首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
We present the first deep, optical, wide‐field imaging survey of the young open cluster Collinder 359, complemented by near‐infrared follow‐up observations. This study is part of a large programme aimed at examining the dependence of the mass function on environment and time. We have surveyed 1.6 square degree in the cluster in the I and z filters with the CFH12K camera on the Canada‐France‐Hawaii 3.6m telescope down to completeness and detection limits in both filters of 22.0m and 24.0m, respectively. Based on their location in the optical (I‐z ,I ) colour‐magnitude diagram, we have extracted new cluster member candidates in Collinder 359 spanning 1.3‐0.04 M, assuming an age of 100 Myr and a distance of 450 pc for the cluster.We have used the 2MASS database as well as our own near‐infrared photometry to confirm the membership of the optically‐selected cluster candidates. Additionally, we have obtained optical spectroscopy and employed chromospheric activity as a further criterion to assess the membership of candidates. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Because of the intense brightness of the OB‐type multiple star system σ Ori, the low‐mass stellar and substellar populations close to the centre of the very young σ Orionis cluster is poorly know. I present an IJHKs survey in the cluster centre, able to detect from the massive early‐type stars down to cluster members below the deuterium burning mass limit. The near‐infrared and optical data have been complemented with X‐ray imaging. Ten objects have been found for the first time to display high‐energy emission. Previously known stars with clear spectroscopic youth indicators and/or X‐ray emission define a clear sequence in the I vs. IKs diagram. I have found six new candidate cluster members that follow this sequence. One of them, in the magnitude interval of the brown dwarfs in the cluster, displays X‐ray emission and a very red JKs colour, indicative of a disc. Other three low‐mass stars have excesses in the Ks band as well. The frequency of X‐ray emitters in the area is 80±20 %. The spatial density of stars is very high, of up to 1.6±0.1 arcmin–2. There is no indication of lower abundance of substellar objects in the cluster centre. Finally, I also report two cluster stars with X‐ray emission located at only 8000–11000 AU to σ Ori AB, two sources with peculiar colours and an object with X‐ray emission and near‐infrared magnitudes similar to those of previously‐known substellar objects in the cluster. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We present results of an optical and near‐infrared (IR) 1.8 deg2 survey in the Pleiades open cluster to search for substellar objects. From optical I ‐band images from the CFHT and J ‐band images from the 3.5m CAHA Telescope, we identify 18 faint and very red L brown dwarf candidates, with I > 20.9 and I – J > 3.2. The follow‐up observations of nine objects in the H ‐ and K s‐bands confirm that eight belong to the IR sequence of the cluster and the proper motion measurements of seven candidates confirm that they are Pleiades members. A preliminary estimation of the substellar mass spectrum dN/ dM in the form of a power law M cα provides α = +0.57 ± 0.14. We extrapolate this function to estimate the number of planetary mass objects that could be present in the cluster down to 1 MJup. Sensitive searches combining far red and near‐IR observations may unveal these objects in a near future. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
We have performed deep, wide‐field imaging on a ∼0.4 deg2 field in the Pleiades (Melotte 22). The selected field was not yet target of a deep search for low mass stars and brown dwarfs. Our limiting magnitudes are R ∼ 22 mag and I ∼ 20 mag, sufficient to detect brown dwarf candidates down to 40 MJ. We found 197 objects, whose location in the (I, RI) color magnitude diagram is consistent with the age and the distance of the Pleiades. Using CTK R and I as well as JHK photometry from our data and the 2MASS survey we were able to identify 7 new brown dwarf candidates. We present our data reduction technique, which enables us to resample, calibrate, and co‐add many images by just two steps. We estimate the interstellar extinction and the spectral type from our optical and the NIR data using a two‐dimensional χ2 fitting (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
We present the results of a survey of the open star cluster Melotte 111 in Coma Berenices, undertaken using the USNO‐B1.0 and 2MASS Point Source catalogues. On the basis of their astrometric and photometric properties, we have identified 60 new candidate members with masses in the range 1.007 < M < 0.269 M. We estimate a membership probability for each by extracting control clusters from the proper motion vector diagram. All 60 are found to have greater than 60 per cent probability of being cluster members, which if they are confirmed as members, more than doubles the number of known cluster members. We also have I and Z photometry for 100 low mass candidate members of the cluster, 13 of which we suggest may be brown dwarfs. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
