, and show that the companion difference flux can be expected to have larger amplitude than the residual signal from the active star so that stellar activity does not inhibit the determination of the companion mass. In addition to determining the companion mass, we restore the single companion spectrum from the difference spectrum using singular value decomposition. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
8.
We separate and analyse the component spectra of the composite‐spectrum binary HD 208253. We find that the cool primary is an evolving star of spectral type G7 III, while its hot secondary is an early‐A dwarf. The giant is currently near the lowest point of the red‐giant branch and is slightly less luminous than its dwarf companion. We provide a set of precise radial‐velocity measurements for both stars. The double‐lined orbit which we derive from them shows that the component mass ratio is close to unity (q = 1.05 ± 0.01). We deduce the physical properties of both stars, determine their respective masses to be 2.75 ± 0.07 Me (giant) and 2.62 ± 0.07 Me (dwarf), and show that the orbit's inclination is within a degree or two of 68°. The spectrum of the A‐type component has quite component has quite narrow lines (we infer a rotational velocity of 18 km s–1), though since the period of the orbit is well over 1 year that component cannot be in synchronous rotation. An intriguing property of the dwarf is its enhanced Sr and Ba, though it does not exhibit the other spectral peculiarities that would signal a classical Am star. While by no means unique amongst the multitude of oddities exhibited by A and early‐F stars, this dwarf which we have uncovered in a long‐period binary offers valuable constraints and challenges to stellar‐evolution theory. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
HD 115781 and HD 116204 (BL CVn and BM CVn) are shown to be RS CVn binaries with periods near 20 days. HD 115781 is double-lined; the primary type is about K1III, while the secondary is probably a late-type subgiant. The masses of the two components are equal within observational error. There is substantial photometric variability with a period half the orbital period; it is attributed to ellipsoidal variation. HD 116204 is also of type K1III. It shows exceptionally strong Ca II H and K emission, together with an emission-line spectrum typical of RS CVn stars in theIUE ultraviolet region, but Hα is an absorption line. The secondary star in the HD 116204 system has not been detected. The primary shows photometric variations, presumably due to starspots, with a period 5 per cent longer than the orbital period.  相似文献   

10.
From accurate radial‐velocity measurements covering 11 circuits of the orbit of the composite‐spectrum binary 45 Cnc, together with high‐resolution spectroscopy spanning nearly 3 circuits, we have (i) isolated cleanly the spectrum of the early‐type secondary, (ii) classified the component spectra as G8 III and A3 III, (iii) derived the first double‐lined orbit for the system and a mass ratio (M1/M2) of 1.035 ± 0.01, and (iv) extracted physical parameters for the component stars, deriving the masses and (log) luminosities of the G star and A star as 3.11 and 3.00 M, and 2.34 and 2.28 L, respectively, with corresponding uncertainties of ±0.10 M and ±0.09 L. Since the mass ratio is close to unity, we argue that the more evolved component is unlikely to have been a red giant long enough to have made multiple ascents of the RGB, an argument that is supported somewhat by the rather high eccentricity of the orbit (e = 0.46) and the evolutionary time‐scales of the two components, but chiefly by the presence of significant Li I in the spectrum of the cool giant. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The spectrum of the secondary component of the bright composite-binary system α Equ, whose visual orbit is already known accurately, is isolated by the method of spectrum subtraction and classified accurately for the first time. The primary is a normal giant of type ∼G7, while the secondary is an Am star of type ∼kA3hA4mA9. The system's mass ratio, q , is determined to be  1.15±0.03  from measurements of the relative radial-velocity displacements between the components. Random and systematic errors in q are evaluated on the basis of the scatter of results derived from sets of spectra obtained from three different sources, and from tests conducted on independent versions of the secondary's spectrum. A spectroscopic analysis of a composite system such as α Equ is strongly challenged by the blending of a great many lines that are common to both spectra. Even when the primary spectrum is thought to have been subtracted adequately, a seemingly unavoidable ghost spectrum of faint residuals can bias wavelength measurements of the secondary's lines. That blending was the principal cause of a history of puzzling and discrepant measurements of q in α Equ. The derived masses of  M1=2.3 M  ,  M2=2.0 M  for the giant and dwarf, respectively, constrain the choice of models for fitting evolutionary tracks in the (log  T eff, log  L ) plane; the stellar points fit a single isochrone (for 0.74 Gyr). Both components are found to be slightly over-luminous compared to normal for their supposed luminosity classes. The giant appears to be commencing its first ascent of the red-giant branch. The dwarf has started to evolve away from the main sequence; its M V is similar to that of a sub-giant.  相似文献   