In this study we determined precise orbital and physical parameters of the very short‐period low‐mass contact binary system CC Com. The parameters are obtained by analysis of new CCD data combined with archival spectroscopic data. The physical parameters of the cool and hot components are derived as Mc = 0.717(14) M, Mh = 0.378(8) M, Rc = 0.708(12) R, Rh = 0.530(10) R, Lc = 0.138(12) L, and Lh = 0.085(7) L, respectively, and the distance of the system is estimated as 64(4) pc. The times of minima obtained in this study and with those published before enable us to calculate the mass transfer rate between the components which is 1.6 × 10–8 M yr–1. Finally, we discuss the possible evolutionary scenario of CC Com (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
We present the first long‐term Johnson UBVR observations and comprehensive photometric analysis of the W UMa‐type eclipsing binary V2612 Oph. Observations in the time interval between 2003 and 2009 enabled us to reveal the seasonal and long‐term variations of the light curve. Hence, we found that the mean brightness level of the light curve shows a variation with a period of 6.7 years. Maximum and minimum brightness levels of the light curve exhibit a variation from year to year which we attribute to a solar‐like activity. The OC variation of eclipse timings of the system shows a decreasing parabolic trend and reveals a period decrease at a rate of P = 6.27×10‐7 day yr‐1 with an additional low‐amplitude sinusoidal variation that has a similar period as the long‐term brightness variations. Our light curve analysis shows that the system is a W‐subtype W UMa eclipsing binary. We calculated masses and radii of the primary and secondary components as M1 = 1.28 M, M2 = 0.37 M and R1 = 1.31 R, R2 = 0.75 R, respectively. The derived absolute photometric parameters allow us to calculate a distance of 140 pc, which confirms that the system is a foreground star in the sky field of the Galactic open cluster NGC 6633. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
We present the results of our investigation of the geometrical and physical parameters of the W UMa‐type binary V404 Peg from analysis of CCD (BVRI) light curves and radial velocity data. The photometric data were obtained during 2010 at Ankara University Observatory (AUO). Light and radial velocity observations were analyzed simultaneously by using the well‐known Wilson‐Devinney (2007 revision) code to obtain absolute and geometrical parameters. Our solution indicates that V404 Peg is an A‐type overcontact binary with a mass ratio of q = 0.243 and an overcontact degree of f = 32.1 %. Combining our light curves with the radial velocity curves from Maciejewski & Ligeza (2004), we determined the absolute parameters of this system as follows: a = 2.672 R, M1 = 1.175 M, M2 = 0.286 M, R1 = 1.346 R, and R2 = 0.710 R. Finally, we discuss the evolutionary condition of the system (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
We present the first ever study of the bright star HD 1. The star was chosen arbitrarily just because of its outstanding Henry Draper number. Surprisingly, almost nothing is known about this bright 7.m4 star. Our observations were performed as part of the commissioning of the robotic telescope facility STELLA and its fiber‐fed high‐resolution optical echelle spectrograph SES in the years 2007–2010. We found long‐term radial velocity variations with a full amplitude of 9 km s–1 with an average velocity of –29.8 km s–1 and suggest the star to be a hitherto unknown single‐lined spectroscopic binary. A preliminary orbit with a period of 6.2 years (2279±69 days) and an eccentricity of 0.50±0.01 is given. Its rms uncertainty is just 73 m s–1. HD 1 appears to be a G9‐K0 giant of luminosity class IIIa with Teff = 4850±100 K, logg = 2.0±0.2, L ≈ 155 L, a mass of 3.0±0.3 M, a radius of 17.7 R, and an age of ≈350 Myr. A relative abundance analysis led to a metallicity of [Fe/H] = –0.12 ± 0.09. The α ‐element silicon may indicate an overabundance of +0.13 though. The low strengths of some s‐process lines and a lower limit for the 12C/13C isotope ratio of ≥16 indicate that HD 1 is on the first ascend of the RGB. The absorption spectral lines appear rotationally broadened with a v sin i of 5.5±1.2 km s–1 but no chromospheric activity is evident. We also present photometric monitoring BV (RI)C data taken in parallel with STELLA. The star is likely a small‐amplitude (<10 mmag) photometric variable although no periodicity was found (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Detached eclipsing binaries constitute potential accurate distance tracers. They are also useful as the test bench of stellar evolution. In BD–00° 3357 eclipses are partial and its orbital period is 1.d4. Our combined spectroscopic and photometric solution yields secure parameters of this system. The model of the star was obtained using the Wilson‐Devinney method. As result we obtained a semi major axis of 7.65 R and a mass ratio of 0.78. The derived masses and radii are M 1 = 1.73 M,M 2 = 1.34 MR 1 = 1.78 R, R 2 = 1.32 R, respectively. These values correspond to the slightly evolved F0 and F6.5 components, both slightly less than 1Gyr old. The distance of the star was estimated to be 310 ± 60 pc, and the corresponding photometric parallax is 3.24 ± 0.74 mas. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Photometric and spectroscopic characteristics of the WN5+O6 binary system, V444 Cyg, were studied. The Wilson‐Devinney (WD) analysis, using new BV observations carried out at the Ankara University Observatory, revealed the masses, radii, and temperatures of the components of the system as MWR = 10.64 M, MO = 24.68 M, RWR = 7.19 R, RO = 6.85 R, TWR = 31 000 K, and TO = 40000 K, respectively. It was found that both components had a full spherical geometry, whereas the circumstellar envelope of the WR component had an asymmetric structure. The OC analysis of the system revealed a period lengthening of 0.139 ± 0.018 syr–1, implying a mass loss rate of (6.76 ± 0.39) ×10–6 M yr–1 for the WR component. Moreover, 106 IUE‐NEWSIPS spectra were obtained from NASA's IUE archive for line identification and determination of line profile variability with phase, wind velocities and variability in continuum fluxes. The integrated continuum flux level (between 1200–2000 Å) showed a mild and regular increase from orbital phase 0.00 up to 0.50 and then a decrease in the same way back to phase 0.00. This is evaluated as the O component making a constant and regular contribution to the system's UV light as the dominant source. The C IV line, originating in the circumstellar envelope, had the highest velocity while N IV line, originating in deeper layers of the envelope, had the lowest velocity. The average radial velocity calculated by using the C IV line (wind velocity) was found as 2326 km s–1 (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
New BV light curves and times of minimum light for the short period W UMa system LO And were analyzed to derive the preliminary physical parameters of the system. The light curves were obtained at Ankara University Observatory during 5 nights in 2003. A new ephemeris is determined for the times of primary minimum. The analysis of the light curves is made using the Wilson‐Devinney 2003 code. The present solution reveals that LO And has a photometric mass ratio q = 0.371 and is an A‐type contact binary. The period of the system is still increasing, which can be attributed to light‐time effect and mass transfer between the components. With the assumption of coplanar orbit of the third body the revealed mass is M3 = 0.21M. If the period change dP/dt = 0.0212 sec/yr is caused only by the mass transfer between components (from the lighter component to the heavier) the calculated mass transfer rate is dm/dt = 1.682×10−7M/yr. The absolute radii and masses estimated for the components, based on our photometric solution and the absolute parameters of the systems which have nearly same period are R1 = 1.30R, R2 = 0.85R, M1 = 1.31M, M2 = 0.49M respectively for the primary and secondary components. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
We present continuous and time‐resolved R = 55 000 optical échelle spectroscopy of ε Aurigae from 2006–2013. Data were taken with the STELLA Echelle Spectrograph of the robotic STELLA facility at the Observatorio del Teide in Tenerife. Contemporaneous photometry with the Automatic Photoelectric Telescopes at Fairborn Observatory in Arizona is presented for the years 1996–2013. Spectroscopic observations started three years prior to the photometric eclipse and are still ongoing. A total of 474 high‐resolution échelle spectra are analyzed and made available in this paper. We identify 368 absorption lines of which 161 lines show the characteristic sharp disk lines during eclipse. Another 207 spectral lines appeared nearly unaffected by the eclipse. From spectrum synthesis, we obtained the supergiant atmospheric parameters Teff = 7395 ± 70 K, log g ≈ 1, and [Fe/H] = +0.02 ± 0.2 with ξt = 9 km s–1, ζRT = 13 km s–1, and v sin i = 28 ± 3 km s–1. The residual average line broadening expressed in km s–1 varies with a period of 62.6 ± 0.7 d, in particular at egress and after the eclipse. Two‐dimensional line‐profile periodograms show several periods, the strongest with ≈110 d evident in optically thin lines as well as in the Balmer lines. Center‐of‐intensity weighted radial velocities of individual spectral