12.
We obtained 238 spectra of the close-orbiting extrasolar giant planet HD 189733b with resolution   R ∼ 15 000  during one night of observations with the Near-Infrared High-Resolution Spectrograph (NIRSPEC), at the Keck II Telescope. We have searched for planetary absorption signatures in the  2.0–2.4 μm  region where H2O and CO are expected to be the dominant atmospheric opacities. We employ a phase-dependent orbital model and tomographic techniques to search for the planetary absorption signatures in the combined stellar and planetary spectra. Because potential absorption signatures are hidden in the noise of each single exposure, we use a model list of lines to apply a spectral deconvolution. The resulting mean profile possesses a signal-to-noise ratio (S/N) that is 20 times greater than that found in individual lines. Our spectral time series thus yields spectral signatures with a mean S/N = 2720. We are unable to detect a planetary signature at a contrast ratio of  log10( F p/ F *) =−3.40  , with 63.8 per cent confidence. Our findings are not consistent with model predictions which nevertheless give a good fit to mid-infrared observations of HD 189733b. The 1σ result is a factor of 1.7 times less than the predicted 2.185-μm planet/star flux ratio of  log10( F p/ F *) ∼−3.16  .  相似文献   

13.
We present the results of a radial-velocity study of seven Am stars (HD 3970, 35035, 93946, 151746, 153286, 204751 and 224002) observed at the Observatoire de Haute-Provence (OHP) and the Cambridge Observatories with CORAVEL instruments. We find that these systems are single-lined spectroscopic binaries whose orbital elements are determined for the first time. Among this sample, HD 35035 and 153286 have long periods, with   P = 2.8  and 9.5 yr, respectively, which is rather unusual for Am stars. Four systems have orbits with large eccentricities (with   e ≥ 0.4  ). Physical parameters are inferred from this study for the primaries of those systems.
We then investigate the influence of tidal interaction, which has already led to the synchronism of the primaries and/or to the circularization of the orbits of some systems belonging to this sample. We extend this study to the list of 33 objects studied in this series of papers and derive values of the critical fractional radii   r = R / a   for circularization and synchronization of Am-type binaries. We find that the stars with   r ≳ 0.15  are orbiting on circular orbits and that synchronism is likely for all components with   r ≳ 0.20  .  相似文献   

14.
We present and analyze 17 consecutive years of UBVRI time‐series photometry of the spotted giant component of the RS CVn binary HD 208472. Our aim is to determine the morphology and the evolution of its starspots by using periodsearch techniques and two‐spot light‐curve modelling. Spots on HD208472 always occur on hemispheres facing the observer during orbital quadrature and flip their location to the opposite hemisphere every approximately six years. The times when the spots change their preferential hemisphere correspond to times when the light curve amplitudes are the smallest and when abrupt changes of the photometric periods are observed. During these times the star is also close to a relative maximum brightness, suggesting a vanishing overall spottedness at each end of the previous cycle and the start of a new one. We find evidence for a 6.28±0.06‐yr brightness cycle, which we interpret to be a stellar analog of the solar 11‐year sunspot cycle. We also present clear evidence for a brightening trend, approximated with a 21.5±0.5‐yr period, possibly due to a stellar analog of the solar Gleissberg cycle. From the two‐spot modelling we also determine an upper limit for the differential‐rotation coefficient of α = ΔP/P of 0.004±0.010, which would be fifty times weaker than on the Sun (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Towards an understanding of the Of?p star HD 191612: optical spectroscopy   总被引:1,自引:0,他引:1  
We present extensive optical spectroscopy of the early-type magnetic star HD 191612 (O6.5f?pe–O8fp). The Balmer and He  i lines show strongly variable emission which is highly reproducible on a well-determined 538-d period. He  ii absorptions and metal lines (including many selective emission lines but excluding He  ii λ4686 Å emission) are essentially constant in line strength, but are variable in velocity, establishing a double-lined binary orbit with   P orb= 1542 d, e = 0.45  . We conduct a model-atmosphere analysis of the spectrum, and find that the system is consistent with a ∼O8 giant with a ∼B1 main-sequence secondary. Since the periodic 538-d changes are unrelated to orbital motion, rotational modulation of a magnetically constrained plasma is strongly favoured as the most likely underlying 'clock'. An upper limit on the equatorial rotation is consistent with this hypothesis, but is too weak to provide a strong constraint.  相似文献   