lines also show the 110‐d period but, again, additional shorter and longer periods are evident and are different in the Balmer lines. The two main spectroscopic Hα periods, ≈ 116 d from the line core and ≈ 150 d from the center‐of‐intensity radial velocities, appear at 102 d and 139 d in the photometry. The Hβ and Johnson V I photometry on the other hand shows two well‐defined and phase‐coherent periods of 77 d and 132 d. We conclude that Hα is contaminated by changes in the circumstellar environment while the Hβ and V I photometry stems predominantly from the non radial pulsations of the F0 supergiant. We isolate the disk‐rotation profile from 61 absorption lines and found that low disk eccentricity generally relates to low disk rotational velocity (but not always) while high disk eccentricity always relates to high velocity. There is also the general trend that the disk‐absorption in spectral lines with higher excitation potential comes from disk regions with higher eccentricity and thus also with higher rotational velocity. The dependency on transition probability is more complex and shows a bi‐modal trend. The outskirts of the disk is distributed asymmetrically around the disk and appears to have been built up mostly in a tail along the orbit behind the secondary. Our data show that this tail continues to eclipse the F0 Iab primary star even two years after the end of the photometric eclipse. High‐resolution spectra were also taken of the other, bona‐fide, visual‐binary components of ε Aur (ADS 3605BCDE). Only the C‐component, a K3‐4‐giant, appears at the same distance than ε Aur but its radial velocity is in disagreement with a bound orbit. The other components are a nearby (≈ 7 pc) cool DA white dwarf, a G8 dwarf, and a B9 supergiant, and not related to ε Aur. The cool white dwarf shows strong DIB lines that suggest the existence of a debris disk around this star. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
We report on our follow‐up spectroscopy of HD 1071478 B, a recently detected faint co‐moving companion of the exoplanet host star HD 107148 A. The companion is separated from its primary star by about 35″ (or 1790 AU of projected separation) and its optical and near infrared photometry is consistent with a white dwarf, located at the distance of HD 107148 A. In order to confirm the white dwarf nature of the co‐moving companion, we obtained follow‐up spectroscopic observations of HD 107148 B with CAFOS at the CAHA 2.2 m telescope. According to our CAFOS spectroscopy HD 107148 B is a DA white dwarf with an effective temperature in the range between 5900 and 6400K. The properties of HD 107148 B can further be constrained with the derived effective temperature and the known visual and infrared photometry of the companion, using evolutionary models of DA white dwarfs. We obtain for HD 107148 B a mass of 0.56 ± 0.05 M, a luminosity of (2.0 ± 0.2) × 10–4 L, log g [cm s–2]) = 7.95 ± 0.09, and a cooling age of 2100 ± 270 Myr. With its white dwarf companion the exoplanet host star HD 107148 A forms an evolved stellar system, which hosts at least one exoplanet. So far, only few of these evolved systems are known, which represent only about 5 % of all known exoplanet host multiple stellar systems. HD 107148 B is the second confirmed white dwarf companion of an exoplanet host star with a projected separation to its primary star of more than 1000 AU. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The Hipparcos Space Astrometry Mission photometric observations of V398 Lac, led to the discovery of its variability, allowing to classify it as an eclipsing binary with an orbital period of about 5.4 days. This prompted us to acquire highresolution échelle spectra with the aim of performing accurate radial velocity measurements and to determine the main physical parameters of the system's components. We present, for the first time, a double‐lined radial velocity curve and determine the orbital and physical parameters of the two components, that can be classified both as late B‐type stars. In particular, we obtained an orbital inclination i ∼ 85°. With this value of the inclination, we deduced masses M1 = 3.83±0.35 M andM2 = 3.29±0.32 M, and radii R1 = 4.89±0.18 R and R2 = 2.45±0.11 R for the more massive and less massive components, respectively. Both components are well inside their own Roche lobes. The mass ratio is M2/M1 ∼ 0.86. We derived also the projected rotational velocities as v1 sin i = 79±2 km s–1 and v2 sin i = 19±2 km s–1. Our measurements indicate that the rotation of the primary star is essentially pseudo‐synchronized with the orbital velocity at the periastron, while the secondary appears to rotate very slowly and has not yet attained synchronization. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
We search for stellar and substellar companions of young nearby stars to investigate stellar multiplicity and formation of stellar and substellar companions. We detect common proper‐motion companions of stars via multi‐epoch imaging. Their companionship is finally confirmed with photometry and spectroscopy. Here we report the discovery of a new co‐moving (13 σ) stellar companion ∼17.8 arcsec (350AU in projected separation) north of the nearby star HD141272 (21 pc).With EMMI/NTT optical spectroscopy we determined the spectral type of the companion to be M3±0.5V. The derived spectral type as well as the near infrared photometry of the companion are both fully consistent with a M dwarf located at the distance of HD141272 (21 pc). Furthermore the photometry data rules out the pre‐main sequence status, since the system is consistent with the ZAMS of the Pleiades. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The first CCD photometric investigation of the open cluster NGC 7296 up to now was performed within the narrow band Δa photometric system, which enables us to detect peculiar objects. A deeper investigation of that cluster followed, using the standard BV R ‐Bessel filter set. The age and E (BV ) was determined independently to log t = 8.0 ± 0.1 and 0.15 ± 0.02, respectively by using Δa and broadband photometry. In total five Be/Ae objects and two metal‐weak stars showing significant negative Δa ‐values as well as one classical chemically peculiar star could be identified within that intermediate age open cluster. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Gliese 29 is a 7 to 8 Gyr old, southern Population I turnoff star with a large proper motion of 1″/yr. Using recent direct imaging observations with the 0.8 m Infrared Imaging System (IRIS) of the Universitätssternwarte Bochum near Cerro Armazones in Chile, we demonstrate that the faint source 2MASS J00402651–5927168 at a projected angular separation ρ = 6.″35 is a common‐proper‐motion companion to Gl 29. Provided this source is not part of a further subsystem, the IRIS J ‐ and Ks‐band photometry either implies a spectral type of about L2, based on its absolute magnitude, or an approximate mass MB ≃ 0.077 M, suggesting that it may even be a brown dwarf. Assuming a face‐on circular orbit this faint companion orbits Gl 29 in 1880 years. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
The knowledge of mass loss rates due to thermal winds in cool dwarfs is of crucial importance for modeling the evolution of physical parameters of main sequence single and binary stars. Very few, sometimes contradictory, measurements of such mass loss rates exist up to now. We present a new, independent method of measuring an amount of mass lost by a star during its past life. It is based on the comparison of the present mass distribution of solar type stars in an open cluster with the calculated distribution under an assumption that stars with masses lower than Mlim have lost an amount of mass equal to ΔM. The actual value of ΔM or its upper limit is found from the best fit. Analysis of four clusters: Pleiades, NGC 6996, Hyades and Praesepe gave upper limits for ΔM in three of them and the inconclusive result for Pleiades. The most restrictive limit was obtained for Praesepe indicating that the average mass loss rate of cool dwarfs in this cluster was lower than 6 × 10–11 M/yr. With more accurate mass determinations of the solar type members of selected open clusters, including those of spectral type K, the method will provide more stringent limits for mass loss of cool dwarfs. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The components of binary stars offer the potential to examine the predictions of stellar‐evolution theory with particularly tight constraints. Those constraints are further tightened when the binary belongs to a cluster whose properties have been well determined independently. 12 Comae presents both advantages, belonging as it does to the Coma Cluster, Melotte 111. The orbit of 12 Comae has an eccentricity of nearly 0.6 and a period of 13 months. By a process of subtraction we separate the spectra of the component stars, derive a precise double‐lined orbit solution, and by modelling the photometry we extract the individual stellar photometric and physical properties, ages and rotation. By fitting theoretical evolutionary tracks to the positions of the stars in the H‐R diagram we confirm their individual masses, and derive a ZAMS of ∼0.65 Gyr, which accords well with measurements published for the cluster itself. We show that the primary of 12 Comae is an evolving giant of spectral type ∼G7 and mass 2.6 M, while its secondary (whose spectrum could be isolated particularly cleanly) is an A3 dwarf which has a mass of 2.05 M and has commenced its evolution away from the main sequence. There is evidence that both stars are slightly metal‐weak (–0.25 < [Fe/H] < 0.0), well in keeping with analyses of other members of this cluster (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号