16.
We present red spectra in the region ∼ λ 7000–8300 Å of the eclipsing dwarf nova IP Peg, with simultaneous narrow-band photometry centred at 7322 Å. We show that by placing a second star on the slit we can correct for the telluric absorption bands which have hitherto made the TiO features from the secondary star unusable. We use these TiO features to carry out a radial velocity study of the secondary star, and find this gives an improvement in the signal-to-noise ratio of a factor of 2 compared with using the Na  i doublet. In contrast with previous results, we find no apparent ellipticity in the radial velocity curve. As a result we revise the semi-amplitude to K 2=331.3±5.8 km s−1, and thus the primary and secondary star masses to 1.05-0.07+0.14 M⊙ and 0.33-0.05+0.14 M⊙ respectively. Although this is the lowest mass yet derived for the secondary star, it is still overmassive for its observed spectral type. However, the revised mass and radius bring IP Peg into line with other cataclysmic variables in the mass–radius–period relationships.
By fitting the phase-resolved spectra around the TiO bands to a mean spectrum, we attempt to isolate the light curve of the secondary star. The resulting light curve has marked deviations from the expected ellipsoidal shape. The largest difference is at phase 0.5, and can be explained as an eclipse of the secondary star by the disc, indicating that the disc is optically thick when viewed at high inclination angles.  相似文献   

17.
We have carried out BVR photometric and H spectroscopic observations of the star HD 61396 during 1998 March 20 to 1999 April 3. We have discovered regular optical photometric variability from this star, with an inferred period of 31.95±0.10 d, and an amplitude of 0.18 mag. A possible period of 35.34±0.12 d, as determined with Hipparcos , cannot be completely ruled out, however. Modelling of its photometric light curve with two circular spots indicates that 521 per cent of the stellar surface is covered by dark starspots which are 830 K cooler than the surrounding photosphere, and produce the observed rotational modulation of the optical flux. Optical spectroscopy reveals a variable H emission feature, indicating that it is an unusually active star.
In addition, we have analysed archival X-ray data of HD 61396, obtained from serendipitous observations with the ROSAT X-ray observatory, and we also discuss the radio properties of this star, based on both published Green Bank and unpublished VLA observations. The strong photometric variability and H emission, the relatively hard X-ray spectrum, and the high X-ray and radio luminosities imply that HD 61396 is most likely to be a member of the RS CVn class of evolved active binary stars. Its X-ray and radio luminosities place it among the five most luminous active binaries detected so far.  相似文献   

18.
New BVR light curves and a photometric analysis of the eclipsing binary star V1430 Aql are presented. The light curves were obtained at the Çanakkale Onsekiz Mart University Observatory in 2004. The light curves are generally those of detached eclipsing binaries, but there are large asymmetries between maxima. New BVR light curves were analysed with an ILOT procedure. Light curve asymmetries of the system were explained in terms of large dark starspots on the primary component. The primary star shows a long‐lived and quasi‐poloidal spot distribution with active longitudes in opposite hemispheres. Absolute parameters of the system were derived.We also discuss the evolution of the system: the components are likely to be pre‐main sequence stars, but a post‐main sequence stage cannot be ruled out. More observations are needed to decide this point. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
We have undertaken a detailed near-infrared spectroscopic analysis of eight notable white dwarfs, predominantly of southern declination. In each case the spectrum failed to reveal compelling evidence for the presence of a spatially unresolved, cool, late-type companion. Therefore, we have placed an approximate limit on the spectral type of a putative companion to each degenerate. From these limits we conclude that if GD659, GD50, GD71 or WD2359−434 possesses an unresolved companion then most probably it is substellar in nature  ( M < 0.072 M)  . Furthermore, any spatially unresolved late-type companion to RE J0457−280, RE J0623−374, RE J0723−274 or RE J2214−491 most likely has   M < 0.082 M  . These results imply that if weak accretion from a nearby late-type companion is the cause of the unusual photospheric composition observed in a number of these degenerates then the companions are of very low mass, beyond the detection thresholds of this study. Furthermore, these results do not contradict a previously noted deficit of very-low-mass stellar and brown dwarf companions to main sequence F, G, K and early-M type primaries ( a ≲ 1000 au).  相似文献   

20.
We use information on the   v sin ( i )  values of early-type binaries in order to search for correlations which may constrain the relative orientation of the stellar spin axes in binary systems. We find correlations in the case of close binaries which suggest that tidal synchronization is effective for binaries whose separation exceeds the stellar radius by more than an order of magnitude, in line with the theoretical predictions of Goldreich & Nicholson and the previous observational analysis of Giuricin et al. In the case of wide binaries, the   v sin ( i )  values are not well correlated, which requires that the magnitude of the spin speeds is not tightly correlated. Under this assumption, we then find that the data provide no significant constraints on the degree of alignment of spin axes. The data are therefore compatible with scenarios (such as disc fragmentation or capture) which differ widely in the expected degree of spin alignment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号